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SUR LA THÉORIE DE S. STOILOW
DES RECOUVREMENTS RIEMANNIENSx)

par Cabiria Andreian Cazagu

Dès le dernier siècle, dans l'œuvre de Cauchy et de Gauss,
mais surtout dans celle de Riemann, l'interprétation géométrique
des fonctions d'une variable complexe comme des transformations

d'un plan ou d'une surface dans une autre et la recherche
de leurs propriétés géométriques ont enrichi la théorie des fonctions

analytiques par maints résultats fondamentaux. Cette
direction de recherche s'est montrée plus féconde encore dans

notre siècle quand le développement de la théorie des ensembles,
de la topologie, de l'algèbre moderne, imprégnées par l'esprit de

la méthode axiomatique, ont permis de pénétrer plus profondé-
j ment dans la nature de l'analyticité. C'est dans cette époque et
j dans cet esprit d'analyse rigoureuse des fondements des

mathématiques et de vastes synthèses, que s'est forgé une nouvelle
discipline — la théorie topologique des fonctions analytiques,
dont le créateur a été le professeur Simion Stoïlow.

Formé sous l'influence de l'illustre pléiade des mathématiciens

français : E. Picard, H. Poincaré, J. Hadamard, E. Borel,
H. Lebesgue, le professeur Stoïlow commence son œuvre par
d'importants travaux dans la théorie des équations aux dérivées
partielles, qui ont été continués par St. Bergman, L. Fantappié,
H. Lewy et récemment par J. Leray.

Après la première guerre mondiale, il se consacre à la théorie
des ensembles, des fonctions réelles et de la topologie, mais il
ne quitte pas sa préoccupation principale, l'étude de l'analyticité.
Ainsi les résultats profonds qu'il obtient sur les transformations
continues apparaissent comme une introduction à la théorie des

transformations intérieures, notion qu'il définit en 1927 et qui constitue

la base de la théorie topologique des fonctions analytiques.

Conférence donnée au Colloque sur la Géométrie différentielle globale, Bucarest,

1964.
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Comme on le sait, à cette époque le célèbre problème de

Brouwer relatif à la caractérisation topologique des fonctions
analytiques préoccupait un grand nombre de mathématiciens:
K. Szillard, 0. Onicescu, M. Zorn y ont apporté leur contribution;

d'autre part on poursuivait aussi la généralisation métrico-
topologique de l'analyticité, direction qui conduisit à l'étude des

fonctions polygènes et plus tard de la quasi-conformité, et qui
fut illustrée dans notre pays par D. Pompeiu, M. Nicolescu,
G. Cälugäreanu, Gr. Moisil, N. Teodorescu, N. Ciorànescu. C'est
ainsi que le mémoire de S. Stoïlow « Sur les transformations
continues et la topologie des fonctions analytiques » (1928), qui
donnait la solution du problème de Brouwer, a joui d'un succès

tout à fait remarquable.
Etant donnés deux espaces topologiques V et S, une

transformation intérieure au sens de S. Stoïlow est une application
T: V -> S continue, ouverte et O-dimensionnelle. Aussi bien les

fonctions analytiques que les transformations topologiques des

surfaces (variétés topologiques 2-dimensionnelles) sont des

transformations intérieures. D'autre part, S. Stoïlow montre

que: Etant donnée une transformation intérieure arbitraire T

d'une surface V dans la sphère complexe A, il existe toujours un

homéomorphisme H de i?, une surface de Riemann abstraite
au sens de Weyl et Radô, sur V telle que T ° H soit une fonction
analytique sur R. C'est-à-dire, on peut toujours introduire sur V

une structure conforme, telle que T devienne une fonction
analytique 1). Par conséquent, les transformations intérieures
caractérisent du point de vue topologique les fonctions analytiques.
Le caractère topologique des théorèmes classiques relatifs au
maximum du module, aux zéros et à l'inversion des fonctions
analytiques, résulte comme une conséquence immédiate de ce mémoire.

D'autres travaux de S. Stoïlow concernant les transformations

intérieures, introduisent les importantes notions de

recouvrement total ou partiellement régulier.
D'après S. Stoïlow, une suite de points d'une surface tend

vers la frontière de cette surface, s'il n'admet pas de points
d'accumulation dans cette surface.

i) Récemment, Fl. Rucur approfondit ces résultats du point de vue de la théorie
des catégories et donna des propriétés algébriques des transformations intérieures.
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Le recouvrement de S par F selon la transformation
intérieure T est dit total si à toute suite Pk de F tendant vers la
frontière de L, correspond par T une suite pk T (Pk) de S,

tendant vers la frontière de S. Alors T (F) — S et la pré-image
d'un point quelconque de S consiste dans le même nombre n
de points de F comptés avec leur multiplicité: c'est le nombre
des feuillets. Si F et S ont les caractéristiques d'Eulerp, resp. p0,

la formule de Hurwitz donne l'ordre total de ramification
algébrique r du recouvrement

r p - n p0 (1)

De même le recouvrement de S par F selon T est partielle-
ment régulier, s'il remplit les conditions suivantes:

(ß±) Toute suite de points Pk de F, qui tend vers la frontière
de F, se projette sur une suite de points T (Pk) de S, qui tend
vers la frontière de S ou vers un nombre fini de courbes de

Jordan 7, deux à deux disjointes, chacune frontière commune à

deux domaines disjoints Djl Dj étant les composantes connexes
de £ — 7.

(ß2) Le pré-image T~1 (7) est compacte dans F ou vide.
Chaque Dj est recouvert totalement ou pas du tout par F.

Soient Hj le nombre des feuillets de F sur Djy p} la caractéristique
de Dj, p celle de F (comme plus haut). S. Stoïlow a généralisé
la formule de Hurwitz pour les recouvrements partiellement
réguliers

r p - I rij pj (2)

Il établit des critères de biunivocité pour les transformations
intérieures et les homéomorphismes locaux, et approfondit les

fonctions de Pompeiu, les valeurs exceptionnelles et asympto-
tiques des fonctions analytiques, les transformations presque
analytiques de M. A. Lavréntieff. Ces problèmes ont été repris
par S. Eilenberg, S. Banach et S. Mazur, E. Szpilrajn et S. Kierst.

D'année en année, l'importance de la notion de transformation

intérieure s'est de plus en plus affirmée. Elle a trouvé un
vaste champ d'application dans la topologie générale: N. Aron-
szajn, S. Mazurkiewicz, G. Th. Whyburn ont approfondi sous
différents aspects les transformations intérieures entre des
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espaces topologiques; M. Morse, M. Heins, J. A. Jenkins les ont
appliquées à différents problèmes et tout particulièrement à

l'étude des fonctions pseudo-harmoniques. Actuellement, dans
la théorie des applications quasi-conformes, on prend comme
point de départ les transformations intérieures de Stoïlow,
auxquelles on ajoute certaines conditions métriques (c'est le point
de vue de L. V. Ahlfors, K. Noshiro, A. Pfluger, L. I. Volko-
yyski, J. Hersch, H. Ktinzi, etc.) et même si certaines recherches

(par exemple celles de R. Cacciopoli, Y. Tôki et K. Shibata,
I. N. Pesin, L. Bers) partent d'une autre définition, on démontre
le caractère intérieur de la transformation. L'étude des
solutions des systèmes d'équations aux dérivées partielles généralisant

le système de Gauchy-Riemann se rattache aussi à ces

transformations. Des concepts introduits par S. Stoïlow et se

rapportant aux transformations intérieures (application propre,
application O-dimensionnelle) se sont révélés plus tard essentiels

non seulement en topologie, mais aussi dans la théorie des
fonctions de plusieurs variables complexes.

A l'aide des transformations intérieures, S. Stoïlow a résolu

un second problème fondamental de la théorie des fonctions

analytiques: la définition des recouvrements riemanniens. En

effet, la notion de surface de Riemann donnée par H. Weyl en

1913 et précisée par T. Radô en 1925, qui est utilisée avec succès

dans la théorie des représentations conformes et de l'uniformisation,

ne renferme pas toute la richesse du concept introduit
par Riemann, car elle fait abstraction de tout élément se

rattachant au mode de recouvrement et ne peut pas être appliquée aux
recherches relatives aux points de ramifications et aux feuillets.

Au Congrès international d'Oslo (1936), S. Stoïlow définît le

recouvrement riemannien comme un recouvrement de la sphère

ou, plus généralement, d'une surface S par une surface V selon

une transformation intérieure (un tel recouvrement sera désigné
dans la suite par Sj). De cette manière, S. Stoïlow créa un
instrument nouveau et puissant de recherche, dont l'importance a

été soulignée dans tous les traités modernes de la théorie des

fonctions et des surfaces de Riemann (A. 1. Markouchewitch

(1965), R. Nevanlinna (1953), H. Helmke et F. Sommer (1955),

A. Pfluger (1957), L. V. Ahlfors et L. Sario (I960)).
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En 1938 parut, dans la célèbre collection Borel, le travail
fondamental du professeur Stoïlow: Leçons sur les principes
topologiques de la théorie des fonctions analytiques, dont une
seconde édition de 1956 est complétée par les travaux ultérieurs
de l'auteur. Cette monographie profondément originale se

distingue par la richesse des résultats et la maîtrise avec laquelle
hauteur passe de l'intuition concrète des faits géométriques aux
généralisations les plus abstraites.

Parmi les nouveaux résultats que S. Stoïlow présente dans

ce livre, nous soulignons la caractérisation topologique des

surfaces de Riemann abstraites (c'est-à-dire des surfaces qui
peuvent être munies d'une structure conforme): ce sont les

surfaces triangulables et orientables.
De même il compléta la théorie de l'homémorphie des

surfaces en étudiant la notion de frontière idéale due à Kerékjârtô:
il définit la suite déterminante d'un élément frontière et introduisit

une topologie sur l'ensemble obtenu en complétant la
surface de Riemann par la totalité des éléments frontière.

Cette frontière, qu'on nomme aujourd'hui frontière Kerékfârtô-
Stoïlow, joue un rôle fondamental dans la théorie moderne des

surfaces de Riemann. Les frontières conformes de Martin, de

Kuramochi, de Royden, et celle introduite par Constantinescu-
Cornea, que leurs auteurs appellent frontière de Wiener,
apparaissent comme des raffinements de la frontière de Kerékjârtô-
Stoïlow Elle est utilisée dans le problème de la classification des

surfaces de Riemann. Par une vaste généralisation du théorème
classique de Liouville, R. Nevanlinna, L. V. Ahlfors, L. Sario et
d'autres ont défini différentes classes de surfaces de type (9. Le
critère consiste dans la non-existence sur la surface, de certaines
classes de fonctions non constantes. On a démontré ensuite que
l'appartenance à quelques-unes de ces classes est une propriété
de la frontière (un des premiers résultats dans ce sens est dû à

T. Kuroda et concerne la classe @°AB) et à l'aide de la frontière
Kerékjârtô-Stoïlow, on a introduit de nouvelles classes de

surfaces, par exemple la classe des surfaces à frontière absolument

discontinue c^7 de Sario).
La frontière Kerékjârtô-Stoïlow sert de base aussi pour les

recherches sur le comportement à la frontière des fonctions ana-
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lytiques et harmoniques de 0. Lehto, M. Heins, K. Oikawa, etc.
L'étude systématique de la frontière des surfaces de Riemann
entreprise par C. Constantinescu et A. Cornea, qui est synthétisée
dans leur monographie: « Ideale Ränder Riemannscher Flächen »

(Springer, 1963) les a conduit à la généralisation des théorèmes
de Fatou-Nevanlinna, Plessner, Riesz, Beurling sous des formes

qui apportent des précisions mime dans le cas classique du
cercle et à l'introduction des applications de type Fatou et de

type Dirichlet; ils ont mis en évidence une dualité profonde
entre les fonctions de classe HB et HD.

Un autre problème important dont la solution a été obtenue
à l'aide de la frontière Kerékjârtô-Stoïlow est celui du
prolongement des surfaces de Riemann. M. Jurchescu a caractérisé la
classe des surfaces de Riemann essentiellement non susceptibles
de prolongement et a déterminé ses rapports avec les classes de

type 0. Il a montré qu'il existe des surfaces de Riemann à

prolongement maximal topologiquement, mais pas analytiquement
unique et a déduit l'existence des homéomorphismes Pompeiu
quasi-linéaires.

La frontière idéale Kerékjârtô-Stoïlow intervient aussi dans

la notion de métrique harmonique sur une surface de Riemann
due à N. Boboc et Gh. Mocanu et qui permit de généraliser
maints théorèmes classiques.

En introduisant une relation d'ordre dans l'ensemble des

compactifications des espaces topologiques, N. Boboc et

Gh. Siretchi ont obtenu une lattice, la frontière Kerékjârtô-
Stoïlow étant à ce point de vue la plus grande compactification
à frontière totalement discontinue.

Parallèlement à la classification des surfaces abstraites de

Riemann, S. Stoïlow mit le problème d'une classification â

partir des propriétés de recouvrement. Dans ce sens il introduisit
deux classes importantes de recouvrements riemanniens: la
classe I et celle des recouvrements normalement exhaustibles.

Dès 1931, S. Stoïlow releva l'importance de la propriété
d'Iversen, qu'il a dénommée ainsi parce qu'en 1914, F. Iversen

l'avait démontrée pour les inverses des fonctions méromorphes.

Un recouvrement riemannien S\ est dit de classe I (ou possédant

la propriété d'Iversen) si, quels que soient le domaine ô c= S
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et la composante connexe A de T~l (ô) sur F, l'ensemble
<5 — T (A) ne contient aucun continu. S. Stoïlow a précisé le

comportement des recouvrements de classe / au voisinage des

éléments de la frontière (1952). On a découvert d'importantes
classes de surfaces de Riemann, dont toutes les réalisations

possibles comme surfaces de recouvrement ont la propriété
d'Iversen: la classe (9G (résultat dû à S. Stoïlow, 1943), la
classe 0HB (A. Mori, 1951), la classe (9°AB (T. Kuroda, 1953), etc.

D'autre part, on a trouvé des classes de fonctions analytiquement
définies qui engendrent des recouvrements riemanniens avec la
propriété / sur la sphère complexe. Ainsi S. Stoïlow a démontré

en 1936 que les fonctions w w (z) définies par une relation
entière ont cette propriété. Rappelons aussi le résultat suivant
de M. Jurchescu: Toute application holomorphe dont la frontière

accessible est réunion dénombrable d'ensembles polaires
(par exemple les fonctions rationnelles d'une intégrale d'équation

différentielle algébrique d'ordre ^ 2) est localement BL
(au sens de M. Heins), donc a la propriété I.

Une seconde classe de recouvrements riemanniens fut définie

par S. Stoïlow en 1938: c'est la classe des recouvrements
normalement exhaustibles, extension naturelle des recouvrements
clos.

Soit encore un recouvrement riemannien. Une suite de
°

domaines fermés Vk de F, avec les propriétés: Vk cz Vk+i et
u Vk — F, forme une exhaustion de F.

Le recouvrement St est dit normalement exhaustible s'il
existe une suite d'exhaustion Vk de F, telle que Vk soit compact
et que l'intérieur de Vk recouvre totalement sa projection par T.

S. Stoïlow a donné des exemples de tels recouvrements : ceux
engendrés par les fonctions entières d'ordre < ou par la fonction

de Lusin et Priwalofî; il a démontré des théorèmes concernant

la répartition des valeurs (1940). G. Th. Whyburn a
aussi étudié ces recouvrements (1950). Elève du professeur
Stoïlow, j'ai obtenu moi-même des résultats sur les recouvrements

normalement exhaustibles (1952-56) dont nous allons
parler dans la suite, mais en les présentant d'un point de vue
plus général: à savoir, nous prenons comme base pour une
théorie unitaire des recouvrements riemanniens l'étude d'une
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exhaustion de ce recouvrement et nous choisissons l'exhaustion
polyédrique, puisque tout recouvrement peut être donné à l'aide
d'une telle exhaustion.

1. Recouvrement polyédrique. — Soit SVT un recouvrement
riemannien qui vérifie la condition (ß-ß) par rapport à un ensemble
fini y de courbes de Jordan deux à deux disjointes et d'arcs
de Jordan à extrémités bien déterminées dans des points ou des

éléments frontière de 5, tel qu'en désignant par Jf l'ensemble
des extrémités qui appartiennent à S, et que nous appelerons
nœuds, l'intersection d'un arc avec un autre ou avec une courbe
soit contenue dans Jf. Définissons maintenant une condition (ß2)

locale: le point p de y a la propriété (Lß2), s'il existe un voisinage

v de p tel que la pré-image de la composante connexe de

v n y qui contient p, soit formée de composantes connexes
relativement compactes ou soit vide. Soit E l'ensemble des

points p e y sans la propriété (Lß2) et appelons ces points
exceptionnels. Nous démontrons que si F a la caractéristique d'Euler
finie, il existe sur y un nombre fini de points exceptionnels au

plus. Il en résulte aussi un nombre fini de points de ramifications.

Nous dirons que le recouvrement Sj est polyédrique (ou P)
s'il remplit la condition (ßß par rapport à un ensemble de

courbes y avec les propriétés mentionnées plus haut et si F a

une caractéristique finie. Une exhaustion Vk d'un recouvrement

riemannien SVT sera appelée polyédrique (ou P) si Sjk est un
recouvrement P.

Remarquons que si S et V sont des surfaces de Riemann
et T une application analytique F -» S, tout domaine
polyédrique TU ci F, dont la frontière consiste dans un nombre fini
de courbes de Jordan analytiques ou formées d'un nombre fini

d'arcs analytiques, engendre un recouvrement Sj polyédrique,
donc tout recouvrement riemannien admet des exhaustions

polyédriques, ce qui assure un vaste champ d'application aux
résultats que nous obtenons. D'ailleurs même les recouvrements

Sj, définis à l'aide d'une exhaustion par des surfaces

bordées non compactes F*, sont inclus dans nos considérations,
o

car Vk admet une exhaustion polyédrique Vkj et en choisissant



— 89 —

les indices jk tels que VkJk c= Vk+\jk+1, les recouvrements S^k4

forment une exhaustion polyédrique de St>

En ajoutant des conditions convenables relatives aux ensembles

yk T (rk), (Tk d Fk) ou aux recouvrements 55rfe, nous
obtenons différentes classes de recouvrements riemanniens. Par
exemple, nous avons étudié les recouvrements partiellement
régulièrement exhaustibles (S? qui admet une exhaustion Ffc,

tel que Sjk soit partiellement régulier), les recouvrements
(f-quasi-normalement exhaustibles (Sj avec les propriétés
suivantes: S étant un sous-ensemble propre, fermé de S et Dj — les

composantes connexes de S — <f, il existe les exhaustions à

domaines polyédriques Vk de F et Djk de Dj, ayant respectivement

les frontières rk et yjk formées chacune d'un nombre fini
de courbes de Jordan, deux à deux disjointes, et telles que
T(rk) c yk u yjk. Ces recouvrements ont été étudiés aussi

j
par T. Kuroda, L. I. Volkovyski, R. Osserman), etc. D'autres
exemples d'exhaustions polyédriques se trouvent dans l'œuvre
de R. Nevanlinna, L. V. Ahlfors, S. Kobayashi, H. Wittich,
H. Renggli, A. A. Goldberg, etc.

2. Ensembles limites. — Afin d'étudier les recouvrements
riemanniens en partant d'une exhaustion P1 définissons les
ensembles limites suivants:

ê — l'ensemble des points p e S, limites de suites de points
Pkj e }'kj: p lim pkj

Pk-eyk-KJ KJ

Ji — l'ensemble des points peS, limites de points pkeyk:
P lim pk

k~* oo

sé — l'adhérence de l'ensemble des valeurs asymptotiques de Tf

M — l'ensemble des limites des suites de projections de points
de ramifications de S\.

Evidemment, et chacune de ces
inclusions peut être stricte ou non. Les ensembles ê et Ji dépendent

de l'exhaustion considérée. Si nous prenons une sous-suite
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Vj — Vkj de Fk, les ensembles S et Ji satisfont aux inclusions

ê $ z) Ji ZD Ji.
Etant donné un recouvrement S?, nous pouvons remplacer

tout de suite Vh d'exhaustion P par une autre Vk telle que: rk
ne contienne pas des points de ramification, et yk se trouve dans

un voisinage arbitraire de ykl ce qui ne change pas les ensembles ê
et Ji.

Soit S ^ S. Nous allons énumérer quelques-unes des

propriétés locales des recouvrements riemanniens formulées à l'aide
des ensembles, que nous avons introduits:

Soit Ö un domaine de S et A cz V une des composantes
connexes de sa pré-image T~1 (S)

i) Si ô est relativement compact dans S — ê, le recouvrement
Ôt est total;

ii) Si ô cz S — S, alors S% est normalement exhaustible ;

Hi) Si la frontière relative ô ô est contenue dans S — S et com¬

pacte, et de plus, si yk n ö consiste dans un nombre fini de

courbes de Jordan, deux à deux disjointes et présentant la

propriété (Lß2) relativement à Sjk, alors Sj est partiellement

régulièrement exhaustible. (Les conditions concernant
yk n ô sont évidemment remplies lorsque Sj est partiellement

régulièrement exhaustible lui-même.)

3. Relations entre diverses classes de recouvrements. — Tout
point p e S — sé — (M n Ji) admet un voisinage fermé recouvert

totalement par chacune des composantes connexes de sa

pré-image. Des exemples montrent que cette propriété peut
encore persister pour les points p e (0Î n Ji) — <*/, mais elle

cesse au cas p e sé. Il en résulte les propriétés LBlx pour les

points p e S — sé — n Ji) et LBl pour p e S — sé.

Evidemment, si sé est de capacité logarithmique nulle Sj est de

classe Bl et si sé est totalement discontinue, SVT a la propriété
d'Iversen.

Parmi les propositions que nous avons démontrées concernant

les rapports entre les différentes classes de recouvrements P
exhaustibles et la classe /, rappelons la suivante: La condition
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nécessaire et suffisante pour qu'un recouvrement normalement
exhaustible ait la propriété d'Iversen, est que l'ensemble
lacunaire soit totalement discontinu.

Indiquons aussi un critérium suffisant d'exhaustibilité
<f-quasi normale: à savoir, ^-ensemble totalement discontinu.
Un critérium nécessaire et suffisant pour qu'un recouvrement
partiellement régulièrement exhaustible, soit (f-quasi normalement

exhaustible, est donné par la condition: Chaque composante

connexe de T_1 (ê) doit être compacte.
De même, en utilisant l'exhaustion P nous avons donné des

critériums d'appartenance à la classe des recouvrements
régulièrement exhaustibles de L. V. Ahlfors, à la classe 0G de

P. J. Myrberg et R. Nevanlinna ou à la classe #y de L. Sario.

4. Ramification des recouvrements riemanniens. — En utilisant

les procédés de la théorie de S. Stoïlow, nous avons approfondi

d'un point de vue unitaire la ramification des recouvrements

riemanniens. A ce but la formule de Hurwitz-Stoïlow
ne suffisait pas et nous l'avons généralisée (1960): Soit A^ un
recouvrement P. Choisissons un sous-ensemble y' de courbes de

Jordan deux à deux disjointes sur y, qui contient toutes les
S courbes de Jordan de y — (Eu Jf). Soit Ey} l'ensemble des
| points p e y' qui ne satisfont pas à la condition (Lß2) relative-

ment à y' et désignons par y"a les arcs simples formés sur
| (y' — EY) u [(y — y') — (Eu Jf)\ par Dj les domaines compo-

santés connexes de A — y et par pb les points de l'ensemble
Ey u [(E u Jf) — y']. Alors r-l'ordre total de ramification du
recouvrement Aj, est donné par la formule

r p - iHjPj - Zxa + Zyb (3)

où pj est la caractéristique de Dj1 tandis que xa et yb le
nombre des feuillets de A£ sur Dj1 y"a et pb respectivement. Si
F A et T l'application identique, cette formule (3) décrit la
configuration (A, y) :

0 p — £ pj — N (y'a) + N (pb) f

N (ya) et N (pb) désignant le nombre des y"a resp. pb1 et
généralise la formule d'addition des caractéristiques. Parmi les
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nombreuses applications de (3), nous nous bornerons à remarquer
qu'elle peut être utilisée dans la théorie des fonctions
pseudoharmoniques de M. Morse.

A l'aide de (3) nous avons obtenu une forme tout à fait
générale du théorème des disques: Etant donné un recouvrement
riemannien S? on appelle disque ou domaine complètement ramifié
un domaine de Jordan ô a N, qui n'est couvert par aucun feuillet
simple de SVT. En 1935, L. V. Ahlfors démontre que les recouvrements

riemanniens simplement connexes, régulièrement exhaus-
tibles ont au plus quatre disques complètement ramifiés et le

premier résultat obtenu dans ce problème par les méthodes

purement topologiques est dû à S. Stoïlow; il concerne les

recouvrements riemanniens simplement connexes, normalement
exhaustibles et donne dans ce cas la borne supérieure 1 pour le
nombre des disques.

Soir Sj un recouvrement riemannien P et considérons trois
types de disques complètement ramifiés: 1) ô's (s — 1, h'),
chaque ôs étant inclus dans un Dj, 2) ô't (t — 1, h"), chaque
ô't contenant au moins une composante connexe de y et ayant
sa frontière dans S — y, 3) ô'u' (u 1, h'"), la frontière de

chaque ôu intersectant l'ensemble y dans un nombre fini de

points. A l'aide de (3) nous démontrons une inégalité, qui
renferme toutes les formes du théorème des disques déduites topo-
logiquement et aussi, beaucoup de résultats nouveaux. Nous
allons donner un seul exemple: celui du recouvrement quasi-totalement

exhaustible, que nous avons introduit comme un analogue
topologique du recouvrement régulièrement exhaustible.

Soit Vk les domaines d'une exhaustion P de Sj- Ajoutons
l'indice k à toutes les grandeurs qui se rattache à l'étape k de

l'exhaustion. La frontière rk de Vk se projette sur yk, qui décom-
o

pose S en domaines Djk. Soir njk le nombre des feuillets de Vk
o o

au-dessus Djk et nk celui des feuillets complets de Vk sur T (Vk).
Nous dirons que S\ est quasi-totalement exhaustible si

lim — 1, uniformément par rapport aux indices /, tels
k~+ co nk o

que Djk c T (Ëfc). En ajoutant une inégalité sur les éléments de
o

la configuration T (Vk) et en désignant par po la caractéristique
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T (F) nous obtenons pour le nombre h — hf-{-h''+h'" des

disques complètement ramifiés l'inégalité

Si F a une caractéristique finie et S? une infinité de feuillets:
h — 2po ^ 4 et en particulier si F est simplement connexe
h ^ 3. Les bornes supérieures sont exactes. Ces résultats
contiennent ceux que nous avons obtenus auparavant au cas
des recouvrements normalement (1952), (f-quasi-normalement
exhaustibles (<f-ensemble totalement discontinu) (1958) et

partiellement régulièrement exhaustibles (1962).
Nous avons présenté ce cas pour faire une comparaison entre

les méthodes topologiques de la théorie de S. Stoïlow et ceux
métrico-topologiques d'Ahlfors, généralisés par différents auteurs
parmi lesquels nous citons G. A. Hallström, K. Noshiro, S. Chern
et tout récemment L. Sario. Au cas simplement connexe nos
résultats donnent h & 3, tandis que ceux de L. V. Ahlfors
h ^ 4; autrement les résultats sont analogues (ce qui s'explique
par le fait que dans la théorie métrico-topologique intervient
pk max (pfc, 0) au lieu de pk). Pourtant il faut souligner que
ces résultats ont des domaines différents d'application, car nous
avons construit des exemples de recouvrements quasi-totalement,
mais pas régulièrement exhaustibles et la réciproque est évidente.

Notre concis exposé embrasse seulement quelques aspects
de l'œuvre de S. Stoïlow, si vaste et si importante par ses

conséquences.

(4)
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