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SUR LA THEORIE DE S. STOILOW
DES RECOUVREMENTS RIEMANNIENS 1)

par Cabiria ANDREIAN CAzACU

Dés le dernier siecle, dans 'ceuvre de Cauchy et de Gauss,
mais surtout dans celle de Riemann, I'interprétation géométrique
des fonctions d’une variable complexe comme des transforma-
tions d’un plan ou d’une surface dans une autre et la recherche
de leurs propriétés géométriques ont enrichi la théorie des fone-
tions analytiques par maints résultats fondamentaux. Cette
direction de recherche s’est montrée plus féconde encore dans
notre siecle quand le développement de la théorie des ensembles,
de la topologie, de ’algebre moderne, imprégnées par ’esprit de
la méthode axiomatique, ont permis de pénétrer plus profondé-
ment dans la nature de 'analyticité. C’est dans cette époque et
dans cet esprit d’analyse rigoureuse des fondements des mathé-
matiques et de vastes syntheses, que s’est forgé une nouvelle
discipline — la théorie topologique des fonctions analytiques,
dont le créateur a été le professeur Simion Stoilow.

Formé sous l'influence de l'illustre pléiade des mathémati-
ciens francais: E. Picard, H. Poincaré, J. Hadamard, E. Borel,
H. Lebesgue, le professeur Stoilow commence son ceuvre par
d’importants travaux dans la théorie des équations aux dérivées
partielles, qui ont été continués par St. Bergman, L. Fantappié,
H. Lewy et récemment par J. Leray.

Apres la premiére guerre mondiale, il se consacre & la théorie
des ensembles, des fonctions réelles et de la topologie, mais il
ne quitte pas sa préoccupation principale, I’étude de Panalyticité.
Ainsi les résultats profonds qu’il obtient sur les transformations
continues apparaissent comme une introduction a la théorie des
transformations intérieures, notion qu’il définit en 1927 et qui cons-
titue la base de la théorie topologique des fonctions analytiques.

3 1) Conférence donnée au Colloque sur la Géométrie différentielle globale, Buca-
- rest, 1964,
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Comme on le sait, & cette époque le célebre probléme de
Brouwer relatif a la caractérisation topologique des fonctions ana-
lytiques préoccupait un grand nombre de mathématiciens:
K. Szillard, O. Onicescu, M. Zorn y ont apporté leur contribu-
tion; d’autre part on poursuivait aussi la généralisation métrico-
topologique de I'analyticité, direction qui conduisit a I'étude des
fonctions polygenes et plus tard de la quasi-conformité, et qui
fut illustrée dans notre pays par D. Pompeiu, M. Nicoleseu,
G. Calugareanu, Gr. Moisil, N. Teodorescu, N. Cioranescu. (est
ainsi que le mémoire de S. Stoilow « Sur les transformations
continues et la topologie des fonctions analytiques » (1928), qui
donnait la solution du probléme de Brouwer, a joui d’un succes
tout a fait remarquable.

Etant donnés deux espaces topologiques V et S, une trans-
formation intérieure au sens de S. Stoilow est une application
T:V — § continue, ouverte et O-dimensionneclle. Aussi bien les
fonctions analytiques que les transformations topologiques des
surfaces (variétés topologiques 2-dimensionnelles) sont des
transformations intérieures. D’autre part, S. Stoilow montre
que: Etant donnée une transformation intérieure arbitraire 7'
d’une surface V dans la sphere complexe 5, 1l existe toujours un
homéomorphisme H de R, une surface de Riemann abstraite
au sens de Weyl et Rado, sur V telle que 7' - H soit une fonction
analytique sur R. C’est-a-dire, on peut toujours introduire sur 1°
une structure conforme, telle que 7" devienne une fonction ana-
lytique ). Par conséquent, les transformations intéricures carac-
térisent du point de vue topologique les fonctions analytiques.
Le caractére topologique des théorémes classiques relatifs au
maximum du module, aux zéros et a 'inversion des fonctions analy-
tiques, résulte comme une conséquence immeédiate de ce mémoire.

D’autres travaux de S. Stoilow concernant les transforma-
tions intérieures, introduisent les importantes notions de recou-
vrement total ou partiellement régulier.

D’aprés S. Stoilow, une suite de points d’une surface tend
vers la frontiére de cette surface, s’il n’admet pas de points
d’accumulation dans cette surface.

1) Récemment, IFl. Bucur approfondit ces résultats du point de vue de la théorie
des catégories et donna des propriétés algébriques des transformations intérieures,



83 —

Le recouvrement de S par V selon la transformation inté-
rieure 7 est dit total si & toute suite P, de V tendant vers la
frontiere de V, correspond par T une suite p, = T (P,) de S,
tendant vers la frontiére de S. Alors 7 (V) = § et la pré-image
d’un point quelconque de S consiste dans le méme nombre n
de points de 17 comptés avec leur multiplicité: c¢’est le nombre
des feuillets. Si V' et S ont les caractéristiques d’Euler p, resp. p,,
la formule de Hurwitz donne 'ordre total de ramification algé-
brique r du recouvrement

F=p—npg. (1

De méme le recouvrement de S par V selon T est partielle-
ment régulier, s’il remplit les conditions suivantes:

(B;) Toute suite de points P, de V, qui tend vers la frontiere
de V, se projette sur une suite de points 7' (P,) de §, qui tend
vers la frontiére de S ou vers un nombre fini de courbes de
Jordan 7y, deux & deux disjointes, chacune frontiere commune a
deux domaines disjoints D;, D; étant les composantes connexes
de § — .

(B,) Le pré-image 7' () est compacte dans V ou vide.

Chaque D; est recouvert totalement ou pas du tout par V.
Soient 7n; le nombre des feuillets de V sur D;, p; la caractéristique
de Dj, p celle de V (comme plus haut). S. Stoilow a généralisé
la formule de Hurwitz pour les recouvrements partiellement
réguliers

r=p—2n;p;. (2)

Il établit des critéres de biunivocité pour les transformations
intérieures et les homéomorphismes locaux, et approfondit les
fonctions de Pompeiu, les valeurs exceptionnelles et asympto-
tiques des fonctions analytiques, les transformations presque
analytiques de M. A. Lavréntieff. Ces problémes ont été repris
par S. Eilenberg, S. Banach et S. Mazur, E. Szpilrajn et S. Kierst.

D’année en année, I'importance de la notion de transforma-
tion intérieure s’est de plus en plus affirmée. Elle a trouvé un
vaste champ d’application dans la topologie générale: N. Aron-
szajn, S. Mazurkiewicz, G. Th. Whyburn ont approfondi sous
différents aspects les transformations intérieures entre des
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espaces topologiques; M. Morse, M. Heins, J. A. Jenkins les ont
appliquées a différents problémes et tout particuliérement &
Pétude des fonctions pseudo-harmoniques. Actuellement, dans
la théorie des applications quasi-conformes, on prend comme
point de départ les transformations intérieures de Stoilow, aux-
quelles on ajoute certaines conditions métriques (c’est le point
de vue de L. V. Ahlfors, K. Noshiro, A. Pfluger, L. I. Volko-
vyski, J. Hersch, H. Kiinzi, etc.) et méme si certaines recherches
(par exemple celles de R. Cacciopoli, Y. Toki et K. Shibata,
I. N. Pesin, L. Bers) partent d’une autre définition, on démontre
le caractére intérieur de la transformation. L’étude des solu-
tions des systémes d’équations aux dérivées partielles générali-
sant le systéme de Cauchy-Riemann se rattache aussi a ces
transformations. Des concepts introduits par S. Stoilow et se
rapportant aux transformations intérieures (application propre,
application O-dimensionnelle) se sont révélés plus tard essentiels
non seulement en topologie, mais aussi dans la théorie des fone-
tions de plusieurs variables complexes.

A Taide des transformations intérieures, S. Stoilow a résolu
un second probléme fondamental de la théorie des fonctions
analytiques: la définition des recouvrements riemanntens. ln
effet, la notion de surface de Riemann donnée par H. Weyl en
1913 et précisée par T. Rado en 1925, qui est utilisée avec sucees
dans la théorie des représentations conformes et de I'uniformi-
sation, ne renferme pas toute la richesse du concept introduit
par Riemann, car elle fait abstraction de tout élément se ratta-
chant au mode de recouvrement et ne peut pas étre appliquée aux
recherches relatives aux points de ramifications et aux feuillets.

Au Congreés international d’Oslo (1936), S. Stoilow définit. le
recouvrement riemannien comme un recouvrement de la sphere
ou, plus généralement, d’une surface S par une surface V' selon
une transformation intérieure (un tel recouvrement sera désigné
dans la suite par S7). De cette maniére, S. Stoilow créa un ins-
trument nouveau et puissant de recherche, dont 'importance a
été soulignée dans tous les traités modernes de la théorie des
fonctions et des surfaces de Riemann (A. [. Markouchewitch
(1965), R. Nevanlinna (1953), H. Behnke et F. Sommer (1955),
A. Pfluger (1957), L. V. Ahlfors et L. Sario (1960)).
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En 1938 parut, dans la célebre collection Borel, le travail
fondamental du professeur Stoilow: Legons sur les principes
topologiques de la théorie des fonctions analytiques, dont une
seconde édition de 1956 est complétée par les travaux ultérieurs
de I'auteur. Cette monographie profondément originale se dis-
tingue par la richesse des résultats et la maitrise avec laquelle
I'auteur passe de 'intuition concrete des faits géométriques aux
généralisations les plus abstraites.

Parmi les nouveaux résultats que S. Stoilow présente dans
ce livre, nous soulignons la caractérisation topologique des sur-
faces de Riemann abstraites (c’est-a-dire des surfaces qui
peuvent étre munies d’une structure conforme): ce sont les
surfaces triangulables et orientables.

De méme il compléta la théorie de 'homémorphie des sur-
faces en étudiant la notion de frontiére idéale due a Kerékjarto:
il définit la suite déterminante d’un élément frontiére et intro-
duisit une topologie sur I’ensemble obtenu en complétant la
surface de Riemann par la totalité des éléments frontiere.

Cette frontiére, qu’on nomme aujourd’hui frontiére Kerékjdrto-
Stoilow, joue un role fondamental dans la théorie moderne des
surfaces de Riemann. Les frontieres conformes de Martin, de
Kuramochi, de Royden, et celle introduite par Constantinescu-
Cornea, que leurs auteurs appellent frontiere de Wiener, appa-
raissent comme des raffinements de la frontiére de Kerékjarto-
Stoilow Elle est utilisée dans le probléme de la classification des
surfaces de Riemann. Par une vaste généralisation du théoreme
classique de Liouville, R. Nevanlinna, L. V. Ahlfors, L. Sario et
d’autres ont défini différentes classes de surfaces de type @. Le
critere consiste dans la non-existence sur la surface, de certaines
classes de fonctions non constantes. On a démontré ensuite que
I'appartenance a quelques-unes de ces classes est une propriété
de la frontiere (un des premiers résultats dans ce sens est dil a
T. Kuroda et concerne la classe 0%g) et a 'aide de la frontiére
Kerékjarto-Stoilow, on a introduit de nouvelles classes de
surfaces, par exemple la classe des surfaces a frontiére absolu-
ment discontinue 4, de Sario).

La frontiere Kerékjarto-Stoilow sert de base aussi pour les
recherches sur le comportement a la frontiére des fonctions ana-
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lytiques et harmoniques de O. L.ehto, M. Heins, K. Oikawa, etc,
L’étude systématique de la frontiére des surfaces de Riemann
entreprise par C. Constantinescu et A. Cornea, qui est synthétisée
dans leur monographie: « Ideale Riander Riemannscher Flichen »
(Springer, 1963) les a conduit a la généralisation des théorémes
de Fatou-Nevanlinna, Plessner, Riesz, Beurling sous des formes
qui apportent des précisions mc¢me dans le cas classique du
cercle et & I'introduction des applications de type Fatou et de
type Dirichlet; ils ont mis en évidence une dualité profonde
entre les fonctions de classe HB et HD.

Un autre probléeme important dont la solution a été obtenue
a l'aide de la frontiére Kerékjarto-Stoilow est celui du prolon-
gement des surfaces de Riemann. M. Jurchescu a caractérisé la
classe des surfaces de Riemann essentiellement non susceptibles
de prolongement et a déterminé ses rapports avec les classes de
type 0. 11 a montré qu’il existe des surfaces de Riemann & pro-
longement maximal topologiquement, mais pas analytiquement
unique et a déduit 'existence des homéomorphismes Pompeiu
quasi-linéaires.

La frontiére idéale Kerékjarto-Stoilow intervient aussi dans
la notion de métrique harmonique sur une surface de Riemann
due & N. Boboc et Gh. Mocanu et qui permit de généraliser
maints théoremes classiques.

En introduisant une relation d’ordre dans l'ensemble des
compactifications des espaces topologiques, N. Boboc et
Gh. Siretchi ont obtenu une lattice, la frontiére Kerékjarto-
Stoilow étant & ce point de vue la plus grande compactification
a frontiére totalement discontinue.

Parallélement & la classification des surfaces abstraites de
Riemann, S. Stoilow mit le probléme d’une classification a
partir des propriétés de recouvrement. Dans ce sens il introduisit
deux classes importantes de recouvrements riemanniens: la
classe I et celle des recouvrements normalement exhaustibles.

Dés 1931, S. Stoilow releva l'importance de la propriété
d’Iversen, qu'il a dénommée ainsi parce qu’'en 1914, F. Iversen
I’avait démontrée pour les inverses des fonctions méromorphes.

Un recouvrement riemannien Sy est dit de classe I (ou possé-
dant la propriété d’ Iversen) si, quels que soient le domaine § <= 5
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et la composante connexe 4 de T-'(8) sur V, I'ensemble
8 — T (4) ne contient aucun continu. S. Stoilow a précisé le
comportement des recouvrements de classe / au voisinage des
éléments de la frontiére (1952). On a découvert d’importantes
classes de surfaces de Riemann, dont toutes les réalisations
possibles comme surfaces de recouvrement ont la propriété
d’Iversen: la classe 0 (résultat dit a S. Stoilow, 1943), la
classe Oyg (A. Mori, 1951), la classe 0% (T. Kuroda, 1953), etc.
D’autre part, on a trouvé des classes de fonctions analytiquement
définies qui engendrent des recouvrements riemanniens avec la
propriété I sur la sphere complexe. Ainsi S. Stoilow a démontré
en 1936 que les fonctions w = w (z) définies par une relation
entiére ont cette propriété. Rappelons aussi le résultat suivant
de M. Jurchescu: Toute application holomorphe dont la fron-
tiere accessible est réunion dénombrable d’ensembles polaires
(par exemple les fonctions rationnelles d’une intégrale d’équa-
tion différentielle algébrique d’ordre = 2) est localement BL
(au sens de M. Heins), donc a la propriété /.

Une seconde classe de recouvrements riemanniens fut définie
par S. Stoilow en 1938: c¢’est la classe des recouvrements nor-
malement exhaustibles, extension naturelle des recouvrements
clos.

Soit encore S% un recouvrement riemannien. Une suite de
domaines fermés V, de V, avec les propriétés: V, < I;Hl et
v V, = V, forme une exhaustion de V.

Le recouvrement Sv est dit normalement exhaustible il
existe une suite d’exhaustion V, de V, telle que V, soit compact
et que 'intérieur de V, recouvre totalement sa projection par 7.

S. Stoilow a donné des exemples de tels recouvrements: ceux
engendrés par les fonctions entieres d’ordre < %, ou par la fonc-
tion de Lusin et Priwaloff; il a démontré des théorémes concer-
nant la répartition des valeurs (1940). G. Th. Whyburn a
aussl étudié ces recouvrements (1950). Eléve du professeur
Stoilow, j’ai obtenu moi-méme des résultats sur les recouvre-
ments normalement exhaustibles (1952-56) dont nous allons
parler dans la suite, mais en les présentant d’un point de vue
plus général: a savoir, nous prenons comme base pour une
théorie unitaire des recouvrements riemanniens I’étude d’une
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exhaustion de ce recouvrement et nous choisissons ’exhaustion
polyédrique, puisque tout recouvrement peut étre donné a l'aide
d’une telle exhaustion.

1. Recoucrement polyédrique. — Soit ST un recouvrement
riemannien qui vérifie la condition (B,) par rapport & un ensemble
fini y de courbes de Jordan deux & deux disjointes et d’arcs
de Jordan a extrémités bien déterminées dans des points ou des
éléments frontiere de §, tel qu’en désignant par 4" I’ensemble
des extrémités qui appartiennent a S, et que nous appelerons
nceuds, I'intersection d’un arc avec un autre ou avec une courbe
soit contenue dans 4". Définissons maintenant une condition (f,)
locale: le point p de y a la propriété (Lf,), s’il existe un voisi-
nage ¢ de p tel que la pré-image de la composante connexe de
¢ Ny qui contient p, soit formée de composantes connexes
relativement compactes ou soit vide. Soit E I’ensemble des
points p € y sans la propriété (Lp,) et appelons ces points excep-
tionnels. Nous démontrons que si V a la caractéristique d’Euler
finie, il existe sur y un nombre fini de points exceptionnels au
plus. Il en résulte aussi un nombre fini de points de ramifica-
tions.

Nous dirons que le recouvrement S, est polyédrique (ou P)
$’il remplit la condition (f;) par rapport a un ensemble de
courbes y avec les propriétés mentionnées plus haut et si V a
une caractéristique finie. Une exhaustion V, d’un recouvrement
riemannien S sera appelée polyédrique (ou P) si St* est un
recouvrement P.

Remarquons que st § et V sont des surfaces de Riemann
et T une application analytique V — §, tout domaine polyé-
drique W < V, dont la frontiére consiste dans un nombre fini
de courbes de Jordan analytiques ou formées d’un nombre fini

d’arcs analytiques, engendre un recouvrement S7 polyédrique,
donc tout recouvrement riemannien admet des exhaustions
polyédriques, ce qui assure un vaste champ d’application aux
résultats que nous obtenons. D’ailleurs méme les recouvre-
ments S, définis & Paide d’une exhaustion par des surfaces
bordées non compactes V,, sont inclus dans nos considérations,

(e} PR
car V, admet une exhaustion polyédrique V,; et en choisissant
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o )
. . . V .
les indices j, tels que ijk c Vis Jern? les recouvrements S, *ik

forment une exhaustion polyédrique de S7.
En ajoutant des conditions convenables relatives aux ensem-

bles y, = T ([}), (I, = 0 V,) ou aux recouvrements S7*, nous
obtenons différentes classes de recouvrements riemanniens. Par
exemple, nous avons étudié les recouvrements partiellement
régulierement exhaustibles (S} qui admet une exhaustion V,

tel que Si"’ soit partiellement régulier), les recouvrements
&-quasi-normalement exhaustibles (ST avec les propriétés sui-
vantes: & étant un sous-ensemble propre, fermé de S et D; — les
composantes connexes de §— &, il existe les exhaustions a
domaines polyédriques V), de V et D, de D;, ayant respective-
ment les frontieres I'; et p;, formées chacune d’un nombre fini
de courbes de Jordan, deux & deux disjointes, et telles que
T (I't) © o = U . Ces recouvrements ont été étudiés aussi

J
par T. Kuroda, L. I. Volkovyski, R. Osserman), etc. D’autres
exemples d’exhaustions polyédriques se trouvent dans ’ceuvre
de R. Nevanlinna, L. V. Ahlfors, S. Kobayashi, H. Wittich,
H. Renggli, A. A. Goldberg, etc.

2. Ensembles limites. — Afin d’étudier les recouvrements
riemanniens en partant d’une exhaustion P, définissons les
ensembles ltmites suivants:

& — l'ensemble des points p € §, limites de suites de points
pkje ij: P = lim pkj ’
Phj € 7k;
M — Vensemble des points p e S, limites de points p, ey,:
P = hm Pr »
k— o

o/ — D’adhérence de I’ensemble des valeurs asymptotiques de T,

# — l'ensemble des limites des suites de projections de points
de ramifications de SY.

Evidemment, § o & > # o> o o J et chacune de ces
inclusions peut étre stricte ou non. Les ensembles & et .# dépen-
dent de I’exhaustion considérée. Si nous prenons une sous-suite
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V, = V,U de V,, les ensembles & et 4 satisfont aux inclusions

&5 &> > M .
Etant donné un recouvrement S¥, nous pouvons remplaco’

tout de suite V, d’exhaustion P par une autre V telle que: I,
ne contienne pas des points de ramification, et 3, se trouve dans
un voisinage arbitraire de y,, ce qui ne change pas les ensembles &
et .

Soit & # S. Nous allons énumérer quelques-unes des pro-
priétés locales des recouvrements riemanniens formulées a I'aide
des ensembles, que nous avons introduits:

Soit 6 un domaine de S et 4 < V une des composantes
connexes de sa pré-image 7' (J)

1) Si 9 est relativement compact dans § — &, le recouvrement
o7 est total;

1) Si 6 =« § — &, alors S7 est normalement exhaustible;

1it) Si la frontiere relative 0 6 est contenue dans § — & et com-
pacte, et de plus, si y, n 0 consiste dans un nombre fini de
courbes de Jordan, deux a deux disjointes et présentant la

propriété (LpB,) relativement a S7*, alors ST est partielle-
ment régulierement exhaustible. (Les conditions concernant
7. 0 6 sont évidemment remplies lorsque ST est partielle-
ment régulierement exhaustible lui-méme.)

3. Relations entre diverses classes de recouvrements. — Tout
point pe S — & — (Z n A) admet un voisinage fermé recou-
vert totalement par chacune des composantes connexes de sa
pré-image. Des exemples montrent que cette propriété peut
encore persister pour les points p e (# n #) — &, mais elle
cesse au cas p € &. Il en résulte les propriétés LB, pour les
points peS— o —(Z M) et LBl pour pe § — . Evi-
demment, si o est de capacité logarithmique nulle ST est de
classe Bl et si o est totalement discontinue, ST a la propriété
d’Iversen.

Parmi les propositions que nous avons démontrées concer-
nant les rapports entre les différentes classes de recouvrements P
exhaustibles et la classe /, rappelons la suivante: La condition
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nécessaire et suffisante pour qu'un recouvrement normalement
exhaustible ait la propriété d’Iversen, est que I’ensemble lacu-
naire soit totalement discontinu.

Indiquons aussi un critérium suffisant d’exhaustibilité
&-quasi normale: & savoir, &-ensemble totalement discontinu.
Un critérium nécessaire et suffisant pour qu’un recouvrement
partiellement réguliérement exhaustible, soit &-quasi normale-
ment exhaustible, est donné par la condition: Chaque compo-
sante connexe de T~ ! (&) doit étre compacte.

De méme, en utilisant exhaustion P nous avons donné des
critériums d’appartenance a la classe des recouvrements régu-
lierement exhaustibles de L. V. Ahlfors, & la classe 04 de
P. J. Myrberg et R. Nevanlinna ou a la classe 4, de L. Sario.

4. Ramification des recouvrements riemanniens. — En utili-
sant les procédés de la théorie de S. Stoilow, nous avons appro-
fondi d’un point de vue unitaire la ramification des recouvre-
ments riemanniens. A ce but la formule de Hurwitz-Stoilow
ne suffisait pas et nous 1’avons généralisée (1960): Soit Sk un
recouvrement P. Choisissons un sous-ensemble y’ de courbes de
Jordan deux a deux disjointes sur y, qui contient toutes les
courbes de Jordan de y — (E u A47). Soit E,, I'ensemble des
points p € " qui ne satisfont pas a la condition (Lg,) relative-
ment a y’ et désignons par y, les arcs simples formés sur
(v —E,) [y —7) — (E v A)], par D; les domaines compo-
santes connexes de § — vy et par p, les points de I'ensemble
E,0[(EvA4)—y]. Alors r-lordre total de ramification du
recouvrement Sy, est donné par la formule

r=p—=2Xnjp; —2x,+2y,, (3)

ou p; est la caractéristique de D;, tandis que n; z, et y, le
nombre des feuillets de S’ sur D;, Vo et Py respectivement. Si
V=8 et T lapplication identique, cette formule (3) décrit la
configuration (S, y):

N (y.) et N (py) désignant le nombre des y, resp. p,, et
genéralise la formule d’addition des caractéristiques. Parmi les
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nombreuses applications de (3), nous nous bornerons & remarquer
qu’elle peut étre utilisée dans la théorie des fonctions pseudo-
harmoniques de M. Morse.

A Taide de (3) nous avons obtenu une forme tout a fait
générale du théoréme des disques: Etant donné un recouvrement
riemannien St on appelle disque ou domaine complétement ramifié
un domaine de Jordan § < S, qui n’est couvert par aucun feuillet
simple de S7. En 1935, L. V. Ahlfors démontre que les recouvre-
ments riemanniens simplement connexes, réguliérement exhaus-
tibles ont au plus quatre disques complétement ramifiés et le
premier résultat obtenu dans ce probléeme par les méthodes
purement topologiques est di a S. Stoilow; il concerne les
recouvrements riemanniens simplement connexes, normalement
exhaustibles et donne dans ce cas la borne supérieure 1 pour le
nombre des disques.

Soir S% un recouvrement riemannien P et considérons trois
types de disques complétement ramifiés: 1) &, (s = 1, ... &),
chaque J, étant inclus dans un D;, 2) &, (¢ = 1, ... h"), chaque
J, contenant au moins une composante connexe de y et ayant
sa frontiére dans S —y, 3) 4, (u = 1, ... #'""), la frontiere de
chaque §, intersectant I’ensemble y dans un nombre fini de
points. A 'aide de (3) nous démontrons une inégalité, qui ren-
ferme toutes les formes du théoreme des disques déduites topo-
logiquement et aussi, beaucoup de résultats nouveaux. Nous
allons donner un seul exemple: celui du recouvrement quasi-tota-
lement exhaustible, que nous avons introduit comme un analogue
topologique du recouvrement régulierement exhaustible.

Soit V, les domaines d’une exhaustion P de S7. Ajoutons
Iindice k£ & toutes les grandeurs qui se rattache a I'étape & de
I’exhaustion. La frontiere I', de V) se projette sur y,, qui décom-

pose S en domaines Dj,. Soir n; le nombre des feuillets de V,

[¢] [e]

au-dessus D et n, celui des feullets complets de V, sur 7' (V).
Nous dirons que Sy est quasi-totalement exhaustible si

. Pk n . N . ,
lim -~ = 1, uniformément par rapport aux indices j, tels

k-o Pk 5
que Dy < T (V,). En ajoutant une inégalité sur les éléments de
o

la configuration T (V,) et en désignant par p la caractéristique
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T (V) nous obtenons pour le nombre h = h'4A"+h"" des
disques complétement ramifiés I'inégalité

hg2<—50+1im&>. (4)

k— o0 nk

Si V a une caractéristique finie et Sy une infinité de feuillets:
h =—2p, =<4 et en particulier si V' est simplement connexe
h = 3. Les bornes supérieures sont exactes. Ces résultats con-
tiennent ceux que nous avons obtenus auparavant au cas
des recouvrements normalement (1952), &-quasi-normalement
exhaustibles (&-ensemble totalement discontinu) (1958) et
partiellement réguliérement exhaustibles (1962).

Nous avons présenté ce cas pour faire une comparaison entre
les méthodes topologiques de la théorie de S. Stoilow et ceux
métrico-topologiques d’Ahlfors, généralisés par différents auteurs
parmi lesquels nous citons G. A. Hallstrém, K. Noshiro, S. Chern
et tout récemment L. Sario. Au cas simplement connexe nos
résultats donnent A =3, tandis que ceux de L. V. Ahlfors
h = 4; autrement les résultats sont analogues (ce qui s’explique
par le fait que dans la théorie métrico-topologique intervient
p; = max (p,, 0) au lieu de p,). Pourtant il faut souligner que
ces résultats ont des domaines différents d’application, car nous
avons construit des exemples de recouvrements quasi-totalement,
mals pas régulierement exhaustibles et la réciproque est évidente.

Notre concis exposé embrasse seulement quelques aspects
de I'ceuvre de S. Stoilow, s1 vaste et si importante par ses consé-
quences.

(Recu le 28 octobre 1964)
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