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Damit ist auch (A4;) bewiesen.
(4y), (4;) und (A;) ergeben mit Hilfssatz 1 gerade die

Behauptung unseres Satzes 1.

6. WEITERE FOLGERUNGEN

Es sei £ die Menge aller x ¢ (0,1), fir die z () < oo ist und
F die Menge aller x ¢ (0,1), fiir die z () = oo ist. Trivialerweise
gilt _
EnF =9 und EJUF = (0,1).

Die Lage von E und F in (0,1) beschreibt der folgende

Sarz 2. Jeder Punkt x¢(0,1) ist ein Kondensationspunkt
der Menge E und auch der Menge F. (Genauer: In jeder Um-
gebung von x kann man ewne Teilmenge von F bzw. G angeben, die

die Mdchtigkeit des Kontinuums besiizt. )
Insbesondere ist damit (0,1) in zwei elementefremde Teil-

mengen der Michtigkeit des Kontinuums zerlegt worden, die
beide in (0,1) dicht liegen.

Beweisskizze. Satz 2 i1st bewiesen, wenn man zeigt, dass zu
zwel beliebigen Punkten z; und z, (z; < z,) aus (0,1) eine konti-



nuumsméchtige Teilmenge E* < E und eine kontinuums-

michtige Teilmenge F* < F existieren, die in (z,, x,) liegen. Es
sel

Xy o (dy ), Xa o (dy ), | =1(x4,%,) und dy ; > d, ;.

Unter (p,) wollen wir im weiteren eine unendliche Folge ver-
stehen, die aus der Folge (2%) durch eine beliebige Umordnung
entsteht. P seil die Menge aller Folgen (p,). P besitzt die Machtig-
keit des Kontinuums, denn P kann als die Menge aller Anordnun-
gen der abzdhlbar-unendlichen Menge 2!, 2% ... aufgefasst
werden, und diese ist von der Maichtigkeit des Kontinuums;

vgl. [3], §. 67.
Es sei £* die Menge aller y ¢ (0,1), wobei
ye(d,)
mit (p,) ¢ P und
dy m fiir m <1
dm=d2,i+1+1fﬁrm=i+1

gilt. Diese Menge E* ist von der Méchtigkeit des Kontinuums,
denn man kann jedem ye&FE* genau eine Anordnung (p,) & P
zuordnen. Nach der Konstruktionsvorschrift ist ferner fiir jedes
yeE*
| i(y,xy) =1, i(y,x) =i +1,
dy,; > d;, diy1 >dy ivq -
Also ist
X, <y <X, yeE* .

‘ Da aber auch

z(y) = Y*d, +d  + Y ot
k=1

m=1

i 1
= Y+ Y2 F < oo
mél B dz,i+1 +1 k=21 :

gilt, ist somit die Existenz von E* bewiesen. Der Existenz-




B4 —

beweis von F* verliuft analog, wobei nur anstelle der Folge
(2% die Folge (k) zu setzen ist. Damit ist der Satz 2 bewiesen.

Bezeichnet man mit A4 (a), 0 < ¢ < o, die Menge aller
z € (0,1), fir welche z () = a ist, so kann man auch den folgenden
Satz beweisen.

Satz 3. 1. A (a) hat die Mdchtigkeit des Kontinuums.
2. A (a) ist nirgends dicht in (0,1).

Beweisskizze. Zu Punkt 1. Jede positive reelle Zahl a kann in
der Form

a =ry+ 2277

i=1

dargestellt werden, wobei r, eine nicht-negative ganze Zahl ist
und r; natiirliche Zahlen sind, fir dier; < r;,; gilt (j = 1, 2, ...).
Es sei ( die Menge aller Folgen (¢,), wobei (¢,) Folgen sind,
die aus der Folge (2"*) durch beliebige Umordnungen her-
vorgehen. M sei die Menge aller z ¢ (0,1), fiir die

x & (dy)
mit (95) eQ wund
q, fiir m = 2t—1
d, =31 fir m = 2tund t < n, t=1,2,..

0 fir m = 2tund t > n,

gilt. M besitzt die Michtigkeit des Kontinuums, und fiir jedes
xeM ist

z(x) = Y*d,  =ny + Y q, =a.
m=1 s=1
Es ist aber (0,1) 2 A (a) 2 M, und somit besitzt auch 4 (a) die
Michtigkeit des Kontinuums.
Zu Punkt 2. Man zeigt zunéichst (dhnlich wie beim Beweis zu
Hilfssatz 4), dass lim xz, = z, gleichwertig mit lim i, = oo ist,

n— oo n—aoC

wenn man folgendes voraussetzt:

xO H(dm)s Xn H(dm,n)’ xn # an in = i(xmxo) und (dm)



By

enthalt unendlich viele positive Glieder. Damit beweist man, dass
aus
z(xy) = oo und lim x, = Xxq

n— oo

die Aussage

lim z(x,) =
folgt. Den Beweis, dass A (a) nirgends dicht in (0,1) ist, fiihrt
man dann indirekt. Aus der gegenteiligen Annahme folgt, dass
eine Umgebung U, < (0,1) existiert, in der A (a) dicht liegt.
Da nach Satz 2 die Menge F in (0,1) dicht liegt, liegt £ auch
U, dicht. Nun sei y e U, n F' . Es 1st dann

z(y) = ©.

Weil A (a) in U, dicht, liegt muss es eine Folge (y,) < 4 (a)
geben, fiir die lim y, = y ist. Nach dem obigen muss dann
einerseits e

lim z (y,) = ®©

sein. Da aber anderseits fiir alle n stets z (y,) = a ist, gilt auch

limz(y,) = a.

n—» o

Das stellt einen Widerspruch gegen unsere Annahme dar.
Somit ist diese Annahme falsch und damit unser Satz bewiesen.
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