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LA THEORIE GEOMETRIQUE D’UNE CLASSE D’EQUATIONS
NON-LINEAIRES DIFFERENTIELLES
AVEC ARGUMENTS RETARDES

par John A. NOHEL *)

Les buts de cet exposé sont:

1° De donner quelques résultats [1] concernant le comportement qualitatif
des solutions de I’équation:

(1) X'() = ~] a(t-7)g(x@)dr,

L—r
ou a(t), g (x) sont des fonctions données et r > 0 est une constante.

20 De présenter quelques généralisations de ces idées, obtenues récem-
ment par Hale [2] et R. Miller [3], et d’arriver & une théorie qualitative
pour les systemes plus généraux que (1); mais, comme nous verrons,
on ne peut pas obtenir tous les résultats qualitatifs pour (1) de cette
théorie.

I. Soit a(¢) continue sur 0= ¢ < r et g (x) continue sur —o0 < x < 0.
Etant donnée une fonction ¢, continue sur —r < ¢t < 0, on montre (voir
par exemple Vogel [4]) qu’il existe une constante 4 > 0 et une solution
x(t) = x(¢) (¢) de (1) définie sur —r < ¢t < A satisfaisant la condition
x()=¢ () sur —r =t =0 et I'équation (1) sur 0 <7 < 4. On peut
prolonger la solution x () a droite, aussi longtemps que ]x (¢) (t)l reste
_ bornée. Si de plus g (x) satisfait une condition de Lipschitz, la solution est
‘ unique et elle dépend continiment de ¢.

Souvent il est convenable d’écrire (1) sous la forme équivalente:

0

(1) x'(t) = —~j a(—s)g(x(t+s))ds

-r

*) The preparation of this lecture was supported by the Air Force Office of Scientific Research Grant
AF - AFOSR - 925 - 65.
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Pour le comportement qualitatif nous supposons:

2 a(eCO<t<r),
(=Da®@® =20 O<t<r, k=0,1,2,3), a(r) =0

(3) g(X)EC(—O0,00), xg(x)>0 (x;é()),

G(x) =fg()dt >0 (|x]— o),

et nous remarquons que si la derniere hypothese de (3) n’est pas satisfaite,
tous les résultats sont valables pour sup | ® (¢)| assez petit.

-r<t=s0

Soit x (¢) une solution de (1) sur —r <t < 4, A > 0, et définissons
(4) V(ty = G(x(t)) — %:_f_ a'(t—1) [3' g (x(s))ds]*dr,
ou, écrit sous une forme équivalente,
(4%) V() = G(x(®) - %(i a’(—s) [(j) g(x(t+2)dr])*ds.

On trouve que pour —r <t < 4

5) Vi) = ta’ (O[] g(x(9))ds]?

~ 3] a@-9[fg(x(s)ds]*dr,
ou

(5*) V'@ = 3a (O[] g(x+s))ds]?

0 0
~3f @ (=9 [[ oG+ D) DT ds.

Puisque les hypothéses (2) et (3) sont satisfaites, on a V(1) = 0 et
V'(t) £0, —r <t < A. 1l sensuit

0<VE £ V(O = G(x(0) -3 a' (=9)[[g((D)dr]ds;
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c’est-a-dire ¥ (¢) est bornée par une constante indépendante de 4. Dés lors,
utilisant (3), on peut prolonger la solution x (¢) jusqu’a 0 < 7 < oo et x ()
et aussi x’ (¢), x" (¢), restent bornées. Si on forme V" () on trouve que
V"' (t) est bornée; joint & V' (¢) = 0, V' (¢) £ 0, ce résultat implique

(6) lim V' (f) = 0.

t— o0

On peut maintenant déduire le résultat suivant.

Théoreme 1.

Les hypothéses (2) et (3) soient satisfaites. Etant donnée une fonction ¢
continue sur —r <t £ 0, il existe une solution x(t) = x(d)) (t) de (1)
définie sur —r <t < o0, avec x(t) = ¢ (t) quand —r <X t £ 0, tel que
x (), x'(t), x"" (t) sont bornées. Si de plus a"’ (t) # 0 la SQlJtlon satisfait

(7) limx® @) =0 (k=0,1,2).

t— 00
Pour obtenir (7), on se sert de (5) et (6) desquelles on tire:
lim _f a” (t—1) [j g(x(s))ds]*dr =0,
t2ot—r

et on montre (7) sans difficulté.
La démonstration que nous avons indiquée ci-dessus n’est pas valable
si @ (t) = 0; en particulier choisissons

1
a(t) = ;(r——t) :

On peut conclure que toutes les solutions existent et restent bornées, mais
on ne peut pas déduire (7). En effet, (7) ne reste pas nécessairement vraie,
en général le comportement est plus compliqué.

Théoréme 2.

A. Soit

1
a(t) = ;(r—t)

et supposons que (3) est satisfaite et que g (x) est Lipschitzienne localement.
Etant donnée une fonction ¢ continue sur —r < t <0, il existe une solu-
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tion x(t) = x(¢)(t) définie sur —r <t <o avec x(t) = ¢ (t) pour
—r =t =0 et qui satistait

xS K (0t<oo;j=0,1,2),

ot K est une constante qui dépend seulement de .

B. L’ensemble limite I'™ (x (t)) de la courbe { x (¢), x' (t)} dans le plan
est un seul cycle y fermé du systéme

u =v
() { , (ou u" +g(u) = 0).
v = g(u)

C. SiT'"(x() =y #(0,0), soit (a, B) €y et soit p (o, B) la plus petite
période de toutes les solutions de (8) qu’engendre y. Il existe un nombre
entier m = m(a, f) = 1 tel que r = mp (2, f).

Nous avons déja montré A.; il s’ensuit que I'" (x (¢)) est non-vide.
Nous donnerons I'idée de la démonstration de B. et C. dans le supplément
au-dessous.

II. Pour présenter les généralisations nous avons besoin d’un certain
nombre de définitions. Soit R” I’espace euclidien réel, Ix\ la norme dans R".
Soit C I’espace des fonctions ¢ continues définies sur [—r, 0] a valeurs dans
R" et soit ||¢|| = max |¢ (w)| la norme dans C.

0

—rsuc=

Si x est une fonction: [—r, 00) — R", soit t = 0 et considérons la fonc-

tion x, € C définie sur —r < u < 0 par I’équation:
x(u) =x@t+u) (—r=u=0);
x, représente la portion du graphique de la fonction x (¢) sur l'intervalle
[t—r, t] « transférée » a l'intervalle [—r, O].
Désignons par Cy la boule ouverte dans C de rayon H, H > 0(Cy
= {¢€eC; Hd)“ < H}). Soit f une fonction définie sur Cy pour un

nombre H > 0 avec ses valeurs dans R"(f: Cy — R"), et considérons le
systéme des équations fonctionnelles

(9) x(t) = f(x,)
ou

S0 = lim x(t+h) — x(t)

he 0+ h
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11 est clair que (1) est un cas particulier de (9); chaque systéme des
équations différentielles aux différences est un autre cas *).

Définition 1.

Soit ¢ € Cy une fonction donnée pour un H > 0. S’il existe un nombre
A > 0 et une fonction x (¢) = x (¢) (¢), (x (¢): [—r, A) - R") définie sur
(—r, A) telle que x, (¢) e Cypour0 £t < A, x5 (p) (1) = ¢ (1) (—r=t=0)
et x (¢) (1) = f(x, (¢)) (0 < t < A), on dit que x (¢p) est une solution de (9)
avec la valeur initiale ¢.

Si f'est continue dans Cy pout H > 0, il existe une solution x (¢) (locale)
avec la valeur initiale ¢ (voir [4]). Si fest de plus Lipschitzienne localement
dans Cy, la solution est unique et dépend continiiment de ¢.

Nous supposerons toujours que f est continue et Lipschitzienne locale-
ment dans Cy. Une hypothése plus faible qu’on peut souvent utiliser est
la suivante: Si H; < H, pour chaque ¢, ||¢|| < H, il existe un nombre L
tel que |f(¢)| < L.

Remarquons aussi qu’on peut prolonger chaque solution x (¢) de (1)
avec ¢ € Cy jusqu’a la frontiére de Cj. Si f(0) = 0 on peut donner les
définitions suivantes.

Définition 2.

La solution 0 de (9) est stable si pour chaque € > 0, on peut trouver
un nombre 6 > 0 tel que x, (¢) existe pour chaque t > 0, x, (¢) eCy et
||x, (9)]| < & pour > 0, pourvu que ||¢|| < 4.

Définition 3.

La solution 0 de (9) est stable asymptotiquement si elle est stable et s’il
existe un nombre 0 < H, < H tel que x, € Cy pour ¢t = Oet x, (¢) — 0 quand
t >0, pourvu que ||¢|| < Hy. (Si H, est arbitraire, la stabilité asympto-
- tique s’appelle globale.)

‘ Chaque solution de (9) définit un « mouvement » dans I’espace C.

) ‘_‘) Dans (3) M. Miller considére le cas plus général que (9) avec f fonction définie sur R+ x CH, [
périodique par rapport a ¢, et aussi une perturbation de cette équation. )
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Définition 4.

Soit x (¢) une solution de (9) avec la valeur initiale ¢, définie sur
—r=<t< A4, A > 0. Le mouvement de x (¢) dans C est I’ensemble de
toutes les fonctions x, (¢) e C,0 <t < 4 < U X, (<f>)> :

O0Lt< 4

Définition 5.

Soit x (¢) une solution de (9) avec la valeur initiale ¢, définie sur
0 <t <. Une fonction ¥ € C appartient a [’ensemble limite de x (¢)
(¥ € Q(x (¢)) si et seulement s’il existe une suite { ¢, } o0 quand n —» o0
telle que lim ||x, (¢) — ¥|| = 0.

Définition 6.

Soit M < C; M est un ensemble invariant par rapport a (9) si et seule-
ment si pour chaque ¢ € M il existe une fonction x (¢) (¢) définie sur — oo <t¢
< 00, telle que x, (¢) € M pour chaque t, —00 < t <0, X, (@) = ¢, x (¢)
est une solution de (9) sur —o0 < t <o0.

On peut vérifier le résultat suivant comme dans la théorie des équations
différentielles ordinaires:

Lemme.

Soit x (¢) une solution de (9) définie sur —r < ¢ < o0 avec x, (¢) = peCy
et telle que ||x, (§)|| < Hy < H, 0 £t <oo. L’ensemble limite Q (x (¢))
de la solution x (¢) est non-vide, compact, invariant par rapport a (9) et

lim dist (x, (¢), 2 (x (¢)) = 0.

t— o0

On peut maintenant présenter presque toutes les analogies des théo-
rémes dans la théorie de la stabilité des solutions des équations différen-
tielles ordinaires [2], [3]. Nous donnerons quelques exemples. Soit V une
fonction scalaire réelle définie sur Cy et soit x (¢) une solution de (9),

Xo (¢) = ¢, x, (9) € Cy, 0 = 1 < 0.
Définition 7.
La dérivée de V par rapport a (9), Vo* (¢) est définie par I’équation

V()= fim (@) V()

h—- 0+ h
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Théoreme 3.

Soit V une fonction scalaire continue et Lipschitzienne localement sur
Cy. Soit U, = Cy tel que V (¢p) < L pour chaque ¢ € U, et pour chaque
¢ € U, il existe une constante k telle que |qb (0)[ <kV(@) =0 V() Z0.
Considérons 1’ensemble S = {¢; e U, Vo* (¢p) = 0}. Soit M le plus
grand sous-ensemble invariant dans S'; il s’ensuit que chaque solution x (V')
de (9) avec ¥ € Uy, s’approche de M quand t — 0.

Pour les applications si f(0) = 0 et M = 0 on a ici un résultat concer-
nant la stabilité asymptotique de la solution x = 0 de (9). D’ailleurs ’en-
semble U; nous donne une estimation du domaine d’attraction de 1’origine.

Corollaire.

Si aussi Vo* (¢) < 0 pour ¢pe Uy, ¢ 50, chague solution de (9) qui
commence dans U, tend vers zéro quand t — 0.

Démonstration du théoréme 3.

Soit ¥ € U, une fonction donnée et considérons la solution x (¥). On
aVx(¥P)=0, Vy*(x, (V) £0, 0 L1 <oo, et considérée comme une
fonction de ¢, V(x, (¥)) est non-croissante. Il s’ensuit que x, (¥) e U,,
0 < ¢ <oo. Puisque |x (0)] £ &k, on a |x,(¥)| <k, 0=t <o, le lemme
donne que I’ensemble limite Q (x (¥)) est invariant. La limite: lim V (x, (¥))
== Iy existe ([, < L) et V (x, (¥)) == [, sur Q (x(¥)). e

Des lors on a aussi que Q (x(¥)) < Uy et Vo* (x,(¥)) = 0 sur
Q (x (¥)). Alors Q (x(¥)) = M et si on applique encore le lemme, on
obtient x, (¥) - M quand ¢ - 00; ce que nous avons voulu démontrer.

Un autre résultat, avec presque la méme démonstration, est celui-ci:

Théoréme 4.

A. Soit Cy = C et V une fonction scalaire, continue sur C. Soit
V(p) 2 0, Vo* (¢) = 0 pour chaque p € C. Soit S = {peC; Vo*(¢) =0}
et M le plus grand sous-ensemble invariant dans S. Toutes les solutions de
(9) qui sont bornées sur 0 < t <oo tendent vers M quand t — 0.

B. S’il existe une fonction u(s) = 0, continue sur 0 < s <o,
lim u (s) = o0, et lu (O)I < V (¢) pour toutes & € C, toutes les solutions de

§$— 00

- (9) avec les valeurs initiales dans C sont bornées.
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Evidemment, si de plus f(0) == 0, V' (0) = 0, V,* (¢) < 0(¢ £ 0), toutes
les solutions de (9) tendent vers zéro (stabilité asymptotique).
Pour appliquer ces résultats a (1), on peut définir la fonction (voir [1])

0

V(g) =G(¢(0) =3[ a(=0)[[g(¢(s)ds]*do

-r

pour laquelle

Vi*(¢) = -%d(r)[f_ g(¢(0)do]* =3 a(=0)[[g(d(s)ds]*do,

pour ¢ € Cy et on peut déduire le théoréme 1 directement du théoréme 4.
Si

1
a(y = ;("—t)

on obtient le théoréme 2 A de la méme maniére; mais de la théorie générale
(théoréme 3) on peut seulement déduire que Q (x (¢)) est un tore de solu-
tions de I’équation différentielle ordinaire

y'+g@() =0
qui satisfont
0
[ gy(t+0)do =0, —o0<t< .

—-Fr

Pour obtenir le théoréme 2 B, C il faut employer les arguments parti-
culiers de [1]. Pour I'idée de cette démonstration voir le supplément.

SUPPLEMENT
1 . .
Avec a (1) = — (r—1) il s’ensuit de (5), (6) que
r

lim | g(x(s)ds = 0.

t—2o0 t—r

Puisque chaque solution de (1) satisfait I’équation
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.t

1
x"(f)+g(«\‘(f))=7j gx(s)ds (0 =t<0),

t—r

on infére que la solution x (¢) tend, dans un sens convenable, vers une
solution de I’équation différentielle ordinaire

(10) w' (1) +gw@) =0,

quand t—oo0. Rappelons que toutes les solutions de (10) sont périodiques
(voir (3)) et satisfont

(an Gun) + 56 WP =k (=0 <i<w®),

ou k est une constante; donc les solutions forment les cycles fermés dans
le plan u, »'. La démonstration précise ces observations.
D’abord, on a de (4) et (5) au-dessus que lim V' (¢) = v existe. Supposons

t— o0

que nous ne nous trouvons pas dans le cas trivial v = 0 — donc I'* (x (¢))
# (0, 0), I’origine du plan. A cause de la continuité des solutions de 1’équa-
tion (10) par rapport aux valeurs initiales et de la définition d’un ensemble
limite on peut donner la description suivante de I’ensemble I'* (x (¢)):

() Si(a, B)el" (x (1)), le cycle fermé y (o, B) de ’équation (10) dans
le plan u, ¥’ a travers (o, f) appartient a I'" (x (¢)).

(i) Soit (ay, By) et (oy, B,) deux points dans I'" (x (7)) et définissons
le tore D (g, By; ¢y, B,) 'ensemble fermé et connexe de tous les points dans
le plan u, ¥’ entre et sur les deux cycles fermés y («y, ;) et y (3, 8,). On a
D (0,0;0,0) = (0,0) et D (o, fy; ey, ) = 7 (g, f;) si et seulement si
(o3, f2) €y (24, B1)- En utilisant encore la continuité, on montre qu’il
existe deux points (a;, ), (%3, B,), tels que '™ (x (¢)) = D (oq, By; &y, Br).

Le but est de montrer que le tore D (a4, fi;; o5, B,) s’écroule dans un
seul cycle; c’est-a-dire qu’il existe un point (p, ¢) € I'" (x (¢)) tel que I'* (x
(t)) = y (p, g). Pour accomplir ceci on montre d’abord, en utilisant la conti-
~ nuité et la périodicité des solutions u (, ty, o, f) de (10) ou u (¢, t,, &, B)
= o, U’ (to, lo, &, B) = B, que

j g(U(T,tO;a,ﬁ)d’c = )

t—r
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pour chaque («, f) e I'" (x (¢)). 11 s’ensuit que
u(t+r, ty, o, f) = u(t, ty, o, f) (—o0 < t,t, <o0),

¢t par conséquent il existe un nombre entier m > 1, indépendant de (a, B),
tel que r = mp (o, B), ol p est définie dans le théoréme 2. Par les mémes
méthodes on montre — voir (4)

t t

1
(12) G (u (1, to, 0 ) + ?J [Jg(u(s, to, &, ) ds]* dv = v = lim V (1),

r - 00

t—r 1 t

pour —oo < t,t, <oo. Puisque v > 0, on trouve que (0,0) ¢ ' (x (1)) et
donc I'" (x (¢)) est un anneau dans le plan u, ' sans 'origine. On peut
tirer la conclusion B, théoréme 2, directement de (12) et de cette remarque,
voir [1], et évidemment on a aussi C.
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