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REDUCTIBILITE ET SERIES LINEAIRES
DE CORPS CONVEXES

par Tudor ZAMFIRESCO

M. Paul Vincensini a introduit, et appliqué 4 de nombreux
problemes [9], la notion de prolongement d’une série linéaire de
corps convexes. Ce méme auteur a montré tout récemment [10],
que 'ensemble & des corps convexes C de I'espace euclidien E”
a n dimensions munis d’une frontiere & n — 1 dimensions
douée en chaque point de n — 1 rayons de courbure principaux
finis et non nuls est susceptible d’une fibration intéressante, les
fibres étant les différents sous-ensembles (e,) de & dont les élé-
ments sont constitués par les corps convexes ayant un méme
corps convexe centré 4 pour domazine vectoriel [9], 'ensemble base
étant I’ensemble { 4 } des corps convexes centrés de E”".

M. Preston C. Hammer a, d’autre part [3], introduit la notion
de réductibilité d’un corps convexe, autre moyen de définir des
familles de corps convexes susceptibles de prolongement.

Le présent article expose un certain nombre de résultats
auxquels conduit le rapprochement des deux espéeces de prolon-
geabilité précédentes. Nous nous bornons ici & la considération
des corps dont les frontiéres sont douées en chaque point de
n — 1 rayons de courbure principaux finis et non nuls. Le cas
général des ensembles convexes & frontiére non différentiable
sera prochainement envisagé dans une autre publication.

1. Introduction. — Dans 'espace euclidien & n dimensions

- E" nous appellerons corps convexes, les ensembles convexes

possédant des points intérieurs et bornés par des hypersurfaces
fermées admettant en chaque point » — 1 rayons de courbure

- principaux finis et non-nuls. Le terme «ensemble convexe »
~sera réservé au cas ou la frontiére n’admet pas nécessairement

la particularisation précédente.
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Soit E (a,b) le segment pa + (1 —p) b(0<<p<1), S I’hyper-
sphére unitaire {z; |z = 1}, centrée & 'origine O des axes
de coordonnées. Désignons par H. (w), ou we S, la fonction
d’appui du corps C. Deux points a et b de la frontiére B du corps
convexe C sont dits diamétralement opposés s’il existe deux
plans d’appui paralléles contenant I'un a et autre b; la corde
E (a, b) est alors un diameétre de C.

Nous écrirons, comme d’habitude, uM + vN = { uz 4 vy;
xeM, ye N} pour M, N < E", u, v étant des nombres
réels ).

Soit C un corps convexe. L’ensemble € — C est un nouveau
corps convexe [5], admettant 0 comme centre de symétrie, doué
de propriétés remarquables liées & C, et dénommé domaine
vectortel du corps C [4]. Nous considérons aussi, avec M. P. Vin-
censini [10], dans 'ensemble & des ensembles n-dimensionnels
convexes de E”" le sous-ensemble &, < & constitué par les en-
sembles centrés de &, et les familles d’ensembles e, = { C € §;
C — C = 4}, regardées comme des fibres issues des éléments
4 € é,.

Soient C, et C deux corps convexes. La fonction

HCO (O)) - ZHCOO (O)) ’
1 -4

Hc,_(a)) =

est, pour chaque 4 < 0, la fonction d’appui d’un certain corps
convexe C, appartenant a la série linéaire [Cy, C]. Mais, si
o est le plus grand nombre <1, et 1, le plus petit nombre = 1
tels que pour 0 < 4 < 4, ou pour A = iy, H¢, (w) soit la
fonction d’appui d’un corps convexe, en ajoutant aux corps de la
série [C,, C ] ceux qui correspondent aux valeurs positives ainsi
définies de A, on obtient une nouvelle série plus étendue [9]
dite série prolongée, 4, et 1, étant ce que nous appellerons les
limites respectivement gauche et droite de la prolongeabilité.
Considérons maintenant ’ensemble convexe borné n-dimen-
sionnel C. Soit C, (r) homothétique a C, le rapport d’homothétie

1) Le signe « — » entre deux ensembles aura la signification ainsi définie.
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étant r et le centre un point & sur la frontiere B de C. Notons

N Cy(r) si r <1
C(r) _ beB
v Cy (1) sir>1.
lbeB

M. P. Hammer a démontré que les ensembles C (r) sont vides
ou convexes ([3], théoréme 5, propriétés 1 et 3). Nous appellerons
les corps C (r) corps associés & C. M. P. Hammer a établi aussi
I'existence d’un nombre r; <1 tel que

C =(CM)(r/@2r—-1) si r>r,
mais
Co(CW)r/@r-1)) si r<rn

([3], théoréme 7). Nous appellerons r; le nombre de réductibilité
de C. On dit que C est réductible (jusqua C(r;)) sir; <1,
complétement réductible si r; = % et irréductible si r; = 1[3].

2. La série linéaire de deux corps symétrigues. Soit C, et C,
deux corps convexes symétriques par rapport & un point 0
(Co=—C,). En vertu de cette symétrie, on a C, = — Cy;
pour tout corps C, appartenant a la série linéaire [Cy, C ]
prolongée, c’est-a-dire pour tout Aé[4y, i,]. En particulier,
pour A= —1.0ona C_;=—-C_,, donc C_,eé,.. Evi-
demment A¢[Ay, 4,] Implique 1/A¢[4y, 4,]; on a donc
Ao e = 1, ce qui exprime la symétrie des limites de prolon-
geabilité. On voit ainsi que s1 [Cy, C ] est indéfiniment prolon-
geable dans un sens, elle 'est aussi dans ’autre. Dans ce cas
Cy et C, coincident a une translation prés et chacun d’entre eux
est doué d’un centre de symétrie, ainsi que tous les corps de la
série prolongée.

En général, les corps C, et C,, ont méme largeur dans chaque
~direction. Il résulte donc ([9], p. 47) que tous les corps de la
- série linéaire prolongée font partie d’'une méme fibre de &.

3. Hypersurface associée @ un corps convexe. — On peut,
- comme nous ’avons montré en [11], associer & un corps convexe

: 1) Nous ptilisqns les signes < et 2 pour les inclusions non-strictes, < et =
. désignant les inclusions strictes.
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quelconque C une hypersurface, liée & 'étude de la réductibilité
de C, et dont nous allons rappeler ici la définition et quelques
propriétés. Considérons la famille 2 de tous les diameétres de C.
L’ensemble des points

Xy — AX 1
‘Y(r)={—1-1——2'—2_; E(xl,x2)eg, Yy —= ——— Az _1}

constitue I’hypersurface dont il vient d’étre question.
En ce qui concerne les frontiéres des corps convexes de E"
on a le résultat, d’ailleurs presque évident suivant:

Soit B la frontiére d’un tel corps C et E (a, b) un diamétre de C.

Les hyperplans tangents a vy (r) aux deux poinis de y (r) n E (a, b)
sont paralléles aux hyperplans tangents en a et b da B.

Et de 1a on déduit aussitét un résultat qui nous sera utile
concernant ’hypersurface vy (r). Soit IT (w) 'hyperplan tangent
a B au point d’image sphérique w; on a le

TurorREME 1. L’ hypersurface vy (r) est I enveloppe de la famille
des hyperplans ‘

(1-rl(w) —rll (—ow)

S).
1 =2r (@eS)

4. Condition nécessaire et suffisante pour la réductibilité des
corps assoctés. Soit C un corps convexe réductible; les corps asso-
ciés de Hammer C (r) sont, pour r > r;, réductibles jusqu’au
méme corps associé C (r;) et, pour r < r;, irréductibles ou vides;
une condition nécessaire et suffisante pour la réductibilité de
C (r) est doncr > r;.

TutoriME 2. Une condition nécessaire et suffisante pour que
r >r; est que I hypersurface associée y (r) soit convexe.

En effet, en vertu de la régularité supposée de la frontiére B
du corps convexe C, on peut appliquer un résultat établi en
[11], selon lequel r > r; si et seulement si si y (r) = B (r),
ou B (r) désigne la frontiére de C (r). Mais B (r) est une hyper-
surface convexe, et la nécessité de la condition est prouvée.
Inversement, si y (r) est une hypersurface convexe, I'inclusion
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y(r) 2 B(r) (voir [11]) et la convexité de B (r) impliquent
I'égalité des ensembles y (r) et B (r) et, par suite, 'inégalité
r=r;.

La convexité de I'hypersurface y (r) est entendue ici au sens
que 7y (r) borne un ensemble convexe et non nécessairement un
corps convexe. On verra plus loin (section 6, théoréeme 6) que la
condition que 7y (r) borne un corps convexe est nécessaire et
suffisante pour que r > r;, ¢’est-a-dire pour la réductibilité de
C (r).

5. Décomposition de & en classes d équivalence a I'aide de la
réductibilité. La remarque du début de la section précédente
relative & la réductibilité des corps associés de Hammer va nous
conduire & une décomposition naturelle de la famille & des en-
sembles convexes de E" en classes d’équivalence, liée d’une
maniere frappante de la fibration dont on a parlé a I'introduction.

Soit &; = & la famille des ensembles convexes irréductibles.
Nous dirons que deux ensembles convexes sont équivalents s’ils
sont réductibles jusqu’a un méme corps associé ou s’ils sont
completement réductibles et homothétiques, c’est-a-dire si
chacun d’eux est un certain corps associé de I'autre. Appelons
classes de réductibilité les classes d’équivalence obtenues.

TutoreME 3. Les éléments d' une méme classe de réductibilité
font partie, @ une homothétie prés, d’une méme fibre de l’espace &.

Soient en effet C et C (r) (r>1) deux éléments d’une méme
classe de réductibilité. On a, d’apres ce que ’on vient de voir,
B (r) = y(r), B (r) étant la frontiére de C (r) et y (r) 'enveloppe
des hyperplans

(1-r1(w) —rll (—w)
1 —2r '

Il en résulte que (2r—1) C et C (r) ont des largeurs égales dans

§

|

chaque direction, et appartiennent par suite & une méme fibre
de &.

Placons-nous dans le cas particulier du plan E?, et désignons
par Lp la largeur de F pour tout ensemble D < E? & frontiére
F rectifiable. On peut alors énoncer le
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TuEorEME 4. Etant donné dans E* I'ensemble convexe C (r),
générateur de la classe de réductibilité d’un ensemble convexe
éventuellement irréductible C, on a

Lc(r) = (2}‘— ]) LC .

Nous venons en effet de constater 'appartenance de (2r —1) C
et €' (r) & une méme fibre. Il en résulte que L, 1)c = L¢n
([9], p- 23). Mais C et (2r—1) C étant homothétiques, L, _1)c
= (2r—1) L¢, et de la résulte la relation annoncée entre L,
et L.

6. Les classes de réductibilité et les séries linéaires de corps
syméitriques. Soit C un corps convexe réductible de E". Consi-
dérons la série linéaire [C, — C]. Nous allons démontrer le
théoréme suivant, principal résultat de ce travail:

TuEOREME 5. L’ensemble convexe C (r) de la classe de réduc-
tibilité de C et le corps convexe C_, de la série linéaire [C, — (]

et —1 < 1 <1, coincident & une

rolongée 1 r=
P gée, ou 1

homothétie preés.

Considérons a cet effet la fonction dappui H,(w), et le
parametre différentiel du deuxiéme ordre 4, H . (w) de cette
fonction relatif au ds* de la représentation sphérique de la
frontiére de C. Si R¢ (w), ..., Re ' (w) sont les n — 1 rayons de
courbure principaux de la frontiére de C au point d’'image sphé-
rique w, on a

n—1 )
Rt(w) = 4, He(w) + (n—1) He(0),
=1

J

n—1
Z R {(w) = 4, H_¢(w) + (n—1) H_¢ ()

([1], p- 565). La fonction d’appui de C'_ est

H¢(w) + AHe ()
14+ 4

Hc_l(a)) =

b
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| donce
Y R{_,(w) = 4, He_,(0) + (n—1) Hc_,(0) =
j=1

n—1

n-—1

Y RE(w) + 4 Y. R’ . (w)
: : j=1 j=1 )
1+ A

" De la méme facon, on peut exprimer la fonction d’appui de
- C(r) a Paide de celle de C:

He(w) — AHe(—w)  He(w) + AH (o)
1 -2 - 1 -2 ’

He, (w) =

- on a donc
|
‘ n-1
!
|

Z RC(r)(w) = 4, HC(r)(w) + (n—1) HC(r)(w) =

Jj=
n—1
Z Ri(w) + 4 Y R (w)
j=1 ji=1
1 -2

>

et il en résulte que

1+/1" !
ZRcm(a’) — ZR _3 (@)

Si Pon tient compte du résultat (voir Favard [2]), selon lequel

un corps convexe K est bien déterminé si I’on connait la somme
n—1

Y Ri (w) en chaque point o € S, on déduit immédiatement de 1a

i=1 142
que C (r) et s

_, coincident & une translation prés, ce qui

‘achéve la démonstration du théoréme en vue.

' Dans le raisonnement précédent le fait que les frontiéres de
;C' (r) et C_, sont convexes n’est pas Intervenu. A chaque
tensemble convexe de la classe de réductibilité de C correspond
kdonc un certain corps convexe de la série linéaire [C, — C]
fprolongée et réciproquement. Si A e[ — 1,0], s0it C_, ¢[C, — (],
fon a rel4,1]; et de méme si 1e(0,1), ou C_,e[C, — C],
;u arell, o).
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1
Nous avons donc r; = .
14+ 4,
En tenant compte de ce que 4, 4, = 1 (voir la section 2), on
: Ao
a aussi r; = ——.
1+ 2,

Nous avons prouvé (section 2) que C_, est symétrique. Si
C n’est pas symétrique il en est de méme (exception faite pour
C_,) de tous les corps de la série [C, — C], méme prolongée;
et cela parce que aucun élément de la classe de réductibilité de
C n’admet un centre de symétrie.

Revenons maintenant au probléme de la section 4. Il est
connu ([9], p. 17) que, s1 €, et C, sont deux corps convexes (au
sens admis), la série [C,, C ] peut étre prolongée dans les deux
directions, c’est-a-dire que 'on a A3 #0 et A, # + 0. Si C
est un corps convexe, la limite gauche de prolongeabilité de
[C, — C]n’est pas nulle et I'on a par suite, r; < 1. Nous pouvons
des lors préciser le théoréme 2 de la maniére suivante.

THEOREME 6. Une condition nécessaire et suffisante pour la
réductibilité de C (r) est que U hypersurface y (r) soit la frontiére
d’un corps conveze.

En effet, si C (r) est réductible, r > r; et, selon le théoreme
2, v (r) borne I’ensemble convexe C (r). Mais, d’apres le théoreme
5, C (r) est homothétique a un certain corps convexe, donc il est,
lui-méme, un corps convexe. Réciproquement, s1 y (r) borne un
corps convexe, a savoir C (r) (voir la démonstration du théo-
réeme 2), nous venons de trouver que le nombre de réductibilité
de C (r) est inférieur & 1, C (r) n’est donc pas irréductible,
et par suite r > r;.

7. Expressions du nombre de réductibilité dans E* et E*. —
Considérons le cas du plan E?. Il est connu ([9], p. 18) que

R¢(w)
A = MaAX ————
weS R—C (0))
On obtient, de la méme maniere,
. Re(w)
Ao = MIN ————

weS R—C(w) ’



donc
RC(CU)
r; = max .
wes Rc(@) + Re(—w)

Remarquons encore qu’on peut exprimer r; a I’aide des rayons
de courbure des frontiéres de C et de son domaine vectoriel 4
aux points de méme image sphérique:

R¢ ()
r; = max ;
weS RA (CO)

En effet, nous avons déja précisé que 4 est aussi un corps convexe
(au sens admis); en outre, R.(w) + Rs(—w) et R4 (w) sont
égaux pour chaque we S, [8].

Pour un corps convexe plan C de largeur constante Dg,

max R (w)
wesS

Passons au cas de Pespace a trois dimensions E°. Considérons,
avec M. P. Vincensini [6], le point o («, B, y) ou o = sin 6
cos @, f=sin 0 sin ¢, y = cos 6. Soit C un corps convexe
et H. (6, ¢) sa fonction d’appui. Notons

Ro(w) = H +52HC
clw) = C 602 s
1 ¢*H 0 0H
Sc (@) = — c o re
sin 0 000¢ sin“ 0 0¢
6 He 1 & H,
T, = H; + to .
c(@) = He + ot 0 + G 502

- Nous avons H _. (0, ¢) = H (n—0, n4 ) et, par suite, R _. (o)
= —Re(—0), S_c(o) = —Sc(~0), T_c(0) = —Tc(—w).
Si # est I’ensemble des racines de 'équation @, (1) = 0 ou

0,(%) = [Re(w) Te(w) = S¢(@)]4* — [Re(0) T-¢ (o)
+ R_c(0) Te(w) — 285¢ (@) S_c(0)}] 2 + R_c (@) T (»)

I’Enseignement mathém., t. XII, facs. 1. 5
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— S2c(w) = [Re(0) T (w) — SE(w)] 242 + [Re(w) T (— )
+ Re(—0) Te (@) + 2S¢ (@) Sc(—w)] A+ Re(—w) Te (—w)
— S¢(-w),

pour tous les points w e S, alors la limite gauche (droite) de
prolongeabilité de la série linéaire [C, — C] est le minimum
(maximum) de ’ensemble Z ([6], p. 366). Donc

_ 1 B max %
14+ mn# | +max?®

r.

1

Considérons, aussi, dans £, le cas ou C est de largeur cons-
tante D.. Le corps C_, de la série linéaire [C, — (] est une
sphére de rayon D, /2. La limite a droite de prolongeabilité 1 ',
de la série [C, C_,] est alors

ou P est le rayon de courbure normale maximum de la frontiére de
C (voir [6], p. 369 et [7], p. 86). Donc, pour la série [C, — (],

P Ao _ P
® 2-1, D.—P
et
Ao P
ri= = —
1 + 2, D,

On peut exprimer d’une maniére analogue le nombre de
réductibilité & 'aide du rayon de courbure normale maximum
p de C:

I1 résulte de 14 que p et P sont liés par la formule

DC=P+p7
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conformément au fait bien connu que les normales aux frontiéres
des corps de largeur constante de E" sont des normales doubles.

Il convient de noter que le sujet concernant les liaisons

entre les notions de réductibilité et de prolongement d’une série
linéaire n’est pas épuisé. Ainsi par exemple, une détermination
plus précise, dans le cas n-dimensionnel, des limites de pro-
longeabilité des séries linéaires déterminées par deux corps
convexes symétriques, permettrait d’améliorer les résultats
obtenus sur le probléme de la recherche du nombre de réducti-
bilité, et présenterait a cet égard un certain intérét.

10.

11.
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