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MULTISTEP METHODS

FOR THE NUMERICAL SOLUTION
OF ORDINARY DIFFERENTIAL EQUATIONS

MADE SELF-STARTING

par Diran Sarafyan

Introduction

Milne's method and other similar multistep ones for the
approximate solution of differential equations, are not self-starting.
They require the use of known p pivotal points (xh y (#,•)),

i 0, 1, (p—1), where #'s are equally spaced and y — y (x)
is the solution of the differential equation.

Usually these pivotal points are generated through the use
of a set of so-called p-point formulas, preferably p being an odd

integer. But these /?-point formulas are not self-starting either.
A rational method is established herein which will make

these p-point formulas, and consequently also the multistep
methods, self-starting.

Subsequently the method is extended to systems of diffe-
rantial equations.

We shall be concerned first with the approximate solution of
ordinary differential equations,

dy
-7- =f{x,y) (l)dx

subject to the initial condition x a, y b, with a multistep
method [la]. Later we shall consider the case of systems of
ordinary differential equations.

In these methods a certain number of pivotal points must be
determined first, for instance, with a set of p-point formulas [12].

Sponsored by the Mathematics Research Center, United States Army, Madison,
Wisconsin, under Contract No. DA-11-022-ORD-2059.



— 70 —

We have thus the well known three-point formulas:

yn (a + h) b + ^[5f(a) + $fn_l(a+h)-fn_1(a+2h)] (2a)

y„ (a + 2h) b + ^ [/(a) + 4/n_ t (a + h)

+ /„-! (a + 26)], n 1,2,... (26)

where y (x) is the solution of (1) and

f(a) f (a, b)

fn-i(a + ih) f(a + ih, yn^l (a +ih)), I 1,2.

It will be assumed that the step-length « h » is chosen so as to
assure the convergence of the process to the limits y (a+h)
and y (a-\-2h) for (2a) and (26) respectively [2a].

These limiting values, y (a+h) and y (a+2h)i are known
to be third-order and fourth-order approximations to y (a+h)
and y (a+26), respectively.

As the reader recognizes, [26] is analogous to the well known
and highly efficient Newton-Cotes quadrature formula [6, 9]
which is often erroneously referred to as Simpson's one third rule
or merely Simpson's formula [4, 5, 7c, 8a, 10].

Unfortunately, these 3-point formulas, like all other p-point
formulas, also are not self-starting and the initial or starting
approximations yQ (a+ih), i 1,2, must he determined either
by guess or other systematic ways which may be called « auxiliary
starting methods ».

However what is referred to in the literature as « guessed
values » is usually obtained through the use of the formulas

y0 (a+ih) 6 + ihf (a), i 1, 2. These formulas as it is seen

require only one substitution or functional evaluation, namely
/ (a) and provide first-order approximations for the ordinales

y (a+ih), i 1, 2, respectively.
A few auxiliary methods are based upon the use of higher-

order derivatives of the solution y (x) [36, 11]. This renders tlie-

method impractical in most cases except when these derivatives
can be expressed in simple analytical form.
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In some other auxiliary methods use is made of formulas
which require at least three substitutions and yield two second-

order approximations y0 (a+ih), i 1, 2 for y (a-\-ih), i — 1, 2,

respectively [3b, p. 81]. With one additional substitution, that is,

with four substitutions in all, we may obtain the two improved
second-order approximations y1 (a-{~ih), i 1, 2; and with a

total of five substitutions the value y± (aJr3h) is obtained which

may also be considered as an improved second-order approximation

for y (aJr3h).
At any rate these approximations are not quite satisfactory

and are referred to as « rough values » by Collatz in [3b, p. 81].
It is our immediate purpose to establish an auxiliary method,

based upon the formulas, (2a, b), which with four substitutions
yield third-order approximations for the ordinates of six appropriate

points on the integral curve.
All these results are summarized in the following table of

which the last row pertains to the method that will be established
in this work.

Number of
substitutions

Number of
approximated

points
Order of

approximation

1 2 1st
3 2 2nd
4 2 improved 2nd
5 3 improved 2nd

4 6 3rd

In turn, in various ways these third-order approximations
can be improved and their number increased from 6 to a number
m. The m known points thus obtained will constitute the pivotal
points of the multistep method.

However it is worthwhile mentioning that four pivotal points
are sufficient to make self-starting a moderately accurate multi-
step method (such as the well known Milne's method). For better
results one needs more than four pivotal points, since it is a well
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established fact, at least theoretically, that the bigger the number
of pivotal points the better are the obtained approximations.

Another way to generate 6 such third-order approximations
or points is to use a Runge-Kutta formula of third-order six
consecutive times. But since these formulas require 3 substitutions

for each generated point, for the 6 points one would need

18 subtitutions. This far exceeds the number of four substitutions
needed in our proposed method.

We shall begin by establishing a theorem which not only will
render the 3-point formulas self-starting but which will also

provide two third-order approximations of our proposed six. The

remaining four points or approximations will be the subject of

another theorem.

Theorem I: If one takes

y0(a+/z) A -f hf (a, A) in (2a) and (2b) (3a)

y0 (a+2h) b + 4hf (a, b)
— 2hf(a -f/z, y0 (a + h in (2a) (3b)

y0(a+2h) A - 2hf(a,b)
+ 4hf(a+h,yQ(a+h)) in (2b) (3c)

then yx (a+A) and yx (a+2A) become third-order approximations

to y (a+A) and y (a+2A), respectively.
Proof: With these starting approximations the formulas

(2a, b) become

yt(a+h) b + ~{5 f(a,b) + if [a + A, b + hf(a, A)]

- f\a + 2A, b + 4hf(a, b)-2hf[a+h, b+hf(a, A)]]} (4a)

yx (a + 2h) b + f(a,b) + 4f[a + A, b + hf(a, b)]

+ f\a + 2h, b-2hf(a, b) + 4hf[a + A, b+hf(a, A)]]}. (4A)

Expanding the right hand side of (4a) and (4A) in Taylor
series about (a, A) and up to and including the term in A3 we

obtain
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h2
>>! a + h) b+ hf+ —(fx + ffy)

+ Ç [A* + 2/A, + f2f„ + (f+ //,)/,] + 0 (h4) (5a)
6

y x (a + 2h) b+ 2/!/ + 2 h2(fx+ //y)
4h3

+ 4- [A, + 2/A, +/2A, + (A + /A)A] + 0 (h4) (5b)

where / stands for / (a, 6) and all the partial derivatives are
evaluated at (a, b).

On observing that

/** + Zffxy +f2fyy + (fx+ffy)fy

expansions (5a) and (bb) can be written

h3 h3

^(fl+Ä) b + hf + -—y"+ + 0(fc4)
2 6

4
yx{a + 2h) b + 2fc/+ 2/i2 y" + -A2y"' + 0(/i4)

(6a)

where the derivatives y" and y'" are evaluated at x a.

It is readily recognizable that the expansions (6a) and (6b)

are none other than Taylor series through the term in A3 of

y (a+A) and y (a-\-2h) respectively.
Because of this agreement through the term in A3 of the two

pairs of Taylor series in consideration, it follows that y1 (a+A)
and yx (a+2A) constitute third-order approximations to y (a+A)
and y (a+2A), respectively. And this completes the proof of the
theorem.

It goes without saying that if so desired, the two third-order
approximations yA (a+A), yx (a+2A) which required 4
substitutions, can be further improved through the use of the iterative
3-point formulas (2a, b).
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It should be remarked that the approximation yx (a-\-2h)
furnished by Theorem I, specifically that shown in (4fr), is identical

with a formula due to Kutta; see (6.16.1) and (6.16.2) of [8b].
We shall now establish another theorem which, with no

additional substitutions, that is by making use of the information
furnished by Theorem I, will provide us the remaining four third-
order approximations of our proposed six.

Thorem II: The following values

3 1

yi (a —h) --b - 3hf + 3yx (a + /*) --yt (a + 2h) (la)

yx(a-2h) - 12b - 12/*/+ I6yx(a+h) - 3yx(a+2h) (lb)
11 9

y (a + 3h) — b + 3hf — 9y x (a + h) + - y i (a + 2h) (7c)

yi(a-3h) - 35b - 30/z/+ 45 yx(a+h) - 9yi(a+2h) (Id)

constitute third-order approximations to y (a—Ä), y (a—2h),

y (a+3A) and y (a—3h) respectively.
Proof. From (6a) and (6fr) it also follows that the quantities

(ih)2 (ih)3
b + (ih) f -\ — y" H — y^ 1,2, constitute third-order

2 b

approximations for yx (a-\-ïh), i — 1, 2, respectively.
We thus can set, approximately:

h2 h3
y1(a+h) ^ b + hf + —- y" -f —y'"I o

yi (a+ 2ft)* b + 2ft/+ 4 +

these approximations being of third order.
Then

(y+(y yi(a+h) -b - hf

4(y>'")+ 8(lf^
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[h2
Solving this system of simultaneous equations for I —- y" and

h3 \
— y"' we obtain:
6

h2 1

— y " & - [8yi (a +h) — y1 (a +2h) — lb — 6hf~\ (8)

h3 1

— y'" & -\yl (a +2h) — 4vi (a +h) + 3b + 2fo/l, (9)
6 4

these approximations being of third order.
On the other hand we have the following expansions:

h2 h3

y(a-h) b — hf -i y" v"' + 0(h4) (10a)
2 6

h2 h3

y {a— 2h) b - 2hf + 4 — y" - 8 —+ 0 (h4) (10b)
2 6

h2h3
y(a+3h) b+ 3h/+ 9— y"+ 27—/" + 0 (10c)

2 6

ft2 h3

y (a — 3/i) b -3hf+ 9 ~y" - 21 —f" + 0(/z4). (lOd)
2 6

The third degree polynomials in h appearing in the right hand
side of (10a), (10&), (10d), and (10c) constitute third-order
approximations for y (a—h), y (a—2A), y (a+3h) and y (a—3A),
respectively. Thus we can set

yi (a-h)b - hf + (y >'") ~ fy/(11«)
y1(a-2h) b-2hf+ 4\2y'j~ " I (ll/')

y1(a+3h) b + 3hf+ 9(^2y")+ 27(jfy"' Ole)

yt (a-3/0 b-3hf +9/'^- 27 ^y'" (lid)
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where yL (a-\-ih), i 1, —2, ± 3, represent third-order
approximations to y (a+ih), i — 1, —2, ±3 respectively.

Substituting (8) and (9) into formulas (11) and performing
obvious simplifications the theorem follows.

A variety of known methods are now at our disposal for the
improvement of the third-order approximations y1 {a±ih),
i 1, 2, 3 and the determination of p (^4) pivotal points for
the multistep methods. For instance, through the use of the
set of 3-point formulas (2a, b) and, independently, again the
formula (26), converted now to Milne's «3-point corrector», we
can determine three pivotal points. These together with (a, b)

constitute a set of four pivotal points. Also we may use 4-point
formulas, symmetrical 5-point formulas, a set of 6-point formulas
and a «6-point corrector», symmetrical 7-point formulas and
determine 4, 5, 6, 7 pivotal points (including (a, 6)), etc.

We observed previously that an increase in the number of

pivotal points results, theoretically, in an increase in accuracy
of the approximations. However at the same time the step-
size «h» of the set of p-point formulas decreases. This implies
an increase in the number of substitutions which in turn increases
the frequency of rounding error thus distorting the accuracy
of the estimates.

We can remedy this, at least partially, by retaining more
decimal places than before in our calculations.

It seems to us appropriate at this point to quote a remark
of Agnew in [1] which, although made about the Runge-Kutta
method, is applicable for p-point formulas also:

« Thus, rounding errors completely destroy the usefulness of
the calculations. It is clear that the prohibition against small
values of h is more severe when we make 3D (decimal places)

or 4D calculations, and would remain if our equipment were used in
such a way that it actually or effectively makes 50D cal dilations. »

It now becomes evident that one is facing a real paradoxical
problem when one wishes to increase the accuracy of approximations

by increasing the number p.
This method can readily be extended to systems of differential

equations.
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It suffices to consider all the equations, formulas and other
relations in vectorial form, the vectors being y and /, defined

as follows [76, 2]:

V 'fHx,y\y\.
y2 f2(x,y\y2,.

->
V — and f(x,y)=y

ym /'"(v-.r'-r,.-,ym)

In fact, the vector formulas (2a, 6) are known to provide
vector approximations for y (a+A) and y (?/-{-2A), y (x) being the
solution of the vector equation (1) subjected to the initial
conditions x a, y b

However the vector p-point formulas, just as their original
scalar counterparts, are not self-starting.

Since the Taylor series, in one and several variables, are valid
for vectors also, it follows that the Theorem I, where now (3a, 6, c)

are vector formulas, is valid for the vector equation (1) and vector
formulas (2a, b). Likewise the Theorem II is valid for the vector
equation (1) provided that (7a, 6, c, d) are considered as vector
formulas.

Thus not only our vector p-point formulas become self-

starting, and consequently their scalar counterparts also, but
furthermore we dispose of six third-order approximations to
y (a±ih), i 1, 2, 3.

Consider for instance the initial value problem:

d-f =fj(x,y1
ax

yj (a) bj

(12)

with / 1, 2.

The following 3-point formulas provide third-order approximations

to yj (a+A) and yj (a+2A), / 1, 2.

These formulas are:
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yi(a+h) y+ A[5/J(fl) + 8 f
+2A)] (13a)

yU.a+2h) bJ +'~[fJ(a) + 4//;., (a+h) +f1n.i{a+h)

+ fLl(a+1,2,... (136)
where

f/J>) =fJ(a,b\b2)'
(14)

l fi-i (a+ ih) f'(a+ih, y„-ih) (a + i/i))

with j 1, 2.

In order to determine the starting values (a+6) and
yJ0 (a+2A) and the other third-order approximations we treat
(12) and (13a, b) as vector relations.

This can be done without rewriting these relations, but merely
regarding yJ\ bJ and fj as equivalent to ?/, b and / respectively.

The starting values for the vector formulas (13a, b) are given
by (vector) Theorem I as follows:

y{(a+h) bj + hfj (a) for (13a) and (13b) (15a)

yJ0 (a + 2h) bj + 4hfJ (a) - 2hfj0(a+h). .for (13a) (15b)

yJ0(a + 2h) bj - 2hfj (a) + 4hfJ0 (a + h). .for (136) (15c)

with the use of notations (14).
We regard (15a, 6, c) as scalar formulas again and we have

all the necessary starting values for the (scalar) formulas (13a, b)

at our disposal.
Then through the use of (13a, b) we determine y{ (a+h) and

y{ (a+2ft) respectively.
The formulas (7a, 6, c, d) of Theorem II treated as vector

formulas (using * j " superscript notation) can be written:

3 1
•

y{(a-h) - -bJ - 36/J(a) + 3y{(a+h) - ~y{(a + 2h) (16a)

(a — 2h) — 126* — 12hfj (a) -I- 16y{(a+6) — 3y{(a-f26) (166)
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11 9
y{(a + 3h) —— bJ -F 3hfJ (a) - 9y[ (a + h) + - y{ (a + 2h) (16c)

y{ (a -3ft) - 35bj - 30hfj (a) + 45 y{ (a+h) - 9y{ (a + 2ft) (16d)

We regard now (16a, b, c, d) as scalar formulas and determine

Vi (a+ih), i — —1, —2, ±3, third-order approximations to
yj (a+i/i), i — — 1, —2, ± 3, respectively.
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