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RÉDUCTIBILITÉ ET SÉRIES LINÉAIRES
DE CORPS CONVEXES

par Tudor Zamfiresco

M. Paul Vincensini a introduit, et appliqué à de nombreux
problèmes [9], la notion de prolongement d'une série linéaire de

corps convexes. Ce même auteur a montré tout récemment [10],

que l'ensemble ê des corps convexes C de l'espace euclidien En

à n dimensions munis d'une frontière à n — 1 dimensions
douée en chaque point de n — 1 rayons de courbure principaux
finis et non nuls est susceptible d'une fibration intéressante, les

fibres étant les différents sous-ensembles (eA) de S dont les
éléments sont constitués par les corps convexes ayant un même

; corps convexe centré A pour domaine vectoriel [9], l'ensemble base

j étant l'ensemble { A } des corps convexes centrés de En.
I M. Preston C. Hammer a, d'autre part [3], introduit la notion

de réductibilité d'un corps convexe, autre moyen de définir des

familles de corps convexes susceptibles de prolongement.
Le présent article expose un certain nombre de résultats

auxquels conduit le rapprochement des deux espèces de prolon-
geabilité précédentes. Nous nous bornons ici à la considération
des corps dont les frontières sont douées en chaque point de

n — 1 rayons de courbure principaux finis et non nuls. Le cas

général des ensembles convexes à frontière non difïérentiable
sera prochainement envisagé dans une autre publication.

1. Introduction. — Dans l'espace euclidien à n dimensions
En nous appellerons corps convexes, les ensembles convexes

; possédant des points intérieurs et bornés par des hypersurfaces
; fermées admettant en chaque point n — 1 rayons de courbure
: principaux finis et non-nuls. Le terme « ensemble convexe »

H sera réservé au cas où la frontière n'admet pas nécessairement
la particularisation précédente.
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Soit E(a,b) le segment pa + (1 — p) 6(0<p<l), S l'hyper-
sphère unitaire { x; ||x|| 1 } centrée à l'origine 0 des axes
de coordonnées. Désignons par Hc (œ) où œ e S la fonction
d'appui du corps C. Deux points a et b de la frontière B du corps
convexe C sont dits diamétralement opposés s'il existe deux
plans d'appui parallèles contenant l'un a et l'autre b; la corde
E (a, b) est alors un diamètre de C.

Nous écrirons, comme d'habitude, yM + vN =* {yx + vy ;

x 6 M y e N } pour Jf, N a En, p, v étant des nombres
réels 1).

Soit C un corps convexe. L'ensemble C — C est un nouveau
corps convexe [5], admettant 0 comme centre de symétrie, doué
de propriétés remarquables liées à C, et dénommé domaine
vectoriel du corps C [4]. Nous considérons aussi, avec M. P. Vin-
censini [10], dans l'ensemble ê des ensembles rc-dimensionnels

convexes de E", le sous-ensemble Sc a ê constitué par les
ensembles centrés de <?, et les familles d'ensembles eA {C e

C — C A } regardées comme des fibres issues des éléments
A e Sc.

Soient C0 et C^ deux corps convexes. La fonction

HCq (œ) - ÀHC (oj)
HCX(C0)

est, pour chaque X < 0 la fonction d'appui d'un certain corps
convexe Cx appartenant à la série linéaire [C0, Cœ]. Mais, si

X0 est le plus grand nombre < 1, et X^ le plus petit nombre ^ 1

tels que pour 0 ^ X ^ X0 ou pour X ^ X0 HCx (co) soit la

fonction d'appui d'un corps convexe, en ajoutant aux corps de la
série [C0, CJ ceux qui correspondent aux valeurs positives ainsi
définies de A, on obtient une nouvelle série plus étendue [9]
dite série prolongée, X0 et Xœ étant ce que nous appellerons les

limites respectivement gauche et droite de la prolongeabilité.
Considérons maintenant l'ensemble convexe borné rc-dimen-

sionnel C. Soit Cb (r) homothétique à C, le rapport d'homothétie

i) Le signe « — » entre deux ensembles aura la signification ainsi définie.
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étant r et le centre un point b sur la frontière B de C. Notons

si r < 1

si r > 1

M. P. Hammer a démontré que les ensembles C (r) sont vides

ou convexes ([3], théorème 5, propriétés 1 et 3). Nous appellerons
les corps C (r) corps associés à C. M. P. Hammer a établi aussi

l'existence d'un nombre rt < 1 tel que

C (C(r))(r/(2r — 1)) si r >
mais

C 3 (C (r))(r/(2r — 1))*) si r < rt

([3], théorème 7). Nous appellerons rt le nombre de réductibilité
de C. On dit que C est réductible (jusqu'à C (rt)) si rt < 1

complètement réductible si rt — \ et irréductible si rt — 1 [3].

2. La série linéaire de deux corps symétriques. Soit C0 et C^
deux corps convexes symétriques par rapport à un point 0

(C0= —Cœ) En vertu de cette symétrie, on a Cx — — Cljk
pour tout corps C} appartenant à la série linéaire [C0, C^]
prolongée, c'est-à-dire pour tout X $ [20, X^] En particulier,
pour X — — 1 on a C= — C, donc C_x g Sc
Evidemment 2£[20, X^] implique 1/2 ^ [20, Xœ] ; on a donc
2o 2oo 1 ce qui exprime la symétrie des limites de prolon-
geabilité. On voit ainsi que si [C0, Lœ] est indéfiniment prolon-
geable dans un sens, elle l'est aussi dans l'autre. Dans ce cas
C0 et C^ coïncident à une translation près et chacun d'entre eux
est doué d'un centre de symétrie, ainsi que tous les corps de la
série prolongée.

En général, les corps C0 et Cœ ont même largeur dans chaque
direction. Il résulte donc ([9], p. 47) que tous les corps de la
série linéaire prolongée font partie d'une même fibre de S.

3. Hypersurface associée à un corps convexe. — On peut,
comme nous l'avons montré en [11], associer à un corps convexe

C(r)
n cb (n

beB

U cb (r)
beB

i) Nous utilisons les signes S et H pour les inclusions non-strictes, c et =>

désignant les inclusions strictes.
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quelconque C une hypersurface, liée à l'étude de la réductibilité
de C, et dont nous allons rappeler ici la définition et quelques
propriétés. Considérons la famille Q) de tous les diamètres de C.
L'ensemble des points

constitue l'hypersur face dont il vient d'être question.
En ce qui concerne les frontières des corps convexes de En

on a le résultat, d'ailleurs presque évident suivant:
Soit B la frontière d'un tel corps C et E (a, b) un diamètre de C.

Les hyperplans tangents à y (r) aux deux points de y (r) n E (a, b}

sont parallèles aux hyperplans tangents en a et b à B.

Et de là on déduit aussitôt un résultat qui nous sera utile
concernant l'hypersurface y (r). Soit 17 (co) l'hyperplan tangent
à B au point d'image sphérique co; on a le

Théorème i. L'hypersurface y (r) est Venveloppe de la famille
des hyperplans

4. Condition nécessaire et suffisante pour la réductibilité des

corps associés. Soit C un corps convexe réductible; les corps associés

de Hammer C (r) sont, pour r > rf, réductibles jusqu'au
même corps associé C (rf) et, pour r < rt, irréductibles ou vides;
une condition nécessaire et suffisante pour la réductibilité de

C (r) est donc r > rt.

Théorème 2. Une condition nécessaire et suffisante pour que

r > rt est que l'hypersurface associée y (r) soit convexe.

En effet, en vertu de la régularité supposée de la frontière B
du corps convexe C, on peut appliquer un résultat établi en

[11], selon lequel r > r{ si et seulement si si y (r) B (r)
où B (r) désigne la frontière de C (r). Mais B (r) est une hyper-
surface convexe, et la nécessité de la condition est prouvée.
Inversement, si y (r) est une hypersurface convexe, l'inclusion

(1-r) 17(û>) - rll(-œ)
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y (r) 3 B (r) {voir [11]) et la convexité de B (r) impliquent
l'égalité des ensembles y (r) et B (r) et, par suite, l'inégalité
r > rt.

La convexité de l'hypersurfaee 7 (r) est entendue ici au sens

que y (r) borne un ensemble convexe et non nécessairement un

corps convexe. On verra plus loin (section 6, théorème 6) que la
condition que y (r) borne un corps convexe est nécessaire et

suffisante pour que r > rf, c'est-à-dire pour la réductibilité de

C(r).

5. Décomposition de S en classes Léquivalence à Vaide de la
réductibilité. La remarque du début de la section précédente
relative à la réductibilité des corps associés de Hammer va nous
conduire à une décomposition naturelle de la famille S des

ensembles convexes de En en classes d'équivalence, liée d'une
manière frappante de la fibration dont on a parlé à l'introduction.

Soit Si c S la famille des ensembles convexes irréductibles.
Nous dirons que deux ensembles convexes sont équivalents s'ils
sont réductibles jusqu'à un même corps associé ou s'ils sont

complètement réductibles et homothétiques, c'est-à-dire si

chacun d'eux est un certain corps associé de l'autre. Appelons
classes de réductibilité les classes d'équivalence obtenues.

Théorème 3. Les éléments Lune même classe de réductibilité
font partie, à une homothétie près, Lune même fibre de Vespace S.

Soient en effet C et C (r) (r> 1) deux éléments d'une même
classe de réductibilité. On a, d'après ce que l'on vient de voir,
B (r) — y (r) B (r) étant la frontière de C (r) et y (r) l'enveloppe
des hyperplans

(1 -r)n(œ) - rn(-co)
1 - 2r

'

Il en résulte que (2r — 1) C et C (r) ont des largeurs égales dans
I chaque direction, et appartiennent par suite à une même fibre
de S.

j Plaçons-nous dans le cas particulier du plan E2, et désignons
j par Ld la largeur de F pour tout ensemble D c= E2 à frontière
j F rectifiable. On peut alors énoncer le

1
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Théorème 4. Etant donné dans E2 Vensemble convexe C (r),
générateur de la classe de réductibilité d'un ensemble convexe
éventuellement irréductible C, on a

Lc(r) (2r — 1) Lc

Nous venons en effet de constater l'appartenance de (2r -1 C
et C (r) à une même fibre. Il en résulte que L(2r_1)c — ^c(r)
([9], p. 23). Mais C et (2r —1) C étant homothétiques, L(2r_1)c
— (2r — 1) Lc et de là résulte la relation annoncée entre Lc(r)
et Lc.

6. Les classes de réductibilité et les séries linéaires de corps
symétriques. Soit C un corps convexe réductible de En.
Considérons la série linéaire [C, — C]. Nous allons démontrer le
théorème suivant, principal résultat de ce travail:

Théorème 5. L'ensemble convexe C (r) de la classe de

réductibilité de C et le corps convexe C de la série linéaire [C, — C]
1

prolongée, où r et — 1 ^ À < 1 coïncident à une
1 — X

homothétie près.
Considérons à cet effet la fonction d'appui Hc (co) et le

paramètre différentiel du deuxième ordre A2 Hc (co) de cette
fonction relatif au ds2 de la représentation sphérique de la
frontière de C. Si Rc (œ),Rnc-1 (co) sont les n — 1 rayons de

courbure principaux de la frontière de C au point d'image
sphérique co, on a

n—i

X^(co) A2Hc(œ) +(n-l)Hc(œ),
j= i
M — 1

£ R-c((o)A2H^c(œ) +
j i

([1], p. 565). La fonction d'appui de C_A est

Hc(wi)
"°->M rn—•
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donc

n— 1

£ RLx(<°)̂2 Hc_x{co) + (n-1)

;

J=1 -1 "-1
£ RJc(<») + ^ £ R'-ci0*)

| 2^
I 1 + A

I De la même façon, on peut exprimer la fonction d'appui de
j C (r) à l'aide de celle de C:

Hc(œ) — ÀHc( — œ) Hc(co) + ÀH_c(œ)
Hc„> (»> - JZTx ;

on a donc
i

-î
£ RJC(r)(a>) A2HC(r)(m)+ (n - l)flC(r)(co)

7=1 ni n-1

£ ni (CD) + A £ J?ic(û>)
2=1 2=1

1-/1
et il en résulte que

„-i l+l"-1I *£<,)(«) ï—il*j= 1 1 - A ;=1

Si l'on tient compte du résultat (voir Favard [2]), selon lequel
un corps convexe K est bien déterminé si l'on connaît la somme
n-l
£ RJk(co) en chaque point œ e S, on déduit immédiatement de là

j=1 1 + A

que C (r) et Ccoïncident à une translation près, ce qui
1 — A

achève la démonstration du théorème en vue.
Dans le raisonnement précédent le fait que les frontières de

C (r) et C_A sont convexes n'est pas intervenu. A chaque
ensemble convexe de la classe de réductibilité de C correspond
donc un certain corps convexe de la série linéaire [C, — C]
prolongée et réciproquement. Si A e [ — 1,0], soit C_A £ [C, — C],
on a re[i, 1]; et de même si A e (0,1), ou C_Ae[C, — C],
on a r e [1, oo).
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Nous avons donc r{
1 -f k0

En tenant compte de ce que Â0 — 1 (voir la section 2), on
^ÜO

a aussi r{ l + ^-oo

Nous avons prouvé (section 2) que C_x est symétrique. Si

C n'est pas symétrique il en est de même (exception faite pour
C_f) de tous les corps de la série [C, - C] même prolongée;
et cela parce que aucun élément de la classe de réductibilité de
C n'admet un centre de symétrie.

Revenons maintenant au problème de la section 4. Il est

connu ([9], p. 17) que, si C0 et C^ sont deux corps convexes (au
sens admis), la série [C0, Cœ] peut être prolongée dans les deux
directions, c'est-à-dire que l'on a 20 ^ 0 et 2^ ^ ± oo Si C

est un corps convexe, la limite gauche de prolongeabilité de

[C, — C] n'est pas nulle et l'on a par suite, rt < 1 Nous pouvons
dès lors préciser le théorème 2 de la manière suivante.

Théorème 6. Une condition nécessaire et suffisante pour la
réductibilité de C (r) est que V hypersurface y (r) soit la frontière
d'un corps convexe.

En effet, si C (r) est réductible, r > rt et, selon le théorème
2, y (r) borne l'ensemble convexe C (r). Mais, d'après le théorème
5, C (r) est homothétique à un certain corps convexe, donc il est,

lui-même, un corps convexe. Réciproquement, si y (r) borne un
corps convexe, à savoir C (r) (voir la démonstration du théorème

2), nous venons de trouver que le nombre de réductibilité
de C (r) est inférieur à 1, C (r) n'est donc pas irréductible,
et par suite r > rt.

7. Expressions du nombre de réductibilité dans E2 et E3. —
Considérons le cas du plan E2. Il est connu ([9], p. 18) que

Rc (m)
max
coesR-ciu)

On obtient, de la même manière,

Rc (co)
*0min ~—— >

(0eS (m)
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donc
(co)

rt max —
coes Rc (w) + Rc(~œ)

Remarquons encore qu'on peut exprimer rt à l'aide des rayons
de courbure des frontières de C et de son domaine vectoriel A

aux points de même image sphérique:

Rc (œ)
r,- max

CO 6 S Ra (û>)

En effet, nous avons déjà précisé que A est aussi un corps convexe
(au sens admis); en outre, Rc (co) -j-Rc(—co) et Ra(cd) sont

égaux pour chaque co e S [8].
Pour un corps convexe plan C de largeur constante Dc,

max Rc (co)
co e S

ri —dT"
Passons au cas de l'espace à trois dimensions E3. Considérons,

avec M. P. Vincensini [6], le point co (a, ß, 7) où a sin 6

cos (p ß sin 6 sin cp y cos 6 Soit C un corps convexe
et IIc (d, (p) sa fonction d'appui. Notons

d2 Hc
de2 9

1 ô2Hc cos e dHc
sin 9 ô 0 d cp sin2 6 d cp

dHc 1 ô2Hr
Tc (co) Hc + cot 9 +

Rc (©) — Hc +

Sc(œ)

d 9 sin 9 d (p2

Nous avons H_c (d, cp) Hc (n — 9, n-\-(p) et, par suite, R_c (co)

- Rc (-co), S_c(œ) - Sc(- co), T _c (co) - Tc(-œ).
Si ^ est l'ensemble des racines de l'équation <9^ (2) 0 où

&M) [Äc(©) Tc(ffl) - Se(eu)] À2-[Rc(œ)

+ R-c(co) Tc(co)— 2Sc(co) S_c (co)] A + i?_c(co) T_c(œ)

L'Enseignement mathém., t. XII, facs. 1. 5



— 66 —

- Sic(to) [Rc((o)Tc(œ)- (cd)] 22 + Tc (-to)
+ Rc(-œ)Tc (cd) + 2 Sc(cd)Sc — cd)] + - CD) - cd)

-Sc(-cd),

pour tous les points œ e S alors la limite gauche (droite) de

prolongeabilité de la série linéaire [C, - C] est le minimum
(maximum) de l'ensemble M ([6], p. 366). Donc

1 max M
r,

1 + min 0t 1 + max

Considérons, aussi, dans E3, le cas où C est de largeur
constante Dc. Le corps de la série linéaire [C, — C] est une
sphère de rayon Dcj2. La limite à droite de prolongeabilité X 'rj
de la série [C, C-J est alors

2P

K~~dc

où P est le rayon de courbure normale maximum de la frontière de

C (voir [6], p. 369 et [7], p. 86). Donc, pour la série [C, — C]

Xn P

2 - Dc-P
et

P

l+^oo De

On peut exprimer d'une manière analogue le nombre de

réductibilité à l'aide du rayon de courbure normale maximum

p de C:

De ~ P
r'

Il résulte de là que p et P sont liés par la formule

Dc — P + p
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conformément au fait bien connu que les normales aux frontières
des corps de largeur constante de En sont des normales doubles.

Il convient de noter que le sujet concernant les liaisons
entre les notions de réductibilité et de prolongement d'une série

linéaire n'est pas épuisé. Ainsi par exemple, une détermination
plus précise, dans le cas ft-dimensionnel, des limites de pro-
longeabilité des séries linéaires déterminées par deux corps
convexes symétriques, permettrait d'améliorer les résultats
obtenus sur le problème de la recherche du nombre de réductibilité,

et présenterait à cet égard un certain intérêt.
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