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ON POLYNOMIALS OF BEST ONE SIDED APPROXIMATION

by R. Bojanic * and R. DEVORE

1. Introduction. For any extended real valued function f defined on
[a, b], let P, (f) be the class of all polynomials P of degree <n satisfying
the condition P (x) < f(x) for all x € [a, b] and w a non negative Lebesgue

b f
integrable function on [a, b] such that [ w (¢) df > 0. We say that P € P, (f)

is a polynomial of best one sided approximation to f on [a, b] corresponding
to the weight function w if

fw@®P@)dt = sup{j' w()Q(t)dt : QeP,(f) } = A(f)

a a

If f is integrable on [a, b], this is equivalent to
b

fw@®U@O-P@)dt = inf{f w(®(fO—-Q@®)dt QEPn(f)}'

The polynomial P defined here is clearly a polynomial of best approxi-
mation to f from below. The polynomial of best approximation to f from
above is defined similarly.

The problems of one sided approximation appear frequently in analysis.
It is well known (see [1], p. 65, Aufg. 137) that for every Riemann integrable
function f on [a, b] and &>0 there exist polynomials p and P such that

p(x) =f(x) = P(x), xela,b]
and

J(P(x) —px)dx <¢.

A special case of this result corresponding to the function

0,0<x<e!

=102

x ,e T <x<1

5 Presented at the Symposium on Inequalities at The Wright-Patterson Air Force Base, Ohio, August 19-
7, 1965.

*) This author’s work was carried out in the Summer Quarter 1965 during his stay at The Ohio State
University Computer Center.
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played a significant role in J. Karamata’spro of [2] of the famous Hardy-
Littlewood’s Tauberian theorem. By a refinement of Karamata’s method,
based on a more precise one sided approximation to the same function,
G. Freud [3] obtained an estimate of the remainder term in the Hardy-
Littlewood’s theorem. More general results of this type based on one
sided approximation to

0,0 <x=<e!

x '(1+logx)P™!, e ! < x

f(X)={ '

1A

have been obtained by T. Ganelius [5].

From a more practical point of view, one sided approximation by poly-
nomials to an integrable function f gives immediately upper and lower
estimates for the integral of wf.

However, the polynomials of best one sided approximation have not
been studied systematically, and they have been found explicitly only in
few special cases by G. Freud [4] and T. Ganelius [6].

In the first part of this paper we shall consider the problems of existence
and uniqueness of polynomials of best one sided approximation. We shall
prove the existence of a polynomial of best one sided approximation to f,
of degree <n, assuming that f is bounded from below on [a, b] and that
1s either Lebesgue integrable on [a, b] or finite on certain subsets of n+1
distinct points of [a, b].

While the existence of a polynomial of best one sided approximation
has been established under very general hypotheses, it is not difficult to see
that a polynomial of best one sided approximation is not necessarily unique
even for continuous functions.

Consider for example the function 7, defined by

n,(x) if n,(x) =0

(%) = {o, if 7 (x) <0

where 7, is the orthogonal polynomial of degree n on [a, b] corresponding
to the weight function w. It is easy to see by means of the Gauss quadrature
formula that for any polynomial Q of degree < 2n—1 such that Q(x)
< 7 (x), xe[a, b], we have

b

fw®O(@®dt<0.

a
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On the other hand, we have Am, (x) < n,} (x) for every 0 < 1 <1 and
x ¢ [a, b] and

b

[ w(@) in,(n)dt =0
This shows that Am, is a polynomial of best one sided approximation to
7, of degree < 2n—1, forevery 0 < 1 < 1.

Thus, the continuity of a function does not guarantee the uniqueness
of its polynomial of best one sided approximation. We shall however prove
that a polynomial of best one sided approximation to a differentiable func-
tion is necessarily unique.

In the second part of this paper we shall consider the problem of explic-
itly determining polynomials of best one sided approximation from above
and from below.

Our first theorems deal with polynomials of best one sided approxima-
tion of degree < n—1 to functions whose n-th derivative is of constant
sign on (a, b).

We mention in particular polynomials n, and n* of best one sided
approximation from below and from above, of degree n—1, to x" on [—1, 1],
corresponding to the weight function 1:

— (P Ei’,?])(x)) if n is even

w*(x) =
X" = (1 +x)(Pyaldy(x))?*  if nis odd
X" — (1 =x?) (PriaiP1 (x))?  if nis even

w*(x) =
X" = (1=x) (P[;(,l,’_oi)](x))" if n is odd

where };,(,“’ﬂ ) is the Jacobi polynomial of degree n, normalized so that the
coeflicient of x" is 1. We recall that the Jacobi polynomials (P*#) form an
forthogonal sequence on the interval [—1, 1] with respect to the weight
function w (x) = (1—x)* (1+x)°.

,‘ As another application of these results we obtain trigonometric poly-
nomlals of best one sided approximation on [—=, 7] to

h(0) = Z A, cos kO

k=1
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where
|
A = j't"doz(t), k=1,2,...
0

with a non decreasing « on [0, 1]. In particular we obtain trigonometric
polynomials of best one sided approximation to the even Bernoulli poly-
nomials

© (2m)!
L= 1) byn () = 3 2 cos k6
k=1 K
since
2m)! !
(Tn), = [fd(—log*1).
k 0

The trigonometric polynomials of best one sided approximation to Bernoulli
polynomials both even and odd have been obtained by T. Ganelius [6] in
connection with the problem of one sided approximation to functions whose
r-th derivative is of bounded variation.

In addition to results of this type we shall obtain polynomials of best
one sided approximation of degree < to functions of the form 4 (x?) on
[—1, 1] assuming that the weight function w is even and that the [4 #]+ 1-th
derivative of 4 is of constant sign on (0,1). Choosing in particular 4 (¢) = / t
we obtain polynomials of best one sided approximation from above and
from below to |x|, of any degree. The polynomial of best one sided approxi-
mation to |x| from below of degree < 4n+1 has been obtained already
by G. Freud [4] by a different procedure based on certain results of
T. J. Stieltjes and A. A. Markov.

2. Existence and uniqueness of polynomials of best one sided approxi-
mation. (i) The proofs of the existence theorems are based on the follow-

ing well known results:

LemMa 1. If (Q,,) is a sequence of polynomials of degree <n such that

b

fw®Qu(®]dt =M, m=1,2,..

a

then there exists a subsequence (Q,,) converging to a polynomial Q of
degree <n and the convergence is uniform on every finite interval.
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LEMMA 2. If (Q,,) is a sequence of polynomials of degree =n, which is
bounded at n+1 distinct points, then there exists a subsequence (Q,,)
converging to a polynomial Q of degree <n and the convergence is uni-
form on every finite interval.

Our first result can be stated as follows:

THEOREM 1. If f is bounded from below and Lebesgue integrable on [a, b],
then the polynomial of best one sided approximation to f on [a, b], of degree
<n, exists.

Proof. Since f is bounded from below and

b

Q:P,(f) = [w(QMdt = [wtf()dl <

a

we have — oo < A(f) < c0.

Let (Q,,) be a sequence of polynomials in P,(f) such that

Aw = [ w(®Qn®)dt > A(f) (m > ).

We have then

b b

Jw® 10,0 1dt < fw®(f@) —Qu(D)dt+ fw (@) |f(@)|dt

<2[ w®lf@)|di— 4,

M

A

forall m =1, 2, ...
By Lemma 1, the sequence (Q,,) contains a uniformly convergent sub-
sequence (Q,,) on [a, b] converging to a polynomial P of degree <n.
Since @, (x) £ f(x), it follows that P (x) < f(x) for all x € [a, b] and
so P e P,(f). On the other hand, from

b

fw@®P(@)ydr =lim [ w(®)Q ,,, (D dt = A(f)

a k- a

follows that P is the polynomial of best one sided approximation to f on
la, b].
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The following existence theorem requires only that f be finite on certain
subsets of n+1 points of [a, b].

THEOREM 2. Let { &, ..., &, } be n+1 distinct points of [a, b] such that for
any polynomial R of degree <n we have

b

JwOR@At = ¥ WIR(,)

a

with W, >0, v=0,1, ..., n.

Let f be an extended real valued function on [a, b] which is bounded
from below on [a, b] and finite at the points { &,, ..., £, }.

Then the polynomial of best one sided approximation to f on [a, b] of
degree <n exists.

Proof. Since fis finite on {& , ..., £, } we can find M >0 such that
(2.1) f)s=MmM, v=0,.,n.

Since f is bounded from below we have clearly 4 (f) > —o0. On the
other hand, for any Q € P, (f) we have by (2.1)

b

fw®o®d = ¥ WiQE) < ¥ Wif(E) S M wdt.

a

Thus —0 < A(f) <.
Next, let (Q,,) be a sequence of polynomials in P, (f) such that

Ay = w®Q,@®)dt > A(f) (m - o).

Since

Qm(fv) éf(év)éMa v =09-~~9n

all sequences (Q,, (£,), v =0, ..., n are bounded from above. We shall
prove that they are also bounded from below.

Assume that at least one of these sequences, (Q,, ({,),0 = r < n, is
not bounded from below. Then there exists a subsequence (Q,, (£,)) such
that

Q. (&) > —o0 (k= 0).



This implies that

Ay = ] WO QO = T W10 (5)

= W:ka(ér) + Z W:ka(€")
v=0

(vEr)

and since W, > 0, it would follow that A4,, - — oo (k—o0) which is im-
possible.
Thus, there exists a constant K>0 such that

10, (&)= K, v=0,..,n, m=1,2,..
The rest of the proof, based on Lemma 2, is the same as in Theorem 1.

(i1) In order to simplify the proof of the uniqueness theorem we shall
introduce the concept of the point of contact.

Let f be continuous on [a, b] and let Q be a polynomial such that
Q (x) £ f(x)forall x € [a, b]. Any point x, € [a,b] such that Q (x,) = f(x)
will be called a point of contact.

The proof of the uniqueness theorem is based on two lemmas. The
first lemma states that the number of points of contact of the polynomial
of best one sided approximation to fon [a, b], of degree <n,is = [ n] + 1.
The second lemma states that none or at most one of the end points of the
interval [a, b] can be a point of contact, according to wether » is odd or
even, if the number of points of contact is exactly equal to [1 n] + 1.

LemMma 3. If f is continuous on [a, b] and P a polynomial of best one sided
approximation to f on [a, b] of degree =<n, then there exist at least
[$ n] + 1 distinct points of contact in [a, b].

Proof. The lemma is obviously true if n=0 or n=1. Thus we can
assume that n=>2.

We have f(x)—P (x) = 0 for all x € [a, b] and the equality sign holds
clearly for at least one x € [a, b]. Assume that there are at mostk < [ n] + 1
points of contact x; < ... < x; in [a, b].
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Let ¢>0 be such that 26 < min (x;,;—x,) and let Q, be the poly-
nomial 15isk-1

Q. (x) = (x—=(x; —8))(x —(x; +9)) ... (x =(a— ) (x —(x, +9)).

Since k < [ n] + 1 we have k < [L ] and so

deg Q, = 2k £ 2[4n] = n.
Since

lim Q,(x) = (x —x,)* ... (x —x)?
e—0
uniformly on [a, ] and

fwE)(x—x)?...(x —x)*dx > 0

a

we can choose ¢>0 such that

b

2.2) fw®o,(mdt > 0.

a

Lets = U (x,—e¢, x,+¢). For x € [a, b]\F we have f(x)—P (x) > 0
v=1

and since both functions are continuous on the compact set [a,b]\ ¥ we
can find a d>0 such that

f(x) —P(x) 2d
for all x € [a, b]\A.

Let
n=d[ max | Q,(x)].

asx=<b

We shall show that the polynomial P+7Q,is in P, (f) and that it approxim-
ates f from below on [a, b] better than P.

We have clearly deg (P+1nQ,) < n. On [a, b)] n # we have Q,(x) £ 0
and consequently

nQ.(x) =0 = f(x)—P(x).
On [a, b]\F we have
nQ.(x) =d = f(x)—P(x).
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Thus P + nQ, is in P, (f). On the other hand, from (2.2) follows that

b b
fwP@®)dt < [w@®(P@®+nQ,.(»)dt.
This however contradicts the hypothesis that P is a polynomial of best one
sided approximation to f on [a, b] of degree <n. Consequently, we have
~k = [+ n]+1 and the lemma is proved.

 LEmMMA 4. Suppose that f is continuous on [a, b] and that P is a polynomial
of best one sided approximation to f on [a, b] of degree <n. Suppose also
that there are exactly [1 n] + 1 points of contact on [a, b].

If n is odd, then all [1 n] + 1 points of contact are in the interior of
[a, b]. On the other hand, if n is even, then at least [1 n] points of contact
are in the interior of [a, b].

Proof. Assume first that n 1s odd, » = 2/—1 (/=2). We have then
[4 n]+1 = [ points of contact a < x; < ... < x; £ b. Suppose that x; = a.
For each £¢>0 such that 2e< min (x;,,—Xx;) we define Q, by

1gisi-1

Q.(x) = (x—(a+8)(x—(x;—8))(x —(x;+8)...(x —(x; —&))(x —(x, + ).
We have clearly deg Q, = 2/—1 = n. Since

lim Q,(x) = (x —a)(x —x,)* ... (x —x))*
e—-0

uniformly on [a, b] and

: b

fwx)(x—a)(x=x,)*...(x —x)*dx > 0.

[

‘ we can choose ¢>0 such that
4 b

fw®Q,()dt >0.

a

As in the proof of Lemma 3, we can find #>0 so small that

nQ.(x) =f(x)—P(x)

for all x € [a, b]. This shows that P+7nQ, is in P, (f). On the other hand,

we have
b

Jw@P@dt < [w() (P (1) +nQ, (1) dt

a
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which is impossible.

If I =1, the same argument can be used if we define Q, by 0. (x)
= x—(a+e¢).

Using a similar argument we find that b cannot be a point of contact.

Next, assume that »n is even, n = 2/, / > 2 and that both a and b
are points of contact. We have then [L{#n]+1 = /+1 points of contact
a=x<x,<..<x,<x;41 =b. For each &>0 such that 2¢ <
min (x;4, —x;) we define Q, by
15is<l

Q.(x) = (x—(a+8)(x—(x; —8)(x = (x,+¢))...
X —8))(x—(x+e))(b—e—X) .

We have

deg Q, = 2l = n.
Since
lim Q,(x) = (x—a)(x —x,)* ... (x =x)*> (b —x)
e—=0

uniformly on [a, b] and

b

fw(x—a)(x=x)*...(x =x)*(b—x)dx > 0

a

we can choose ¢>0 such that

b

fw®Q,(Hdt >0.

a

As in the proof of Lemma 3, we can choose >0 so small that

nQ.(x) =f(x) — P(x)

for all x € [a, b]. This means that P+7nQ,is in P, (f) and as it is easy to
see that P+7nQ, approximates f from below on [a, b] better than P, which
is impossible. Thus, @ and b cannot be both points of contact and conse-
quently we have in this case at least [{ n] points of contact in the interior
of [a, b].

If /=1, the same argument can be used if we define Q, by

Q. (x) =(x—(a+e)(b—e—x).

The uniqueness theorem can be stated as follows.
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THEOREM 3. If f is continuous on [a, b] and differentiable on (a, b), then the
polynomial of best one sided approximation to f is unique.

Proof. Suppose that P, and P, are two polynomials of best one sided
approximation to fin P, (f). Then 4 (P, +P,) is also a polynomial of best
one sided approximation to f in P, (f).

Thus, by Lemma 3, there are k = [ n] + 1 distinct points xy, ..., X
in [a, b] such that

(2.3) f(x) = %(P1 (x;) +P2(xi))s i =1,...,k.
Since P; (x)) < f(x) i=1,..,k j=1,2, from (2.3) follows that

(2.4) Pi(x) =f(x) = Py(x)), 1i=1..,k.

Since f(x) — P;(x) 2 0, x € [a, b], the function f—P; in view of (2.4)
assumes its minimum value at x, ..., X;.

Suppose first that &k > [$n] + 1, i.e. kK = [$n] + 2. Then we have at
least [4 n] points of contact x,, ..., x,_ in the interior of [a, b]. Since f— P,
assumes its minimum value at these points and f '—PJ'. exists in (a, b), it
follows that

(2.5) Pi(x) =f(x) =Py(x), i=2,..,k—1.
Since
2k—-2 2 2([4n]+2)—2 =2([{n]+1) 2 n+1

and since both P, and P, are polynomials of degree <n, from (2.4) and
(2.5) follows that P, = P,.

Next, suppose that k = [{n]+1 and that » is odd. By Lemma 4 all
[$ n]+1 points of contact are in the interior of [a, b]. Consequently, we
have

(2.6) P.(x) =f'(x) =Py(x), i=1,..k.

In this case we have 2k = 2 ([{ n]+1) = n+1 conditions and from (2.4)
and (2.6) it follows that P, = P,.

Finally, suppose that k = [{ n]+ 1 and that n is even. By Lemma 4, we
have at least [{ n] points of contact in the interior of [a, ] and P; and P,
have the same values at these points. From this fact and (2.4) follows that

- we have at least 2 [ n]+1=n+1 conditions and again we conclude that
Pl - P2.
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3. Polynomials of best one sided approximation to differentiable functions.

(1) Inthis section we shall consider first functions whose n-th derivative is
of constant sign on (a, b) and we shall determine explicitly their polynomials
of best one sided approximation of degree < n—1 corresponding to the
weight function w.

Our proofs are based essentially on a remainder formula for Hermite’s
interpolation and on certain quadrature formulas of highest possible degree
of precision.

Remainder Theorem [7]. Let x,;<...<x, be n points in [a, b}, m, ..., m,
non negative integers, N = m;+...+m,+n and H, the polynomial of
degree < N—1 defined by

HPx) =f®x), k=01,...,m;, i=1,..,n

where f is continuous on [a, b] and ™) exists on (a, b). Then for every
x € [a, b] there exists a ¢ such that min (x, x;) < ¢ < max (x, x,) and

£ (N)
/ N(f) A

o (x =x,)mn L

f(x) — H ! (x) =

Quadrature formulas [8]. Let (n,,) be the sequence of orthogonal poly-
nomials on [a, b] corresponding to the weight function w.

We shall denote by (n®*#)) the sequence of polynomials which are
orthogonal on [a, b] with respect to the weight function

(b—x)*(x —a)’ w(x)

(¢ > —1, B > —1). Actually, we need only the polynomials (z{>*?), (n’>1)),

(n{?’) and (n':})); these polynomials can be expressed easily in terms of (r,,).
(0,0)

We have &, = &,
l”mﬂ(x) T4t (a) 1 Tt (X) iy ()
n,(,,o’l)(X) _ ’n'("l,O)(x) I
T r, () n@) P )

and

Tt1 (X) M1 (@) Tpmyq (D)

1
(1,1) —
M- 1 (x) (x _a) (x b) m (x) T (a) T (b)
7rm—-1 (X) Tm—1 (a) nm—l (b)
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Ifa=—1b=1and w(x) =1, xe[—1, 1], the polynomial \r'? is

equal to the Jacobi polynomial P*# except for a constant factor. We have
in particular

PO (x) = P,(x)
Poii(x) + P,(x)

POD (x) =
() x + 1
P(],O)(x) _ Py (x) — P, (x)
" x — 1

PUY (%) = Pp(®)

where P,, is the Legendre polynomial of degree m. On the other hand, if
w(x) = (1—x2)"% x e(—1, 1), the polynomial n'*# is equal to the Jacobi
polynomial P®~ % #~9 except for a constant factor. We have in particular

PCEY(x) = ¢, T,(x) = c,cos mb

. cos(m+3)6
Py D) = ¢, D

cos 16
PU-Dx) = o sin(.m +3)06
sin 3 0
plih sin m6
(X) = 2Cm Um—l(x) = 2Cm .
sin 0
wh 6 and @M=D) e 19, p. 60)
where x = cos § and ¢, = see [9], p. 60).
2-4..02m) ¥
The zeros of the polynomials 7'>%, z{!:1) 7% and 7' play an im-

. portant role in the construction of quadrature formulas of highest possible
degree of precision.
We have first the well known Gauss quadrature formula:

I. Let xy, ..., x,, be the zeros of 7>, Then for every polynomial Q of
- degree < 2m—1 we have

b

ii (3.1) fwmQ@madt = Z A7 Q (x,)

~ where A7 >0,v=1,.. m
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In addition to this we shall need the following quadrature formulas
obtained independently by A. Markov [10] and R. Radau [11]; the first of

these formulas is also attributed to R. Lobatto [12].
II. Let pq, ..., ¥ be the zeros of n{-"). Then for any polynomial 0
of degree < 2m—1 we have

b

(32 [wOQWd = BIO@ +BIO®B) + ¥, B Q)

a
where B >0, v =0, ..., m.

II. Let &, ..., &,, be the zeros of n{>""). Then for any polynomial Q
of degree <2m we have

b

(3.3) fw®Q(ndt = CIQ(a) + 2, CVQ(C)

a
where C' > 0, v =0, ..., m.

IV. Let 7y, ..., §,, be the zeros of 7{"**’. Then for any polynomial Q of
degree < 2m we have

b

(3.4) Jw®Q@®dt = D7Q(b) + Y DIQ(n,)

a
where D) > 0,v =0, ..., m.

We shall consider first polynomials of best one sided approximation to
a function whose n-th derivative is non negative.

THEOREM 4. Assume that f is continuous on [a, b] and that f™ (x) = 0 for
all x € (a, b).

A. The polynomial P of best approximation to f from below on [a, b]
of degree < n—1 is defined as follows :
If n = 21, then
(35) P(xv) =f(xv)9 P,(xv) =f,(xv)s vV = 15---91
where X, ..., X, are the zeros of n 0,
If n = 2/+1, then
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(3.6)  P(a) =f(a), P(&) =f(), P& =), v=1..l

0,1
where &, ..., &, are the zeros of AR

B. The polynomial P of best approximation to f from above on [a, b]
of degree < n—1 is defined as follows :

If n = 21, then

(3.7) P(a) = f(a), P(®) =f0b), PWy)=s0),
P,(yv)zf(yv)’ U=1,...,l<—]

1,1
where Y, ..., yi_, are the zeros of n{tl.

If n = 2141, then

3.8) P®B) =f0®), Pn)=f(), Pn)=f(), v=1,..,1

1,0
where 1y, ..., n, are the zeros of w{"?.

Remark. If f™ (x) £ 0 for all x € (a, b), then (3.5) and (3.6) define the
polynomial of best approximation to f from above, while (3.7) and (3.8)
define the polynomial of best approximation to f from below.

Proof. A. Assume first that n = 2/. If P is the polynomial defined by
(3.5) we have clearly deg P < 2/—1 = n—1 and by the remainder theorem

ARCS)

1) = PO ==

(x—=x)%...(x=x)*=0

1.e. P(x) £ f(x), x € [a, b]. Further, from (3.5) and (3.1) follows that

b

1
fwP@dt = Y A f(x,).

a

On the other hand, for any polynomial Q of degree < 2/—1 = n—1
such that Q (x) < f(x), x € [a, b] we have

b

fwo®md £ ¥ Af(x).

a
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If n = 2/4+1 and P is defined by (3.6), we have deg P < 2/ = n—1 and

fAD (g
T Q@+D!

iLe. P(x) < f(x), x €[a, b]. The rest of the proof is the same as before,
except that we use the quadrature formula (3.3) instead of (3.1).

J) = P(x) =" ———(x—a)(x=&)..(x=&)* 20

B. First assume that n = 2/. The polynomial P defined by (3.7) is of
degree < 2/—1 = n—1 and

AG)

J(x) = P(x) = !

(x—a)(x=b)(x—y)*...(x=y-1)* £0

€. P(x) 2 f(x), x €[a, b]. From (3.7) and (3.2) follows that

b

Jw(®P(1)dt = B,f(a) + Bif(b) + Z B.f(1,) -

a

On the other hand, for any polynomial Q of degree 2 (/—1)+1 = 2/—1
= n—1 such that Q (x) = f(x), x € [a, b] we have

b

fw®Q(®dt = B,f(a) + Bif(b) + Y. Bif(3)).
v=1

If n = 2/+1 and P is defined by (3.8), we have deg P < 2/ = n—1 and

(21+1)
£6) =P =" b - n e 5 0

i.e. f(x) =2 P(x), x € [a, b]. The remaining part of the proof is the same
as before, except that we use the quadrature formula (3.4) instead of (3.2).

(i) From the Theorem 4 we obtain immediately the polynomials P,
and P* of best approximation from below and from above to x" on [a, 5],
of degree < n—1, corresponding to the weight function w:

[x" — (7%*Dx)* if n =2l
Py (x) = |
x, — (x—a)(F*V(x)? if n=20+1
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and

Jx" + (x —a)(b—x) (ﬁ,(i’ll)(x))z if n=2I
P*(x) =
| + (b=x) GO if no=20+1
Here #*?) is the polynomial n{*#’ normalized so that the coefficient of x"
is 1.

As another application of the Theorem 4 we shall obtain certain results
about trigonometric polynomials of best one sided approximation.

Let & be a real valued function defined and bounded from below on
[a, b] = [—=,n]. We shall denote by T, (k) the class of all trigonometric
polynomials

n

qg(x) = Yag + ) (a,cosvx + b, sin vx)

v=1

of degree < n such that g (x) < h(x) for all x € [qa, b].
A trigonometric polynomial p € T, (k) is the polynomial of best approxi-
mation from below to & on [a, b] if

b

[p(®dt = sup [q()dt.

qeTp(h) a

The trigonometric polynomial of best approximation from above is defined
similarly.
We have the following result:

THEOREM 5. Let (4,) be a sequence of real numbers such that
(3.9) Ay = }t”doc(t), n=12,..
0
with a non decreasing o on [0, 1] and
(3.10) % Ay < 00
Let h be defined by

h(0) = Y A cosk®.
k=1

L'Enseignement mathém., t. XII, fasc. 3. 11
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A. The trigonometric polynomial of best approximation to h from
n] of degree < n—1 is the cosine polynomial p defined as

below on [0,
follows :
If n = 2, then
2k —1 2k —1 2k —1 2k —1
3.11 = h(—— (" n)=h' )
G1)  p(Em = k(5w p(Son =k (5w,
k=1,..,1
If n = 2+ 1, then
2k —1 2k —1
3.12 = h(n), ) = ,
(3.12) pm =h@,  plogm = b
2k —1 2k —1
= B , k=1,..,1.
ACTk GiFr™ '

B. The trigonometric polynomial of best approximation to h from
above on [0, ] of degree < n—1 is the cosine polynomial p defined as

follows :

If n = 2, then
(3.13) p(0) =h(0), p) = h(n),
2k 2k 2k
Loy = p(E = h (= k=1,..,1—1.
p( n h(zl”’ p( n) (2ln)
If n = 2l+1, then
3.14 0) = h(0) (o h 2k )
(3.14) p(0) = h(0), p21+1 BT ISR
2k 2k
= h' , k=1,..1.
P (T Gt ™

Remark. Since both p and h are even functions, the polynomial p is
the trigonometric polynomial of best one sided approximation to 4 also

on the interval [—n, 7].
Proof. For |x] £ 1 let f be defined by

f(x) = h(arccos x).



S L
We have then

fx) =Y 4 T(x), forallxe[—-1,1]
k=1

where (T,) is the sequence of Tchebishev polynomials. The function f is
clearly continuous on [—1, 1].
From the well known expansion

tx — t? ®
= * T, (x
1 — 2x + £ k; (%)

which is valid for |x| < 1, |¢] < 1, and the hypotheses (3.9) and (3.10)
follows that for |x| < 1

1
I

Differentiating we get

tx — t?

— 2tx + t?

da(t) = Y 4 T(x) = f(x).
k=1

P € )
(n) — !2n~1
f (x) h {(1 _2tx+t2)n+l

da(f) = 0.

We shall first construct the trigonometric polynomial of best approxi-
mation to A from below.

A. By Theorem 4, A, the polynomial P of best approximation to f
from below on [—1, 1], of degree < n—1, corresponding to the weight

- function w (x) = (1—x?)"%, is defined as follows:

If n = 2/, then
P(x) =f(x), P (x) = f (x0)s k=1,..1
where x;, ..., x; are the zeros of the Tchebishev polynomial 7, i.e. P{~ ¥~ ¥:

2k -1
21

X, = cos( n), k=1,..,1I.

If n = 2/+1, then

P(=1) =f(=1), P& =f&), P& =1, k=1,..,1

where &, ..., & are the zeros of the Jacobi polynomial P{™#¥:

2k — 1
21 + 1

}:kzcos( n), k==1,...,l.
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Let p (8) = P (cos 0). Then p is clearly a cosine polynomial of degree
< n-—1. From

P(x) £ h(afccos x), xe[—-1,1]

follows that p (0) < k (), 0 € [0, n]and it is easy to see that the polynomial
p satisfies conditions (3.11) or (3.12) according to whether n is even or odd.
Finally

fp@do = (1-x*"tP(x)dx = sup{j (1-x3)"*Q(x)dx :

QEPn—-l(f)}

and so

[p()do = sup{jq(t)dt:qu,,ﬂ(h)}
0

Lo

B. Next we consider the polynomial of best approximation to /4 from
above. By Theorem 4, B, the polynomial P of best one sided approximation
to ffrom above on [—1, 1], of degree < n—1, corresponding to the weight
function w (x) = (1—x%)"* is defined as follows:

If o = 2/, then

o P(=D =f(=-1, PO =fN), POI =S,
S P =S, k=101

where y,, ..., y;—, are the zeros of the Tchebishev polynomial of the second
kind U,_,, i.e. PED:

2k
yk=COS(E‘7T,), k=1,.-.,l—1-

If n = 2]+1, then
POy =f1), PO =Ffm), Pm)=rf(w), k=1.,1I
where 7, .;:,‘n, are the zeros of the Jacobi polynomial P{¥~H);

2k
21+1

M = cos ( n), k=1,..,1.
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If we define p () = P (cos ), then p is the cosine polynomial of degree
< n—1 satisfying conditions (3.13) or (3.14) according to whether #n is even
or odd. Using the same argument as in part A, we find finally that p is the
polynomial of best trigonometric approximation from above to 4 on [0, =].

(iii) Our next theorem deals with polynomials of best one sided approxi-
mation to even functions on [—1, 1]. We shall consider the function f
defined by

f(x) = h(x*

where 4 has derivatives of constant sign on (0, 1). We shall assume here
also that the weight function w is even. In that case, as it is well known, the
polynomials (=), orthogonal on [—1, 1] with respect to w, have symmetric
zeros, 1.e. if x, is a zero of «, then —x, is also a zero of =,, and all these
zeros are in the interior of [—1, 1].

THEOREM 6. Suppose that h is continuous on [0, 1] and that
(3.15) hUEn* Dy >0 te(0,1).
Let f be defined on [—1, 1] by f(x) = h (x?).

A. The polynomial P of best approximation to f from below on [—1, 1],
of degree <n is defined by P (x) = Q (x?), where the polynomial Q is
defined as follows :

If n =4r—1 or n = 4r—2, then

(3.16) Q@) =h@), Q'@)=h), v=1..,r
where V/ t,, v =1,..,1 are positive zeros of the polynomial n§>"®.

If n =4r or n = 4r+1, then

(3.17) Q) =h(0), 0O(@)=ht), Q'(t)=h(),
v=1,...,r

where \/ t,,v =1, .., 1 are positive zeros of the polynomial 1$%?).

B. The polynomial P of best approximation to f from above on
[—1, 1], of degree <n, is defined by P (x) = Q (x*) where the polynomial o
is defined as follows :

If n =4r—1 or n = 4r—2, then
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(3.18) Q) =h(©), Q) =h(), Q) =h(),
o@)=hnh@), v=1,.,r—1

where \/ t,v=1,..,r—1 are positive zeros of the polynomial 3
If n = 4r or n = 4r+1, then

(3.19) Q) =h(), Q@) =h(), Q) =h(),
v=1,...,r
where \/ t,, v =1, .., r are positive zeros of the polynomial nii'".
Remark. 1If
R+ @y <0,  te(0,1)

then (3.16) and (3.17) and P (x) = Q (x?) define the polynomial P of best
approximation from above to f(x) = h(x*), while (3.18), (3.19) and
P (x) = Q (x*) define the polynomial P of best approximation from below

to f(x) = h (x?).

Proof. A. Suppose first that n = 4r—1 or n = 4r—2. We have then
[n] =2r—1. If Q is the polynomial defined by (3.16) we have
deg QO < 2r—1 and by the remainder theorem and (3.15)

h(Zr) (’L’)
(2r)!

(t—t)*...(t—t)* =0

() - Q1) =

ie. 0@ S h(), te]O0,1].
Let P(x) = Q (x*). Then deg P < 2(2r—1) = 2[4n] £ n and
P(x) = 0(x* =h(x*) =f(x), xe[-1,1].

Since the weight function w is even, the zeros of n>°) are

x1 = —\/;,.,...,x,. == —\/Zl,x,+1 = \/;1,...,)62,. == \/_tr

and from the definition of Q follows that
P(xv)=Q(x‘2,)=h(xf) =f(xv)a vV = 1,...,2]‘.

Since deg P < 4r—2 < 4r—1, from the quadrature formula (3.1) with
m = 2r follows that

+1 2r

[ wx)P(x)dx =} A f(x,).

v=1
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On the other hand, since
| n§2[%n]+1 = 4r—1,

for any polynomial R of degree <n such that R (x) < f(x), xe[—1, 1],

we have
+1

| w@R@dx S 3 ATf(x).

This proves the first part of the statement A.

If n = 4r or n = 4r +1, then [} n] = 2r. If Q is the polynomial defined
by (3.17), we have deg Q < 2r and by the remainder theorem and (3.15)

h(2r+1)(’f) i X
h() — Q@) = mt(t—tﬂ (=) 20

ie. Q@)= h(t), te[0, 1]
Let P(x) = Q (x*). Then deg P < 4r = 2[4 n] < n and as before

Px)=f(x), xe[—-1,1].

0,
The zeros of 7522} are
Xy = —\/t,,...,x, = -—\/tl,x,.+1 = 0,x,+2 = \/2‘1,...,x2,.+1 = \/tr

and as in the preceding case it follows that P (x,) = f(x,), v =1, ..., 2r+1.
" Since deg P < 4r < 2 (2r+1) — 1, using the quadrature formula (3.1) with
"~ m = 2r+1 we find that

+1 2r+1

[ wP@dt = Y A f(x).

-1 v=1

' On the other hand, for any polynomial R of degree < n such that
R(x) £ f(x), xe[—1,1], we have

+1 2r+1

J wOR®dt £ Y A7 f(x,).
-1 v=1

~ This proves the second part of the statement A.

B. Consider first the case n = 4r—1 or n = 4r—2. We have then

(3 n] = 2r—1. If Q is the polynomial defined by (3.18) we have deg Q
< 2r—1 and by the remainder theorem and (3.15)



— 162 —-

h(Zr) (‘C)
(2r)!
ie. Q) = h(), tel0,1].

Let P(x) = Q(x*). Then deg P<2@2r—1)=2[4in <n and

P(x) = f(x), x e [—1, 1]. Since the weight function is even, the zeros of

1,1
n$i ) are

h() — Q@) = tE=1) (1) ... (t=t,_)* =0

Y1 = _\/;"""y"_l = _\/;1’ Yr = 0, Yr+1 =\/_tl,...,y2,_1=\/7,.

It follows that

P(-1) =f(-1, PO =1, POy =0,
v=1,...,2r—1.

Since deg P < 4r—2 < 4r—1, using the quadrature formula (3.2) with
m = 2r we get

+1 2r—-1

[ wP@®dt = Bf(=1) + B f () + Y BYf(y).

-1

On the other hand, since n < 2 [ n]+1 = 4r—1, for any polynomial R
of degree < n such that R(x) = f(x), x e [—1, 1], we have

+1 2r—-1

J wiR®dt z B f(=1) + Baf() + Y BUf().

This proves the first part of the statement B.

Finally, if n = 4r or n = 4r+1, then [ n] = 2r. If Q is the polynomial
defined by (3.19), we have deg Q < 2r and by the remainder theorem and
(3.15)

h(2r+1)(1.) X ,
h(t) — Q) =m(t—1)(t—t1) L (t=1) =0

ie. Q) = h(2), tel0,1].
Let P(x) = Q(x?). Then degP < 4r =2[4n] < n and P(x) = f(x),

xe[—=1,1]. If y,, ..., y,, are zeros of n5,’") we have

Y1 = '—\/;r"“:yr = —\/—tlayrw*l = \/_tla""er = \/}r



— 163 —

and so

P(-1) =f(-1, PO =f1, POH)=rf0),
v=1,..2r.

Since deg P < 4r < 4r+1 = 2 (2r+1) — 1, using quadrature formula (3.2)
with m = 2r+1 we get

+1

2r
f w@®P@®dt = B3Lif(=1) +Byiif() + ¥ B ()
-1 v=1

On the other hand, since n £ 2 [{n]+1 = 4r+1 =2@2r+1) — 1, for
any polynomial R of degree <n such that R(x) = f(x), xe[—1, 1], we
have

+1

2r
J w@OR@®drz B f(=1) + By f() + ¥ BT

-1
This proves the second part of the statement B.

(iv) Finally we shall mention explicitly a special case of the preceding
theorem, corresponding to the function 4 (¢) = |/ t. We shall assume again
that the weight function w is even.

Observing that %™ () < 0and A?™ ™1 (£) > 0, ¢ € (0,1), and taking into
account the remark following Theorem 6, we obtain immediately the
following results:

A. The polynomial P of best approximation to f(x) = |x]| from below
on [—1, 1] is defined by P (x) = Q (x?), where the polynomial Q is defined
as follows:

If n=4r—1 or n = 4r—2, then

- 1
Q0 =0, QM) =1, Q) =1, Q'(tv)=2—\ﬁ,

; where \/7v, v = 1, ..., r—1 are positive zeros of n$!'!).
If n = 4r or n = 4r+1, then

- 1
Q(O)=O’ Q(tv)z\/tva Q,(tv)z’ﬂ?, V=1,...,I"'

- where /t,, v =1, ..., r are positive zeros of n52).
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B. The polynomial P of best approximation to f(x) = |x| from above

on [—1, 1] of degree <n is defined by P (x) = Q (x?), where the polynomial
Q is defined as follows:

where /t,, v = 1, ..., r are positive zeros of 5
If n =4r or n = 4r+1, then

where \/1,, v = 1, ..., r are positive zeros of n5.

1]
2]
B3]
{4]
(5]
(6]

(7]
(8]

(9]
[10]

[11]

If n=4r—1orn = 4r—2, then

1

273,

o) =/t,, Q') =

(0,0)

v=1,..r

- 1
Q(1)=15 Q(tv)z\/tv9 Q,(tv)z'z—\/—;t—a

(1,1)
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