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UN SYSTÈME NON-LINÉAIRE INTÉGRO-DIFFÉRENTIEL
DE LA DYNAMIQUE DES RÉACTEURS NUCLÉAIRES

par John A. Nohel *)

Considérons le système

00 ôT ô2 T
(1) u'(t)=- J cc(x) T(x, t)dx, — + fi (x) g (u (t)),

— oo <x< oo, 0 < t < oo, avec les valeurs initiales

(2) u (0) u0 T (x, 0+) / (x) — oo < x < oo)

Les fonctions a, rj,f, g et la constante u0 sont données; on cherche les

fonctions u(t), T (x, t) définies sur 0<^<oo, — oo < x < oo et
satisfaisant (1) et (2).

Nous nous intéressons aux problèmes d'existence globale, d'unicité et
de comportement qualitatif des solutions quand t - oo. En effet, on peut
étudier le système (1), (2) en se servant de la théorie qualitative pour
certaines équations du type de Volterra que nous avons déjà exposée [1]. Mais
cette théorie n'est pas suffisante pour toute l'analyse ; dès lors nous présentons

un exposé presque tout à fait indépendant. Cet exposé est basé sur
un article [2] que le Professeur Jacob J. Levin et moi avons récemment

complété.
Nous supposons que

(3) g (u) e C — oo, oo) ug (u) >0 (u ^ 0)

u

G(u) J g (a) da -» oo (| u \ -> oo)
o

; et

^ | a, rj,f e L2 (-00,00)
rj satisfasse localement une condition de Holder;

j dans les problèmes nucléaires g (u) eu — 1.
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Avec g (u) e C (— oo, oo) et (4) on peut préciser le calcul formel suivant
et démontrer l'existence d'une solution locale (par rapport à t). Soit u (t)y
T (x, t) une solution du problème (1), (2) sur 0 ^ t ^ t0, -co < x < oo,

t0 > 0.

La théorie de l'équation de la chaleur et (4) donnent que la fonction

00

(5) T(x, t) J K(x-f(S)dt+
— oo

t 00

+ fj K(x-£,*-0»/(Off(Hto)d£dT
0 — oo

OÙ

x^
K(x,t) (4nt)~* exp — — ;

satisfait la deuxième équation de (1) et T(x, 0+) f(x) en chaque point
de continuité de / (et aussi dans L2). Substituant (5) dans la première équation

de (1) on arrive à l'équation:

t

(6) u'(0 -J a{t-i)g(u(x))dx -b(t)(0

OU

(7)
a (0 j exp — x2 t) ht (x) dx, b(t) J exp — x2 t) h2 (x) dx

0 0

hx (x) Re a — x) fj (x), h2 (x) Re a —x) / (x)

et A
désigne la transformation de Fourier; évidemment, les fonctions a (r),

b (t) sont continues, 0 ^ t < oo.

La rigueur du calcul précédent est basée sur le fait (voir par exemple [3])

que (6) a (au moins) une solution u (t) satisfaisant u (0) u0 et la solution
existe sur 0 < t ^ t0 pour un t0 > 0 ; ensuite toutes les opérations précédentes

sont réversibles.

On montre facilement (voir [4] pour le cas linéaire) le résultat suivant

concernant l'unicité.
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Théorème I.

Si (4) est satisfaite et l 'équation (6) a au plus une solution u (t (u (0) u0),

qui existe sur 0 < / fg t0 pour un t0 > 0, il existe au plus une solution u (/),
T(x, /), 0 < t ^ /0, — oo < x < oo, telle que

u' (t) existe sur 0 < t ^ t0, lim u (t) u0
r-> 0 +

T (x, t) Tt(x, t), Txx(x, t)e C( — oo < x < oo,0 < t ^ t0),
00

T(x, t) e L2 — oo, °o) e/ sup J T2 (x, t) dx < oo,
0 <t^tQ —oo

00

lim j" | T(x, 0 — /(x) |2 dx
t-* 0 + — oo

Pour le comportement qualitatif, supposons

(8)

qu'il existe une fonction h3 (x), 0 ^ x < oo et une constante A telle que
h\ (x) g hl (x) h3(x), h3(x) ^ 0, h3 (x) ^ 0,

J (x) dx > 0,7z3 (x) e Lx (0, oo), A > 0 :

hx (x) é2 + 2 h2 (x) £ + h3 (x) ^ A [| rj (x) |2 £2

+ 2 ReÛ(x)fj(-x)Ç + |(/(x) |2],

et montrons le résultat principal:

Théorème 2.

Si les conditions (3), (4), (8) sont satisfaites, il existe une solution de (1),
(2) sur — co < x < ce, 0 t < oo et

(9) lim u(fc)(0 0, (k 0, 1,2)
f-*oo

(10) lim sup |T(x, Ol =0.
t-* 00 - 00<x<00

Démonstration.

Pour rendre cette démonstration plus facile, supposons aussi

oc' g L2 — oo, oo)
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Quelle que soit la démonstration, le but est premièrement de prolonger la
solution locale à l'intervalle 0 t < oo et deuxièmement d'établir (9) et (10).
C'est dans la démonstration de (9), que cette démonstration est différente.

Soit u (t) une solution locale de (6) satisfaisant u (0) Uq. Définissons

(11) V{t) G (u (t)) + — J [hi(x)y2(x,t) + 2 h2 (x) y (x, t) +
2n q

+ h3 (x)] exp - 2 x2 t) dx

où

t

y(x,t)J g( u(s)) exp (x2 s) ds
0

Alors V (t) est définie sur un intervalle 0 ^ t ^ t0et V{t) è o.

Il s'ensuit de (6) et (11) que

(12) v(t)J [Ai M r2 (*,0 +
n o

+ lh2 (x) y (x, t) + h3 (x)] x2 exp — 2x2 t) dx

et V {t) ^ 0, 0 ^ t ^ t0. Dès lors on a

(12*) V(t) è V(0) G(u0) + h3(x)dx,
2n o

une constante indépendante de t0. A l'aide d'un lemme [3, lemma 1.2] il
s'ensuit qu'on peut prolonger la solution u {t) de (6) à l'intervalle 0 ^ t < oo

et en employant (5) on obtient l'existence d'une solution globale. Bien

entendu les formules (11), (12), (12*) sont valables sur 0 ^ t < oo ; d'ailleurs

l'hypothèse (3) et (12*) impliquent qu'il existe une constante k k (w0)

(indépendante de t0) telle que

(13) | u (t) | ^ k (0 ^ t < oo).

Dès lors on peut aussi montrer qu'il existe une constante kx telle que

(14) K"(0^i (v^*< oo),

où v est un nombre assez grand. Il s'ensuit de V (t) ^ 0, V* (/) ^ 0 et (14):
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(15) lim V(0=0.t~* 00

Nous montrons (10) en utilisant l'inégalité (facilement montrée)

00 00

(16) sup T4(x, 0 ^ 4 J T2(x,t)dx J Tl(x,t)dx.
— 00<X<C0 —00 —00

On a de (5)

T(x, 0 /M exp (-x2 t) + rj (x) J g (u (t)) exp [ - x2 (t — t)] dx
o

et

I T(x,t)|2{ | fj(x) |2 y2 (x, t) + (x)rj -x) y(x, t)

+ 1/ (x)|2} exp

Une comparaison avec (11), les résultats précédents et (8) donnent:

1 00

K(0) ^ V(t)^r1 \hx (x) y2 (x, 0 + h2 (x) y (x, 0 +
Ztc o

+ Ä-3 (x)] exp — 2 x2 t)dx

^1 oo ^
^ TT J [I n (x) I2 y2 (X, 0 + 2 (x) // -x) y (x,

2n o

+ 7 (x)]2 exp — 2 x2 0 dx |r(x,OI2dx;
471 _ oq

dès lors

1(17) j
— 00 A

Un calcul similaire donne

00

(18) J T2 (x, 0 d^F'(0
/I

et on obtient (10) de (15), (16), (17), (18).



Pour montrer (9) on commence avec le cas k 1. Etant donné e > 0,

il existe X > 0, tel que

oo -X
J a2 (x) dx Ja2 (x) dx ^ e

x -00

Employant l'inégalité de Schwarz et (17) on a:

oo -x 2
| J a (x) T(x, t) dx |2 | J a (x) T(x, t) dx |2 ^ — F(0) s (0 ^ t < oo) ;

x -oo A

et aussi

X oo

|J a (x) T (x, t)dx\ ^ sup |T(x, 0l{2Xj a2(x)dx}1/2
— X —oo<x<oo —oo

Il s'ensuit de la première équation (1) et de (10) (déjà démontrée) qu'il
existe un nombre tx ^ (s) tel que

oo 2
I (0 I I J a M ^(*5 0 dx ^ 3 [ — F(0) e]

1 /2 (tj ^ t < oo) ;

- 00 ^

c'est ce qui démontre (9) pour k l.
En employant le théorème de Parseval dans la première équation de

(1), on obtient:
1 00

A
u' (t) =—J a(—x)T(x,t)dx

27C_00

A
et en faisant la differentiation et utilisant la formule pour Tt (x, t), on
obtient

(19) w"(r) + yg (u(t)) =-!.;(/) (0 < oo)
In

avec
j 00 ^ 00

(20) y — J rj(x)a — x) dx - J (x) 0
271 g

00

(21) /(0 =J x2 oi(-x)T(x,t)dx
— 00

00

— 27ü J a (x) Txx (x, t)dx (0 ^ t < oo)
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L'estimation (18) donne
00 00

I2 (t) ^ J x2 | a -x) |2 dx J x2 | T(x, t) |2 dx
— 00 — 00

4712 00

^ F'(Oj (ocf (x))2 dx
A — 00

dès lors (15) et a' el2 donnent

(22) lim 7(0=0.
t-*oo

Supposons que u (î) 0 quand t oo. Puisque u est bornée, il existe

un nombre w* 7^ 0, |w*| ^ k (k définie par (13)) et une suite {/„}-> 00

quand n -» 00 tels que

lim u (tn) w *
n-> 00

Pour fixer les idées, supposons que > 0. Par la formule des accroissements

finis et (9, l 1), déjà démontrée, on trouve qu'il existe une suite

An -> 00 quand « -> 00 et un nombre entier Nx ^ 1 tels que

^u* S u(t) S k (tn t < tn + An, n ^ NO

Définissons

jx min g (u) > 0

"2 M * ^ U ^ k

où l'inégalité suit de l'hypothèse w* > 0 et la condition (3) est satisfaite.
On a aussi

70 (u (0) è 7/i 0„ â ' S tn+ à„ ^
et, employant (19), (22),

«"(0 ^ - i yn (t„%tn + ^ iV2),

pour un N2 è Ni- Faisant l'intégration de cette inégalité on arrive à

«'On + ^n) - «' On) ^ - 2 (n ^ JV2)

ce qui n'est pas compatible avec 1/ (t) -> 0 quand t 00 et -> 00 quand
n-> 00; donc, on conclut que lim w (t) 0. Employant (19), (22) on

*-<•00

obtient lim u" (t) 0, ce qui démontre (9) et le Théorème 2.

L'Enseignement mathém., t. XII, fasc. 3. 12
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Remarquons que le théorème donne des conditions suffisantes pour la
stabilité globale (aussi absolue) de la solution équilibre u (t) 0, T (x, t) 0

de (1). La condition (8) est satisfaite dans plusieurs cas des réacteurs

nucléaires, un cas très simple mais important étant <x(x) k rj (x), k > 0

constant.
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