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LA THÉORIE GÉOMÉTRIQUE D'UNE CLASSE D'ÉQUATIONS
NON-LINÉAIRES DIFFÉRENTIELLES

AVEC ARGUMENTS RETARDÉS

par John A. Nohel *)

Les buts de cet exposé sont:

1° De donner quelques résultats [1] concernant le comportement qualitatif
des solutions de l'équation:

t

(1) x* (0 — j a(t—T)g(x(T))ch
t-r

où a (t), g (x) sont des fonctions données et r > 0 est une constante.

2° De présenter quelques généralisations de ces idées, obtenues récem¬

ment par Haie [2] et R. Miller [3], et d'arriver à une théorie qualitative
pour les systèmes plus généraux que (1); mais, comme nous verrons,
on ne peut pas obtenir tous les résultats qualitatifs pour (1) de cette
théorie.

I. Soit a (t) continue sur 0^ t ^ r et g (x) continue sur — oo < x < oo.

Etant donnée une fonction </>, continue sur — r ^ t ^ 0, on montre (voir
par exemple Vogel [4]) qu'il existe une constante A > 0 et une solution
x (t) x ((f)) (t) de (1) définie sur —r^t^A satisfaisant la condition

; x(t) (j) (t) sur et l'équation (1) sur 0 < t < A. On peut
; prolonger la solution x (/) à droite, aussi longtemps que |x (</>)(/)| reste
[ bornée. Si de plus g (x) satisfait une condition de Lipschitz, la solution est

unique et elle dépend continûment de (j).

Souvent il est convenable d'écrire (1) sous la forme équivalente:

o

(1) x'(0 - J a( — s)g(x(t + s))ds.
— r

*) The preparation of this lecture was supported by the Air Force Office of Scientific Research Grant
AF - AFOSR - 925 - 65.
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Pour le comportement qualitatif nous supposons:

(2) a (0 e C (0 ^ t ^ r)

(-l)fca(fc)(0 ^ 0 (0<t<r, k 0,1,2,3), a (r) 0

(3) g (x) g C — oo, oo), x#(x)>0 (x#0),

G(x) J ôf(r) ^ oo (| x | -> oo)
0

et nous remarquons que si la dernière hypothèse de (3) n'est pas satisfaite,
tous les résultats sont valables pour sup | #(0| assez petit.

- r ^ t ^ 0

Soit x(t) une solution de (1) sur —r ^ t < A, A > 0, et définissons

t t

(4) V(t) G(x(t))-a'(tt-r t

ou, écrit sous une forme équivalente,

0 0

(4*) V(t) G (x (t)) — i J fl'( —s)[f g (x(t + À))dX]2 ds
— r s

On trouve que pour —r^tcA
t

(5) F'(0 ia'(r)[J <?(x(s))</s]2
t-r

t

-ij ä(t—r)[J

ou
0

2(5*) V'(t) ia'(r)rj
— r

0

-ij a"(~s)U g

-r s

Puisque les hypothèses (2) et (3) sont satisfaites, on a ^ 0 et

V (t)^ 0, — r < t <A.Ils'ensuit

o o

0 g V(t)gF(0) G(x (0)) - i J a'(-s)[J
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c'est-à-dire V (t) est bornée par une constante indépendante de A. Dès lors,
utilisant (3), on peut prolonger la solution x (t) jusqu'à 0 ^ t < oo et x (t)
et aussi x (t), x" (t), restent bornées. Si on forme V" (t) on trouve que
V" (t) est bornée; joint à V(t) ^ 0, V' (t) ^ 0, ce résultat implique

(6) lim V' (0=0.
t-*oo

On peut maintenant déduire le résultat suivant.

Théorème I.

Les hypothèses (2) et (3) soient satisfaites. Etant donnée une fonction (j)

continue sur —r^t^O, il existe une solution x (t) x{(f)(t) de (1)

définie sur — r < t < oo, avec x (t) 4> (t) quand —r^t^O, tel que

x (t), x (t), x" (t) sont bornées. Si de plus a" (t) # 0 la solution satisfait

(7) lim x(k) (t) 0 (k 0,1,2).
t-> OO

Pour obtenir (7), on se sert de (5) et (6) desquelles on tire:

t t

lim J a" (t— t)[J g{x{s))ds\2 dx — 0,
t-*oo t — r x

et on montre (7) sans difficulté.
La démonstration que nous avons indiquée ci-dessus n'est pas valable

si a"(t) 0; en particulier choisissons

a (t) ~(:r
On peut conclure que toutes les solutions existent et restent bornées, mais

on ne peut pas déduire (7). En effet, (7) ne reste pas nécessairement vraie,
en général le comportement est plus compliqué.

Théorème 2.

A. Soit
1

a (O -(r-t)r

et supposons que (3) est satisfaite et que g (x) est Lipschitzienne localement.
Etant donnée une fonction (j) continue sur —r^t<^ 0, il existe une solu-
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tion x(t) x(cj))(t) définie sur -r <; t <00 avec x(t) f (t) pour
— r^t^Oet qui satisfait

où K est une constante qui dépend seulement de </>.

B. L \ensemble limite r+ (x (t)) de la courbe { x (t), x' (t)} dans le plan
est un seul cycle y fermé du système

C. Si r+ (x (t) y (0, 0), soit (a, ß) e y et soit p (a, ß) la plus petite
période de toutes les solutions de (8) qu 'engendre y. Il existe un nombre

entier m m (a, ß) ^ 1 tel que r mp (a, ß).

Nous avons déjà montré A.; il s'ensuit que T+ (x (0) est non-vide.
Nous donnerons l'idée de la démonstration de B. et C. dans le supplément
au-dessous.

II. Pour présenter les généralisations nous avons besoin d'un certain
nombre de définitions. Soit Rn l'espace euclidien réel, |x| la norme dans R".

Soit C l'espace des fonctions (j) continues définies sur [ — r, 0] à valeurs dans

R" et soit ||</>|| max \(j> (w)| la norme dans C.

Si x est une fonction: [ — r, 00) - Rn, soit t ^ 0 et considérons la fonction

xt e C définie sur — r ^ u ^ 0 par l'équation :

xt (u) x (t + u) — r f u ^ 0) ;

xt représente la portion du graphique de la fonction x (t) sur l'intervalle

[t — r, t] « transférée » à l'intervalle [ — r, 0].

Désignons par CH la boule ouverte dans C de rayon H, H > 0 (CH

{ (j) e C; [|0|| < H}). Soit / une fonction définie sur CH pour un

nombre H > 0 avec ses valeurs dans R" (fi. CH -+ Rn), et considérons le

système des équations fonctionnelles

\xu\t)\èK (0<ï < 00; 0,1,2),

v' g (m)
(ou u" -y g (u) 0)

— r ^ u ^ 0

(9) x(t) =f(x,)
où

x(0 Hm
h -* 0 +

x (t -f h) — x (t)
_
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11 est clair que (1) est un cas particulier de (9); chaque système des

équations différentielles aux différences est un autre cas *).

Définition 1.

Soit 4> e CH une fonction donnée pour un H > 0. S'il existe un nombre
A > 0 et une fonction x (0) x (</>) (f), (x (<£): [ — r, A) -» Rn) définie sur

— r, A) telle que xt (</>) e CH pour 0 ^ t < A, x0 (4>) (t) <j) (t) — r^t^0)
et x (4>) (t) / (xt (</>)) (0 < t < A), on dit que x (0) est une solution de (9)
avec la valeur initiale 0.

Si /est continue dans CH pout H > 0, il existe une solution x (4>) (locale)
avec la valeur initiale 4> (voir [4]). Si /est de plus Lipschitzienne localement
dans CH, la solution est unique et dépend continûment de </>.

Nous supposerons toujours que / est continue et Lipschitzienne localement

dans CH. Une hypothèse plus faible qu'on peut souvent utiliser est
la suivante: Si H1 < H, pour chaque </>, ||</>|| ^ H, il existe un nombre L
tel que \f{<t>)\ ^ L.

Remarquons aussi qu'on peut prolonger chaque solution x (</>) de (1)
avec (j) eCH jusqu'à la frontière de CH. Si /(0) 0 on peut donner les

définitions suivantes.

Définition 2.

La solution 0 de (9) est stable si pour chaque e > 0, on peut trouver
un nombre <5 > 0 tel que xt (0) existe pour chaque t 0, xt (</>) sCH et
||xr(</))|| < s pour t > 0, pourvu que \\4>\\ < ô.

Définition 3.

La solution 0 de (9) est stable asymptotiquement si elle est stable et s'il
existe un nombre 0 < Hi < H tel que xt e CH pour t ^ 0 et xt (</>)- 0 quand
t -oo, pourvu que ||0|| ^ Hl. (Si Hl est arbitraire, la stabilité asympto-
tique s'appelle globale.)

Chaque solution de (9) définit un « mouvement » dans l'espace C.

*) Dans (3) M. Miller considère le cas plus général que (9) avec/ fonction définie sur i?+ x Ch, fpériodique par rapport à t, et aussi une perturbation de cette équation.
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Définition 4.

Soit x (0) une solution de (9) avec la valeur initiale 0, définie sur
— r^tcA, A > 0. Le mouvement de x (0) dans C est l'ensemble de

toutes les fonctions xt (0) g C, 0 ^ t < A u xt (0)\
\0 ^t<A

Définition 5.

Soit x (0) une solution de (9) avec la valeur initiale 0, définie sur
0 ^ t <oo. Une fonction W e C appartient à l'ensemble limite de x (0)
(W g Q (x (0)) si et seulement s'il existe une suite { tn } ->oo quand n -*oo
telle que lim \ \xtn (0) — !F|| =0.

n->oo

Définition 6.

Soit M a C; M est un ensemble invariant par rapport à (9) si et seulement

si pour chaque 0 g M il existe une fonction x (0) (t) définie sur — oo <t
< oo, telle que xt (0) g M pour chaque t, — oo < t < oo, x0 (0) — 0, x (0)
est une solution de (9) sur — oo < t < oo.

On peut vérifier le résultat suivant comme dans la théorie des équations
différentielles ordinaires :

Lemme.

Soit x (0) une solution de (9) définie sur — r ^ t < oo avec x0 (0) 0eCH
et telle que [ |xt (0)| | è < H, 0 ^ t < oo. L'ensemble limite £2 (x (0))
de la solution x (0) est non-vide, compact, invariant par rapport à (9) et

lim dist (xt (0), (2 (x (0)) 0.
t~*oo

** *

On peut maintenant présenter presque toutes les analogies des

théorèmes dans la théorie de la stabilité des solutions des équations différentielles

ordinaires [2], [3]. Nous donnerons quelques exemples. Soit V une

fonction scalaire réelle définie sur CH et soit x (0) une solution de (9),

*0 (<t>) (<P) e ch> 0 ^ t<00.

Définition 7.

La dérivée de V par rapport à (9), V9* (4>) est définie par l'équation

V9* (</>)=lim
h -> o + "
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Théorème 3.

Soit V une fonction scalaire continue et Lipschitzienne localement sur
CH. Soit UL c= CH tel que V (cj)) < L pour chaque (f> e UL et pour chaque

(j) e UL il existe une constante k telle que | </> (0)| ^ k, V (</>) ^ 0, V (<£) ^ 0.

Considérons l'ensemble S {</>; (j) e UL, V9* (cj)) 0}. Soit M le plus
grand sous-ensemble invariant dans S; il s'ensuit que chaque solution x (T)
de (9) avec W e UL s'approche de M quand t -+ oo.

Pour les applications si/(0) 0 et M — 0 on a ici un résultat concernant

la stabilité asymptotique de la solution x 0 de (9). D'ailleurs
l'ensemble UL nous donne une estimation du domaine d'attraction de l'origine.

Corollaire.

Si aussi F9* (cj)) < 0 pour (j) e UL, 0^0, chaque solution de (9) qui
commence dans UL tend vers zéro quand t -+ oo.

Démonstration du théorème 3.

Soit e UL une fonction donnée et considérons la solution x (T). On
a V (xt (W)) ^0, V9* (xt (f)) 0, 0 ^ t < oo, et considérée comme une
fonction de t, V(xt (W)) est non-croissante. Il s'ensuit que xt(W)eUL,
0 ^ t <oo. Puisque \x (0)| on a \xt (!F)| ^ k, 0 rg t < oo, le lemme
donne que l'ensemble limite Q (x (T)) est invariant. La limite: lim V(xt (T))

l0 existe (/0 < L) et V (xt (*F)) l0 sur Q (x (T)). t^co

Dès lors on a aussi que Q (x (T)) c= UL et K9* (xt (T)) 0 sur
Q (x (T)). Alors Q (x (¥)) c: M et si on applique encore le lemme, on
obtient xt (W) -> M quand t -> oo ; ce que nous avons voulu démontrer.

Un autre résultat, avec presque la même démonstration, est celui-ci:

Théorème 4.

A. Soit CH — C et V une fonction scalaire, continue sur C. Soit
V (</>) ^ 0, L9* (</>) <; 0 pour chaque <j>eC. Soit S {(jxzC; V9* (</>) 0 }
et M le plus grand sous-ensemble invariant dans S. Toutes les solutions de

(9) qui sont bornées sur 0 ^ t <oo tendent vers M quand t oo.

B. S'il existe une fonction u(s) ^ 0, continue sur 0 ^ j- <oo,
lim u (5) — 00, et |w(0)| ^ V(cj)) pour toutes è e C, toutes les solutions de
S-+CO

(9) avec les valeurs initiales dans C sont bornées.
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Evidemment, si de plus/(0) — 0, V (0) 0, K9* (</>) < 0 (0 =£ 0), toutes
les solutions de (9) tendent vers zéro (stabilité asymptotique).

Pour appliquer ces résultats à (1), on peut définir la fonction (voir [1])

o o

V(4>)G(0(0)) - H à(-6)Ug(<P(s))dsfdd
-r 9

pour laquelle

0 0 0

U*(0) ià(r)[Jg(<p(d))dd]2 - i j â(-0)[f g (4>(s))ds]2 dû
-r -r 9

pour cj) g CH et on peut déduire le théorème 1 directement du théorème 4.

Si
1

a (0 - (r ~ 0
r

on obtient le théorème 2 A de la même manière ; mais de la théorie générale

(théorème 3) on peut seulement déduire que Q (.x (0)) est un tore de

solutions de l'équation différentielle ordinaire

y"+g(y) 0

qui satisfont

o

J 9 {y (t + 0)) d6 0 — oo < t < co
— r

Pour obtenir le théorème 2 B, C il faut employer les arguments
particuliers de [1]. Pour l'idée de cette démonstration voir le supplément.

Supplément

Avec a(t) —(r-t) il s'ensuit de (5), (6) que
r

.t

lim J g (x (s)) ds ~ 0

t-*oo t-r
Puisque chaque solution de (1) satisfait l'équation
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a'" (0 + g (x('))7 J g(x^ds(° - œ) '

t-r
on infère que la solution x (/) tend, dans un sens convenable, vers une

solution de l'équation différentielle ordinaire

(10) u" (t) + g(u(t)) - 0,

quand t-+ oo. Rappelons que toutes les solutions de (10) sont périodiques
(voir (3)) et satisfont

(11) G (u (t)) -f — (iu (t))2 k (— oo < / < oo)

où k est une constante; donc les solutions forment les cycles fermés dans

le plan u, u'. La démonstration précise ces observations.

D'abord, on a de (4) et (5) au-dessus que lim V (t) v existe. Supposons
00

que nous ne nous trouvons pas dans le cas trivial v 0 — donc r+ (x(t))
# (0, 0), l'origine du plan. A cause de la continuité des solutions de l'équation

(10) par rapport aux valeurs initiales et de la définition d'un ensemble

limite on peut donner la description suivante de l'ensemble T+ (x(t)):
(i) Si (a, ß) e T+ (x (t)), le cycle fermé y (a, ß) de l'équation (10) dans

le plan w, u à travers (a, ß) appartient à T+ (x (t)).

(ii) Soit (oiußi) et (oc2,/?2) deux points dans T+ (x (t)) et définissons
le tore D (al5 ßi;a2, ßi) l'ensemble fermé et connexe de tous les points dans
le plan u, u entre et sur les deux cycles fermés y (oq, ß±) et y (a2, ß2). On a

D (0,0; 0, 0) (0, 0) et D (oq, ß1 ; cc2, ß2) y (oq, ßt) si et seulement si

(a2, ß2) e y (ai? ßi)- En utilisant encore la continuité, on montre qu'il
existe deux points (oq, ßß), (a2, ß2), tels que jT+ (x (t)) D (oq, ßl; a2, ß2).

Le but est de montrer que le tore D (oq, ; a2, ß2) s'écroule dans un
seul cycle; c'est-à-dire qu'il existe un point (p, q) e T+ (x (t)) tel que T+ (x
(0) y (p, q)- Pour accomplir ceci on montre d'abord, en utilisant la continuité

et la périodicité des solutions u (t, t0, a, ß) de (10) où u (t0, t0, a, ß)
oc, u (t0, t0, a, ß) =- ß, que

t

§ g (u (t, a, ß) 0
t-r
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pour chaque (a, ß) e T+ (x (t)). Il s'ensuit que

u (t+ r, t0, a,/?) u (t, t0, a, ß) - oo < t, t0 < oo)

et par conséquent il existe un nombre entier m ^ 1, indépendant de (a, ß),
tel que r mp (a, ß), où p est définie dans le théorème 2. Par les mêmes
méthodes on montre — voir (4)

t t

(12) G (m (t, t0, a, ß)+ 2 j* [J g (u (s, t0, a, ^]2 — v lim V

f-r T

pour — oo < t0 <oo. Puisque v > 0, on trouve que (0, 0) £ T+ (x (/)) et

donc r+ (x(0) est un anneau dans le plan w, w' sans l'origine. On peut
tirer la conclusion B, théorème 2, directement de (12) et de cette remarque,
voir [1], et évidemment on a aussi C.
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