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Damit ist auch (A3) bewiesen.

(AJ, (A2) und (t43) ergeben mit Hilfssatz 1 gerade die
Behauptung unseres Satzes 1.

6. Weitere Folgerungen

Es sei E die Menge aller xe (0,1), für die z (x) < oo ist und
F die Menge aller xs (0,1), für die z (x) oo ist. Trivialerweise
gilt

£nF 0 und u (0,1).

Die Lage von E und F in (0,1) beschreibt der folgende

Satz 2. Jeder Punkt #£(0,1) ist ein Kondensationspunkt
der Menge E und auch der Menge F. (Genauer : In jeder
Umgebung von x kann man eine Teilmenge von F bzw. G angeben, die
die Mächtigkeit des Kontinuums besitzt.)

Insbesondere ist damit (0,1) in zwei elementefremde

Teilmengen der Mächtigkeit des Kontinuums zerlegt worden, die
beide in (0,1) dicht liegen.

Beweisskizze. Satz 2 ist bewiesen, wenn man zeigt, dass zu
zwei beliebigen Punkten xt und x2 (xt < x2) aus (0,1) eine konti-
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nuumsmächtige Teilmenge E* ^ E und eine kontinuums -

mächtige Teilmenge F* ^ F existieren, die in (xu x2) liegen. Es
sei

*1 ++(dUm)9 x2 i i(xux2) und dui > d2>i.

Unter (pk) wollen wir im weiteren eine unendliche Folge
verstehen, die aus der Folge (2fe) durch eine beliebige Umordnung
entsteht. P sei die Menge aller Folgen (pk). P besitzt die Mächtigkeit

des Kontinuums, denn P kann als die Menge aller Anordnungen

der abzählbar-unendlichen Menge 21, 22, aufgefasst
werden, und diese ist von der Mächtigkeit des Kontinuums;
vgl. [3], $. 67.

Es sei E* die Menge aller y s (0,1), wobei

y (dm)

mit (pk) e P und

d„,

d2tin für m ^ i

di,i +1 + 1 für m i + 1

pk für m i + 1 -f k

gilt. Diese Menge E* ist von der Mächtigkeit des Kontinuums^
denn man kann jedem yeE* genau eine Anordnung (pn)eP
zuordnen. Nach der Konstruktionsvorschrift ist ferner für jedes
yeE*

1> i(y>*2) i + U

d\,i > di9 df +1 > d211+1

Also ist

x± < y < x2 yeE *

Da aber auch

i co

zW Z*<?ml + dr+.i + 1

m=1 k=1
i -j oo

Z* dj, m + -j —7 + Z ^ k < 00
m= 1 "2,i+ 1 "T" J- fc= i

gilt, ist somit die Existenz von E* bewiesen. Der Existenz-
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beweis von F* verläuft analog, wobei nur anstelle der Folge
(2fc) die Folge (k) zu setzen ist. Damit ist der Satz 2 bewiesen.

Bezeichnet man mit A (a), 0 < a < oo, die Menge aller
x e (0,1), für welche z(x) a ist, so kann man auch den folgenden
Satz beweisen.

Satz 3. 1. A (a) hat die Mächtigkeit des Kontinuums.

2. A (a) ist nirgends dicht in (0,1).

Beweisskizze. Zu Punkt 1. Jede positive reelle Zahl a kann in
der Form

00

a — ro + YJ 2 J

dargestellt werden, wobei r0 eine nicht-negative ganze Zahl ist
und rj natürliche Zahlen sind, für die rj < rj+i gilt (/ 1, 2,
Es sei Q die Menge aller Folgen (qs), wobei (qs) Folgen sind,
die aus der Folge (2r*) durch beliebige Umordnungen
hervorgehen. M sei die Menge aller xe (0,1), für die

x <-* (dm)

mit (qs) e Q und

qs für m 2t — l
dm 1 für m — 2t und t ^ n0 t 1,2,...

0 für m 2t und t > n0

gilt. M besitzt die Mächtigkeit des Kontinuums, und für jedes

x £ M ist
00 00

zW E*^1 «o + £ «s « •

m— 1 s= 1

Es ist aber (0,1) ^ A (a) 3 M und somit besitzt auch A (a) die

Mächtigkeit des Kontinuums.

Zu Punkt 2. Man zeigt zunächst (ähnlich wie beim Beweis zu
Hilfssatz 4), dass lim xn x0 gleichwertig mit lim in oo ist,

«-»00 «-»oo

wenn man folgendes voraussetzt:

*o (^m)» * > (^«j,w)> ^ in i (^«' und
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enthält unendlich viele positive Glieder. Damit beweist man, dass

aus
z (x0) oo und lim xn x0

«-> oc

die Aussage
lim z (xn) oo
«-> oo

folgt. Den Beweis, dass A (a) nirgends dicht in (0,1) ist, führt
man dann indirekt. Aus der gegenteiligen Annahme folgt, dass

eine Umgebung U0 £ (0,1) existiert, in der A (a) dicht liegt.
Da nach Satz 2 die Menge F in (0,1) dicht liegt, liegt F auch

U0 dicht. Nun sei y s U0 n F Es ist dann

z (y) oo

Weil A (a) in U0 dicht, liegt muss es eine Folge (y„) er A (a)

geben, für die lim yn — y ist. Nach dem obigen muss dann
einerseits

lim z (yn) oo
«->00

sein. Da aber anderseits für alle n stets (y„) — a ist, gilt auch

lim 2 (y„) a •

«->00

Das stellt einen Widerspruch gegen unsere Annahme dar.
Somit ist diese Annahme falsch und damit unser Satz bewiesen.
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