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MULTISTEP METHODS
FOR THE NUMERICAL SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS
MADE SELF-STARTING

par Diran SARAFYAN

INTRODUGTION

Milne’s method and other similar multistep ones for the appro-
- ximate solution of differential equations, are not self-starting.
- They require the use of known p pivotal points (z;, ¥ (z;)),
1 = 0,1, ..., (p—1), where z’s are equally spaced and y = y (2)
' is the solution of the differential equation.
| Usually these pivotal points are generated through the use
. of a set of so-called p-point formulas, preferably p being an odd
integer. But these p-point formulas are not self-starting either.

A rational method is established herein which will make
these p-point formulas, and consequently also the multistep
methods, self-starting.

Subsequently the method is extended to systems of diffe-
rantial equations.

We shall be concerned first with the approximate solution of
ordinary differential equations, |

d
—dy = f(x,y) (1)
X

subject to the initial condition z = a, y = b, with a multistep
‘method [7a]. Later we shall consider the case of systems of
ordinary differential equations.

- In these methods a certain number of pivotal points must be
“determined first, for instance, with a set of p-point formulas [12].
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We have thus the well known three-point formulas:
h
ym(a+h) =b+ T [5f(@)+8f,-1(a+h)—f,_(a+2n)] (2a)

h
yo(a+2h) = b +§[f(a)+4f,,_1 (a+h)
+foci(@a+20)],n = 1,2, ... (2b)

where y (x) 1s the solution of (1) and

f(a) = f(a, b)
Jo—1(a+ih) = f(a+ih,y,_;(a+ih), i=1,2.

It will be assumed that the step-length « h » is chosen so as to
assure the convergence of the process to the limits § (a-h)
and y (a-+2#) for (2a) and (2b) respectively [2a].

These limiting values, # (a+h) and y (a+2h), are known
to be third-order and fourth-order approximations to y (a-+h)
and y (a+2h), respectively.

As the reader recognizes, [2b] is analogous to the well known
and highly efficient Newton-Cotes quadrature formula [6, 9]
which 1s often erroneously referred to as Simpson’s one third rule
or merely Simpson’s formula [4, 5, 7¢, 8a, 10].

Unfortunately, these 3-point formulas, like all other p-point
formulas, also are not self-starting and the initial or starting
approximations y, (a-+1h), 1 = 1, 2, must be determined either
by guess or other systematic ways which may be called « auxiliary
starting methods ».

However what is referred to in the literature as « guessed
values » 1s usually obtained through the use of the formulas
Yo (a+1h) = b + thf (a), ¢ = 1, 2. These formulas as it is seen
require only one substitution or functional evaluation, namely
f (a) and provide first-order approximations for the ordinates
y (a+1ih), i = 1, 2, respectively.

A few auxiliary methods are based upon the use of higher-
order derivatives of the solution y (x) [3b, 11]. This renders the
method impractical in most cases except when these derivatives
can be expressed in simple analytical form.
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In some other auxiliary methods use is made of formulas
which require at least three substitutions and yield two second-
order approximations y, (a+ik), i = 1, 2 for y (a+1ih), 1 = 1, 2,
respectively [3b, p. 81]. With one additional substitution, that is,
with four substitutions in all, we may obtain the two improved
second-order approximations ¥, (a+ih), 1 = 1, 2; and with a
total of five substitutions the value y, (a+3h) is obtained which
may also be considered as an improved second-order approxi-
mation for y (a4 3h).

At any rate these approximations are not quite satisfactory
and are referred to as « rough values » by Collatz in [3b, p. 81].

It is our immediate purpose to establish an auxiliary method,
based upon the formulas, (2a, b), which with four substitutions
vield third-order approximations for the ordinates of six appro-
priate points on the integral curve.

All these results are summarized in the following table of
which the last row pertains to the method that will be established
in this work. ‘

. Number of

Number of d Order of

substitutions appII')OOJ%lI?S&ted approximation
1 2 1st
3 2 2nd
4 2 improved 2nd
5 3 improved 2nd
4 6 3rd

In turn, in various ways these third-order approximations
can be improved and their number increased from 6 to a number
m. The m known points thus obtained will constitute the pivotal
points of the multistep method.

However it is worthwhile mentioning that four pivotal points
are sufficient to make self-starting a moderately accurate multi-
step method (such as the well known Milne’s method). For better
results one needs more than four pivotal points, since it is a well
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established fact, at least theoretically, that the bigger the number
of pivotal points the better are the obtained approximations.

Another way to generate 6 such third-order approximations
or points is to use a Runge-Kutta formula of third-order six
consecutive times. But since these formulas require 3 substitu-
tions for each generated point, for the 6 points one would need
18 subtitutions. This far exceeds the number of four substitutions
needed in our proposed method.

We shall begin by establishing a theorem which not only will
render the 3-point formulas self-starting but which will also
provide two third-order approximations of our proposed six. The
remaining four points or approximations will be the subject of
another theorem.

TueoreMm I: If one takes

Yyola+h) =b+ hf(a,b) ... . .. in (2a) and (2b) (3a)
yo(a+2h) = b + 4hf(a,b)

— 2hf(a+h,yo(a+h)). . . in (2a) (3b)
yo(a+2h) = b — 2hf(a,b)

+ 4hf(a+h,yo(a+h)) . . . in (2b) (3¢)

then y, (a+h) and y, (a+2h) become third-order approxima-
tions to y (a+h) and y (a+2h), respectively.

Proof: With these starting approximations the formulas
(2a, b) become

y,(a+h) = b + %{Sf(a,b) + 8f[a+h,b+hf(a,b)]
—f[a+2h,b+4hf(a,b)—2hfla+h,b+hf(a,b)]]} (4a)

h
y,(a+2h) = b + g{f(a,b) + 4f[a+h,b+hf(a,b)]
+fla+2h,b—2hf(a,b)+4hf[a+h,b+hf(a,b)]]}. (4b)
Expanding the right hand side of (4a) and (4b) in Taylor

series about («, b) and up to and including the term in A we
obtain
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2

h
pu@th) = b+ hf 4+ 4
b b 2l P2t Gt OS]+ 068 (50

yo(@a+2h) = b + 2hf + 20 (f + 1))
+ 4—;31—[1’.“ + 2ffy + 2 Sy + (e + S] + 0 (h*) (5b)

where f stands for f (a, b) and all the partial derivatives are eva-
luated at (a, b).
On observing that

/

Zy
’(EZ" zfx +ff}’
—(;—x_’:’i :fxx+2ffxy +f2fyy+(fx+ffy)fy

expansions (5a) and (5b) can be written

2 3

yi@a+h) = b+ hf+=y" +—h" + 0(h%
2 6
(6a)

4
y,(a+2h) = b + 2hf + 2h*y" +§h2y”’ + 0(h*)

where the derivatives y'' and y'"’ are evaluated at x = a.

It is readily recognizable that the expansions (6a) and (6b)
are none other than Taylor series through the term in %° of
y (a+h) and y (a+2h) respectively.

Because of this agreement through the term in 2> of the two
pairs of Taylor series in consideration, it follows that y; (a-+h)
and y, (a+2h) constitute third-order approximations to y (a+h)
and y (a-+2h), respectively. And this completes the proof of the
theorem.

It goes without saying that if so desired, the two third-order

~ approximations y (a+%), ¥, (a+2~) which required 4 substi-
- tutions, can be further improved through the use of the iterative

3-point formulas (2a, b).



It should be remarked that the approximation y, (a--2h)
furnished by Theorem I, specifically that shown in (4b), is iden-
tical with a formula due to Kutta;see (6.16.1) and (6.16.2) of [85].

We shall now establish another theorem which, with no addi-
tional substitutions, that is by making use of the information
furnished by Theorem I, will provide us the remaining four third-
order approximations of our proposed six.

Tuorem II: The following values

yi(a—h) = —%b—3hf+ 3y1(a+h)——;—y1(a+2h) (7a)
yi(@a—=2h) = — 12b — 12hf + 16y, (a+h) — 3y, (a+2h) (7b)
yi(a+3h) = %b+3hf—9y1(a+h)+§y1(a+2h) (7¢)
yi(a@a—=3h) = —35b —30hf + 45y,(a+h) — 9y, (a+2h) (7d)

constitute third-order approximations to y (a—*h), y (a—2h),
y (a+3h) and y (a—3h) respectively.
Proof. From (6a) and (6b) it also follows that the quantities
. (th)* ,, . (R
b+ f+ -y +—
approximations for y, (a+ih), 1 = 1, 2, respectively.
We thus can set, approximately:

y'"’, 1 = 1, 2, constitute third-order

2 h3

yl(a+h)~b +hf+—-2—y” +E_ylﬂ

h? h?
yi(@+2h) ~ b + 2hf + 4(—2—y”) + 8(—6—y”’>,

these approximations being of third order.

Then
h2 h3
(—z——y") ¥ <gy"') ~yi(a+h) —b —hf

h2 h3
4(_5);”) + 8(—6);’”) ~ y,(a+2h) — b — 2hf.
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hZ
Solving this system of simultaneous equations for (—2— y") and
h3
<— y”’) we obtain:

6
h? 1
-2—y” R Z[Syl(a +h) — y,(a+2h) —Tb—6hf] (8)
h? 1
—6—y”’Nz[yl(a+2h)—4y1(a+h)+3b+2hf], 9

these approximations being of third order.
On the other hand we have the following expansions:

2 3
y(a —h) =b—hf+-2—y”——€y"'+0(h4) (10a)
h? h3
y(@=2h) = b = 2hf + 453" = 8y + 0(h*) (10b)

2 3

h
y (a + 3h) =b+3hf+95y”+27gy”’+0(h4) (10c¢)
2 h3

y(@=3h) = b —3hf+97y" = 27—y +0(h).  (10d)

The third degree polynomials in - appearing in the right hand
side of (10a), (10b), (10d), and (10c) constitute third-order appro-
ximations for y (a—*h), y (a—2h), y (a+4-3k) and y (a—3h), res-
pectively. Thus we can set

h? h3
yia—h) = b —hf + (Ey ) ~ (;y ) (11a)

h3
— 8<€y ) (11b)

(11¢)

~ 27 <~6—y”'> (11d)

2

h
y,(a—2h) = b -—2hf+4<—é—y

yi(@+3h) =b + 3hf+9(—y”

AN
ST
\/\/\:/
+
[\®)
~1
/‘;
| =
‘<‘
N

h2
yi(@a=3h) = b — 3hf + 9<—y
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where y (a-+ih), i = 1, — 2, 4 3, represent third-order appro-
ximations to y (a+ih), i = — 1, — 2, + 3 respectively.

Substituting (8) and (9) into formulas (11) and performing
obvious simplifications the theorem follows.

A variety of known methods are now at our disposal for the
improvement of the third-order approximations vy, (a4ih),
1 = 1,2,3 and the determination of p (=4) pivotal points for
the multistep methods. For instance, through the use of the
set of 3-point formulas (2a, b) and, independently, again the for-
mula (2b6), converted now to Milne’s «3-point corrector », we
can determine three pivotal points. These together with (a, )
constitute a set of four pivotal points. Also we may use 4-point
formulas, symmetrical 5-point formulas, a set of 6-point formulas
and a «6-point corrector », symmetrical 7-point formulas and
determine 4, 5, 6, 7 pivotal points (including (a, b)), ete.

We observed previously that an increase in the number of
pivotal points results, theoretically, in an increase in accuracy
of the approximations. However at the same time the step-
size «h» of the set of p-point formulas decreases. This implies
an increase in the number of substitutions which in turn increases
the frequency of rounding error thus distorting the accuracy
of the estimates.

We can remedy this, at least partially, by retaining more
decimal places than before in our calculations.

It seems to us appropriate at this point to quote a remark
of Agnew in [1] which, although made about the Runge-Kutta
method, is applicable for p-point formulas also:

« Thus, rounding errors completely destroy the usefulness of
the calculations. It is clear that the prohibition against small
values of & is more severe when we make 3D (decimal places)
or 4D calculations, and would remain if our equipment were used in
such a way that it actually or effectively makes 50D cal culations. »

It now becomes evident that one 1s facing a real paradoxical
problem when one wishes to increase the accuracy of approxi-
mations by increasing the number p.

This method can readily be extended to svstems of differential
equations.



It suffices to consider all the equations, formulas and other
relations in vectorial form, the vectors being 7 and ]‘, defined
as follows [70, 2]: :

[ ! Froe, vt y? o, y™
2

y A CT AN 1
and})’(x,?) =|... .. ... ...

<y
I

...........

" FASCT A AR i

In fact, the vector formulas (2a, b) are known to provide
vector approximations for y (e--h4) and y (y-4-2h), ¥ (z) being the
solution of the vector equation (1) subjected to the initial con-
ditions z = a, y = b.

However the vector p-point formulas, just as their original
scalar counterparts, are not self-starting.

Since the Taylor series, in one and several variables, are valid
for vectors also, it follows that the Theorem I, where now (3a, b, ¢)
are vector formulas, is valid for the vector equation (1) and vector
formulas (2a, b). Likewise the Theorem II is valid for the vector
equation (1) provided that (7a, b, ¢, d) are considered as vector
formulas.

Thus not only our vector p-point formulas become self-
starting, and consequently their scalar counterparts also, but
furthermore we dispose of six third-order approximations to
y(akih), 1 = 1,2, 3.

Consider for instance the initial value problem:
[ dy’

AN 1,2
Idx Fx, vt pH) 13

yi(a) = b

. with j =1, 2.

The following 3-point formulas provide third-order approxi-
mations to y’ (a+%h) and y’ (a+2h), j = 1, 2.

These formulas are:
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. . h . :
yala+h) = b’ + 1’5[5’”(“) + 8fn-1(a+h)
—fi_y(a+2h)] (13a)

yi(a+2h) = b +—g[ff(a) +4fi_(a+h) +fi_,(a+h)

+fii@+2m)],n =1,2,... (13b)
where

Ifj(a) =fj(aab17b2)

, 14
| fr-1(a+ih) = fI(a+ih, y,_((a+ih),yi_ (a+ih)) o

with j = 1, 2.

In order to determine the starting values y{ (e-+k) and
y) (a+2h) and the other third-order approximations we treat
(12) and (13a, b) as vector relations.

This can be done without rewriting these relations, but merely
regarding y’/, b’ and f/ as equivalent to 7, b and f respectively.

The starting values for the vector formulas (13a, b) are given
by (vector) Theorem I as follows:

yi(a+h) = b +hfi@a. ... .. for (13a) and (13b)  (15a)
yi(a+2h) = b + 4hf’(a) — 2hfi(a+h). . .for (13a)  (15b)
yi(a+2h) = b/ — 2hf7 (a) + dhfh(a+h). . .for (13b)  (15¢)

with the use of notations (14).

We regard (15a, b, ¢) as scalar formulas again and we have
all the necessary starting values for the (scalar) formulas (13a, b)
at our disposal.

Then through the use of (13a, b) we determine y} (a+h) and
yi (a-+2R) respectively.

The formulas (7a, b, ¢, d) of Theorem Il treated as vector
formulas (using *j ” superscript notation) can be written:

: 3 . : ; 1 . ,
yila—h) = — Ebj — 3hf'(a)+ 3yi(a+h) — Ey{ (a +2h) (16a)

yi(a—2h) = —12b7 — 12hf7(a) + 16yi(a+h) — 3yi(a+2h)  (16b)
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yi(a+3h) = — 7b’ + 3hfI(a) — 9yi(a+h) + Eyl(a+2h) (16¢)
yi(a—3h) = — 359 — 30hfi(a) + 45yi(a+h) — 9yl (a+2h). (16d)
We regard now (16a, b, ¢, d) as scalar formulas and determine
yi (a+ih), i = — 1, — 2, + 3, third-order approximations to
Yy (a+1h), 1 = — 1, — 2, + 3, respectively.
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