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Für alle n gilt demnach

x - x, >2~{dl+-+dk+l> 0.
An —n

Das bedeutet aber gerade

lim inf (x — xkj) > 0

d.h. die Folge (xn) kann nicht gegen x konvergieren. Damit ergibt
sich ein Widerspruch gegen die Annahme, dass lim in oo

nicht gilt. Somit ist diese Annahme falsch und der Hilfssatz
bewiesen.

Es sei (dm) eine Z-Folge aus D. (Siehe Abschnitt 2). Jeder
solchen Folge kann man einen Ausdruck

zuordnen. Dabei bedeutet die Summe über alle m, für die

dm 0 ist. Es lässt sich zeigen, dass z entweder eine positive
reelle Zahl ist oder oo. Denn nach Definition einer Z-Folge (dm)

sind alle dm nicht negativ, und mindestens ein dm ist von Null
verschieden. Die Folge der Partialsummen

ist daher eine monoton steigende Folge. Also ist z entweder
konvergent oder bestimmt divergent. Es gilt daher

z £ (0, oo]

Nach den Überlegungen im Abschnitt 3 kann man jeder
reellen Zahl aus (0,1) in eineindeutiger Weise eine Z-Folge aus
D zuordnen. Somit kann man mit (5) auf folgende Art eine
positive reelle Funktion erklären: Wenn

5. Konstruktion einer Lösung von (2)

Z I'd»1 (5)

m

X <r+(dm)
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ist, so soll
oc

z(x) (6)
m 1

sein.

Für diese Funktion gilt
0 < z(x) ^ oo x e(0,l). (7)

Jetzt beweisen wir den folgenden

Satz 1. z (x) ist eine nichttriviale Lösung der Funktionalgleichung

(2).

Beweis. Der Beweis wird in drei Schritten geführt.
1. Schritt. Es wird folgende Aussage bewiesen:

(At) Wenn x0 e (0,1), z (x0) oo (xn) c= (0, x0) mit lim xn

x0 ist, dann gilt: lim z (xn) oo.
n-* oo

Es sei x0 <-> (dm), xn <-> (dn>m) und in i (xn, x) für n 1, 2,

3, Nach Hilfssatz 4 ist Aussage lim xn x0 gleichbedeutend
mit lim in — oo Unter Beachtung der Voraussetzung

n-> oo
oo

z(*o)
m 1

kann man jetzt zeigen, dass z (xn) bebliebig gross gemacht werden

kann, wenn man nur n genügend gross wählt; zu einer beliebig
grossen Zahl K > 0 wählen wir eine natürliche Zahl M so, dass

M

K <
m— 1

ist. Weiter wählen wir eine zweite genügend grosse natürliche
Zahl N so, dass

in> M n > N

ist. Betrachten wir jetzt solche xn, für die n > N ist, so erhalten
wir die Abschätzung

oo M oo M

z(*„) Y* + I* dnX Y*d~ml
m—1 m— 1 m — Af+1 m— 1

00

+ x* > K-
m M+ 1
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Das bedeutet aber gerade

lim z (xn) oo
n — oo

und somit ist (A-l) verifiziert.

2. Schritt. Es wird gezeigt:

(A2) Wenn x0 s (0,1) und z (x0) a < oo ist, dann gilt für
alle Folgen (x„) c (0, £0), die die Bedingung lim xn x0 erfüllen,
die Beziehung

lim inf z (x„) ^ z (*o) •

Wir beweisen (A2), indem wir die gegenteilige Annahme zu
einem Widerspruch führen. Aus dieser Annahme kann man
folgern: Es gibt einen Punkt x0 und eine Folge (xn) c= (0, x0)

für welche gilt:
lim xn x0
rt->cc

lim z(xn) — b < z (x0) a
n-* oo

Die entsprechenden Z-Folgen seien

x0 <-> (dm)

xn (dn>m)

K o)
n 1,2,

Danach (A2) die Beziehung xn < x0 gilt, können wir wieder
Hilfssatz 4 anwenden, und erhalten wegen lim xn ~ x0 die
Beziehung n~*°°

lim in oo
n-+ oo

oo

Weil z (x0) ß ist, folgt nach bekannten Sätzen
m= 1

über unendliche Reihen, dass ein K angegeben werden kann,
für das

a — br^<
L'Enseignement inathém., t. XII, fasc. I.
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gilt. (Ein solches K existiert, da — >0 ist.) Weiter wählen
wir zu diesem K ein N derart, dass

i„ >Kn> N

ist. Für diese Werte N, K und schätzen wir jetzt die
folgende Differenz ab:

co oo

z(x0) - z(x„) - £* d~lm
m— 1 1

K- 1 oo K -1 oo

Y?dmy + X*^1 - Y,*dnX
m=l m=K m=1 m—K

00 00 T

m=K m—K 2-

Es gilt daher
a — b

z (x0) - z (x„) < —— n > N

Das bedeutet aber gerade

a — b
lim { z (x0) - z (x„) } ^ ——,
«-+00 ^

und dieses Resultat steht wegen unserer Annahme b < a im
Widerspruch zu

lim { z (x0) — z (xn) } a — b
n~* od

Es ist somit b < a falsch und daher (A2) richtig.

3. Schritt. Nun zeigen wir:
(A3) Wenn x0 £ (0,1) und z (x0) a < °o ist, dann gibt es

zu jedem c ^ a eine Folge (xn) c (0, x0) mit lim xn — x0 und
lim z (xn) c.
«-+ 00

Um (A3) zu beweisen, greifen wir wieder ein c ^ a und

beliebiges x0 e (0,1) heraus. Dann werden wir eine Folge (xn)

<= (0, x0) km xn xo konstruieren, für die gilt:
«->00

lim z (x„) c.
«—>- CO
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Dem x0 sei die Z-Folge (dm) zugeordnet. Nun stellen wir die

Folgenglieder xn wieder durch Z-Folgen dar,

xn*-*(dn,m) n 1,2,...

Die dn>m werden nach folgender Vorschrift bestimmt:

dn,m ~ dm n — 1,2,3,...
l) A A ^ 1 O 1

dn>n dn + n n 1, 2, n — 1

Damit sind aber in jeder Z-Folge (d„)tn) erst die ersten n Folgenglieder

festgelegt. Die restlichen werden auf die folgende Art
bestimmt: Wir setzen

00

an c - a + £ d'1 1,2,...
m n

Die m > n, sollen so bestimmt werden, dass

00

(W2) I* d~lm an 1,2,...
m n+ 1

ist. (Falls alle an 0 sind, werden alle dHf m — 0 gewählt, und
die linke Seite wird gleich null gesetzt). Nicht-negative ganze
Zahlen dWm so zu finden, dass (W2) erfüllt ist, ist im allgemeinen
sogar auf unendlich viele Arten möglich.

Hat man jetzt ein System von Folgen (dn}Tn) nach (Wt)
und (W2) gefunden, so erfüllt die diesen Z-Folgen zugeordnete
Folge (xn) die Bedingungen

V, < *o

weil nach (Wx) in i (xn, x0) n und dlum > dn ist, [vgl. (B)
Abschnitt 4] und

lim xn x0
/J->00

weil nach (Wj) lim in oo ist [vgl. Hilfssatz 2 (6)]. Ausserdem
«->00

gilt unter Verwendung von (Wt) und (W2):

00 00

ZW - zCo) Y?dn,m - Y?dmX
«1=1 m— 1
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ï*<c + dn,n + i* d~i - i*d-j
m — n+l m= 1 m n

1

also

oder

d„+n
1

d„+n
1

</„ + «

lim z (x„) - z (x0) -
n->oo

lim z (x„) c

+ a„ ~ ï*dml
m — n

00 00

+ c - a + Y? dm1 ~ Y^d'1
m n m n

+ c — a

Damit ist auch (A3) bewiesen.

(AJ, (A2) und (t43) ergeben mit Hilfssatz 1 gerade die
Behauptung unseres Satzes 1.

6. Weitere Folgerungen

Es sei E die Menge aller xe (0,1), für die z (x) < oo ist und
F die Menge aller xs (0,1), für die z (x) oo ist. Trivialerweise
gilt

£nF 0 und u (0,1).

Die Lage von E und F in (0,1) beschreibt der folgende

Satz 2. Jeder Punkt #£(0,1) ist ein Kondensationspunkt
der Menge E und auch der Menge F. (Genauer : In jeder
Umgebung von x kann man eine Teilmenge von F bzw. G angeben, die
die Mächtigkeit des Kontinuums besitzt.)

Insbesondere ist damit (0,1) in zwei elementefremde

Teilmengen der Mächtigkeit des Kontinuums zerlegt worden, die
beide in (0,1) dicht liegen.

Beweisskizze. Satz 2 ist bewiesen, wenn man zeigt, dass zu
zwei beliebigen Punkten xt und x2 (xt < x2) aus (0,1) eine konti-
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