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UN SYSTEME NON-LINEAIRE INTEGRO-DIFFERENTIEL
DE LA DYNAMIQUE DES REACTEURS NUCLEAIRES

par John A. NOHEL *)

Considérons le systeme

* oT o*T

1) w@=-] ax T Ddx, —=—-—5 +1(x)gu®),
w ot 0x

-0 < x < o, 0 <t < o0, avec les valeurs initiales

(2) w0 =uy, T(x,07) =f(x) (=00 <x< 00).

Les fonctions a, 1, f, g et la constante u, sont données; on cherche les
fonctions u (¢), T (x, t) définies sur 0 <t < 00, —00 < x < o0 et satis-
faisant (1) et (2).

Nous nous intéressons aux problémes d’existence globale, d’unicité et
de comportement qualitatif des solutions quand ¢ — co. En effet, on peut
¢tudier le systéme (1), (2) en se servant de la théorie qualitative pour cer-
taines équations du type de Volterra que nous avons déja exposée [1]. Mais
cette théorie n’est pas suffisante pour toute I’analyse; des lors nous présen-
tons un exposé presque tout a fait indépendant. Cet exposé est basé sur
un article [2] que le Professeur Jacob J. Levin et moi avons récemment
complété.

Nous supposons que

(3) gweC(—-o,00), ugm) >0 (u+#0)),

G(u) = [g(o)do - o (Ju| - ),
et
{oc,n,feLz(-oo,oo)

(4 .
) n satisfasse localement une condition de Holder;
dans les problemes nucléaires g (u) = e*—1.

*) The preparation of this lecture was supported by the Air Force Office of Scientific Research Grant
AF - AFOSR - 925 - 65.
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Avec g (u) e C(— 0, ) et (4) on peut préciser le calcul formel suivant
et démontrer 'existence d’une solution locale (par rapport a t). Soit u (),
T (x, t) une solution du probléme (1), Q) sur 0 < ¢t < ¢, —0 < X < ©,
to > 0.

La théorie de I’équation de la chaleur et (4) donnent que la fonction

(5) T(x,0) =§ Kx-&0f(&de +

— 0

+ [ KGx=&t=1)n(8)g(u@)déd

0 —w
ou

x2

K(x,t) = (4nt)™* exp (—Z :

satisfait la deuxiéme équation de (1) et T(x, 07) = f(x) en chaque point
de continuité de f (et aussi dans L,). Substituant (5) dans la premiére équa-
tion de (1) on arrive a I’équation:

t
© W@ =-[at-0g@u@)dr —b@H) (0<t=1y,

0

ou

i
a(t) =

Ot g

exp (—=x*t)h, (x)dx, b(t) = }J exp (—x% 1) h, (x) dx
(7) 0

| (x) = Re& (—x) 7 (%), hy(x) = Red (—x)f (x)

et ~ désigne la transformation de Fourier; évidemment, les fonctions a (¢),
b (t) sont continues, 0 < ¢ < 0.

La rigueur du calcul précédent est basée sur le fait (voir par exemple [3])
que (6) a (au moins) une solution u () satisfaisant v (0) = u, et la solution
existe sur 0 < ¢ < t, pour un z, > 0; ensuite toutes les opérations précédentes
sont réversibles.

On montre facilement (voir [4] pour le cas linéaire) le résultat suivant
concernant 1’unicité.



Théoreme 1.

Si (4) est satisfaite et | 'équation (6) a au plus une solution u (t), (u (0) = u),
qui existe sur 0 < t < t, pour un t, > 0, il existe au plus une solution u (t),
T(x,1),0<t=£t, —0<x< 0, telle que

u'(t) existe sur 0 <t <ty, lim u(t) = u,,
>0+

T(x,) T,(x,t), T, (x,)eC(—0 <x < 0,0 <t =1,

0

T(x,f)eL,(—o0, ) et sup [ T*(x,f)dx < o,

O<tst, —©

lim }O I T (x,1) —f(x)]*dx.

t—-0+ —o©
Pour le comportement qualitatif, supposons

[ qu’il existe une fonction A5 (x), 0 < x < oo et une constante A telle que
hy (¥) < by (X) hy (%), hy (%) 20, hy (x) 2 0,

(8) J‘ hy(x)dx > 0,h, (x)eLl (0, 00),4 > 0:
0
1 () & + 2 (0 &+ h (0 A[17 () [* &
+ 2Re(F(x) 7 (—x) & + l(}(x)lz],

et montrons le résultat principal:

- Théoréeme 2.

Si les conditions (3), (4), (8) sont satisfaites, il existe une solution de (1),

Q) sur —0 < x< 0,05t < 0 et

|

i

(9 lim u® () =0, (k = 0,1, 2)
t— o0
(10) lim sup | T(x,t)| =0.
IS0 —0<X<O
Démonstration.

Pour rendre cette démonstration plus facile, supposons aussi

o' € L,(— o0, ).
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Quelle que soit la démonstration, le but est premiérement de prolonger la
solution locale a I'intervalle 0 < ¢ < oo et deuxiémement d’établir (9) et (10).
C’est dans la démonstration de (9), que cette démonstration est différente.

Soit u (¢) une solution locale de (6) satisfaisant u (0) = u,. Définissons

1 e o)
(1) V(@) = Gu@®)+ Py P )7 (x, 0 + 2h, () p(x, D) +
0
+ hsy(x)] exp (—2x% ) dx,
ou

y(x,1) = [ g(u(s))exp (x*s)ds.

Alors V (t) est définie sur un intervalle 0 < t <ty et V(¢) = 0.
Il s’ensuit de (6) et (11) que

1 o]
(12) Vi) = —= [ [hx)7y*(x, 0+
T o
+ 2h, (x)y (x, 1) + h3 (x)]x* exp (—2x* 1) dx ,

et V' () <0, 0Lttt Déslors on a

(12%) V@) S VO = Glug) + o | hy(9)dx,
2n o

une constante indépendante de #,. A I’aide d’un lemme [3, lemma 1.2] il
s’ensuit qu’on peut prolonger la solution u (¢) de (6) a 'intervalle 0 < ¢ < o
et en employant (5) on obtient I’existence d’une solution globale. Bien
entendu les formules (11), (12), (12*) sont valables sur 0 £ ¢ < oo; d’ailleurs
I’hypothése (3) et (12*) impliquent qu’il existe une constante k = k (1)
(indépendante de t,) telle que

(13) lu@ =k (0=t< ).

Dés lors on peut aussi montrer qu’il existe une constante k, telle que

(14) Vi =k, (vt <o),

ol v est un nombre assez grand. Il s’ensuitde V' (¢) = 0, V' (t) < O et (14):
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(15) lim V' (1) =
t— o0

Nous montrons (10) en utilisant I'inégalité (facilement montrée)

(16) sup T‘*(x,t)§4}0 T2 (x,t)dx | TZ(x,t)dx.

-0 <X LD — — 0

On a de (5)
T(x,0) = f(x) exp (—x1) + ﬁmlg(u (@) exp [ - x* (t —7)] de
et
1Tl = {1 P + 2Ref () A (=x)7(x, 1)

+17 )1 exp (=2x%1).

Une comparaison avec (11), les résultats précédents et (8) donnent:

Vo) zvm =z

O &= 8

1

5 [ 7?0 + By ()7 (x, 1) +
n

+ hy(x)] exp (—2x* ) dx

=

IQ{A

— [17 () 1292 (x, 1) + 2 Ref (x) i (=x)7(x, 0)

+f(x)]2exp( 2 x2 t)dx—-fl—j | T(x, 1) |?dx ;

~- 00

;dés lors

® V(0

an | T nde s 29,

— A

Un calcul similaire donne

| % t

(18) _f Ti(x, ) dx < —-——~(—)

. . A

et on obtient (10) de (15), (16), (17), (18).
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Pour montrer (9) on commence avec le cas k = 1. Etant donné ¢ > 0,
il existe X > 0, tel que

}Oaz(x)dx, j— a(x)dx < e.
X

— @0

Employant I’inégalité de Schwarz et (17) on a:

o0 -X
[Jax) T(x,0dx|?, || «(x)T(x,t)dx|? §721V(0)8, (0=t < );
X — o

et aussi
X 0
|| ax)T(x,ndx| < sup |T(x,0)[{2X] o*(x)dx}'"*
- X — V<X <L -

Il s’ensuit de la premicre équation (1) et de (10) (déja démontrée) qu’il
existe un nombre 7, = ¢, (¢) tel que

* 2
lu' )] = 1] a(x) T, 0)dx < 3] ZV(O)S]”2 (1, =t < 0);

c’est ce qui démontre (9) pour k = 1.
En employant le théoreme de Parseval dans la premiere équation de
(1), on obtient:

W' () = ;—n}o 8(—x) T (x, f) dx

et en faisant la différentiation et utilisant la formule pour T, (x,¢), on
obtient

(19) u”(t)+yg(u(t))=%t1(t) (0 <t < o)
avece

_ L rws d —lwh dx > 0
(20) v—ﬁj_wn(x)a(——x) x—;i  (x)dx >0,
(21) (1) =}° xz&\(—x)’/l\"(x,t)dx

= 0

_ 2] 4T (uDdx (0S1< ).

o0 —
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L’estimation (18) donne

I? (1) §}O x2|a(—x)|*dx | lef’(x,t)lzdx

— o0

g—i}vmf(wwfm,

des lors (15) et o' € L, donnent

(22) lim I(f) = 0.

t—

Supposons que u () +» 0 quand ¢ — co. Puisque u est bornée, il existe
un nombre u* 3£ 0, |u*| £ k (k définie par (13)) et une suite {7, } — o
quand n — oo tels que

limu(t,) =u*.

n—oo

Pour fixer les idées, supposons que u* > 0. Par la formule des accroisse-
ments finis et (9, / = 1), déja démontrée, on trouve qu’il existe une suite
A4, — oo quand n —» oo et un nombre entier Ny = 1 tels que

ju* Su@® sk (t,St<t,+4,, nzNy.

Définissons

ou l'inégalité suit de ’hypothese u* > 0 et la condition (3) est satisfaite.
On a aussi

ygu@®)yzy (G, <t=t,+4,, n=Ny)

et, employant (19), (22),
WS —dm (G StSt,+4,, n=zN,),

pour un N, = N,. Faisant l'intégration de cette inégalité on arrive a
u'(t, +4,) —u' (@) = —3wd, (zN,,

ce qui n’est pas compatible avec #’ (t) - 0 quand ¢t — oo et 4, - o quand
n — oo; donc, on conclut que lim u (¢) = 0. Employant (19), (22) on

t—> 0

obtient lim u'’ (¢) = 0, ce qui démontre (9) et le Théoréme 2.

t— o0

L’Enseignement mathém., t. XII, fasc. 3. 12
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Remarquons que le théoréme donne des conditions suffisantes pour la
stabilité globale (aussi absolue) de la solution équilibre u (1) = 0, T (x,t) = 0
de (1). La condition (8) est satisfaite dans plusieurs cas des réacteurs

nucléaires, un cas trés simple mais important étant o (x) = k n (x), k > 0
constant.
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