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4. SATzE UBER DAS RECHNEN MIT Z-FOLGEN

Die eineindeutige Zuordnung der reellen Zahlen aus (0,1) zu
den Z-Folgen aus D schreiben wir abgekiirzt in der Form

xo(d,) xe(0,1), (d,)eD.

Damit ist gemeint, dass (d,) die der Zahl z gemiss (Z) zuge-
ordnete Z-Folge ist. Daraus kann man sofort folgende Aussage
ableiten:

(A) Wenn z; & (d,,,) und z, « (d,,,) 1st, so st z, = x,
gleichbedeutend mit d, ,, = d,,, fir alle m = 1,2, 3, ...

Das gibt jetzt Anlass zu der

DeriniTioNn 1. Die natiirliche Zahl 1 = 1 (x,, x,) heisst der
Index zweier verschiedener reeller Zahlen x; und z, aus (0,1),
wenn folgendes gilt:

1_ xl (—)(dl,m) und .X2 ('—)(dz’m)

2. dy,; #4dy,
3. Wenn ¢ > 1 ist, so sei auch d, , = d, , fur alle k = 1,2, ...,
1 — 1.
Mit dieser Bezeichnung gilt jetzt
(B) Es sei
xl # x?.)xl H(dl,m)s x2 H(dZ,m) und 1= i(x19x2) .

Dann ist x; > x, gleichbedeutend mit d, ; < d, ;.

Hivrssarz 2. a) Es sei x — (d,). Dann gibt es zu jedem
e > 0 ein k(e) derart, dass fir alle ye (0,1) aus der Beziehung
1 (x,y) > k die Beziehung |x — y| < ¢ folgt.

b) Es set

Ty > (dp,m)y T < (dy), T, # 2 und 1, = 1 (z,, 2)

fir n=1,2,... Dann folgt aus lim i, = oo die Beziehung
n—
lim x, = x.

n-—oo



Beweis. Da b) unmittelbar aus @) folgt, geniigt es, a) zu
beweisen. ¢ > 0 sei beliebig und fest. Wir wihlen jetzt eine
natiirliche Zahl & so, dass ¢ > 2'*ist, und betrachten nur solche
y aus (0,1), fiir die 7 (z,y) = &k + 1 ist. Ein solches y greifen wir
heraus. Die zugeordnete Z-Folge sei (d,), und der Index sei i*.
Dann kann man die Differenz |xr — y| vermoge (3) abschétzen:

lx — y| — |2—(d1+---+dk+1+k+1) '3 9 —(i+..+dg 2 +k+2) + ..

— @t gtk D) o=@ttt a ki)

A

2—(d1+...+dk+k+1)[2-—dk+1 4 2 Wrprtdig2+l) Lo
4+ 27kt 4 Whpitdi2t ) ]

é 2—(d1+...+dk+k+1)[1 + 2-—1 3 2—2 e 1+ 2—1 o 2—2 .3 ]

é 2—(d1+"'+d,k) 2—k+1 <e.

Damit ist der Hilfssatz bewiesen.
Bemerkenswert ist die Tatsache, dass die Aussage b) in
Hilfssatz 2 nicht umkehrbar ist. Das zeigt das Beispiel

X, =21 +27% +27%"(,,) =(0,3,n,0,0,...0,..)
x =2"'+2%-(d,) =(0,4,0,0,...0,..).

Es gilt Iim z, = z, aber lim 7, = 2.

n—* o0 n-> oo

Im weiteren bendtigen wir oft den bekannten

Hivrssatz 3. (q,) set eine Folge natiirlicher Zahlen. Dann ist
die Negation der Aussage lim g, = oo gleichwertig mit der Aus-

-
- sage, dass in der Folge (¢;) ene feste natiirliche Zahl k unendlich
- oft vorkommd.

Weiter brauchen wir den

/ HivLrssatz 4. Es sei z, o (d,,), o (d,), z, <z und
1, =1 (2, %) firn =1,2,3, ... Dann ist lim z, = x gleichwertig
mit lim i, = o . e

n— o
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Beweis. Wegen Hilfssatz 2, b) haben wir nur zu beweisen,
dass unter der angegebenen Voraussetzung aus lim z, = z die

n—aoo

Behauptung lim i, = oo folgt. Wir fithren den Beweis indirekt.

n—oc

Aus der Annahme, dass lim ¢, = oo nicht gilt, folgt mit Hilfs-

satz 3, dass es eine natiirliche Zahl k& gibt, die in der Folge der
(1,) unendlich oft vorkommt. Es sei also (4,) eine unendliche Teil-
folge aus der Folge der natiirlichen Zahlen (r) mit der Eigen-
schaft

i, =k (n =1,2,..). (4)

Fir alle n gilt wegen (4)

xo — xln —_ 2“(d1+1) + 2"(d1+d~2+2) + L. + 2-(d1+...+dk+k) + .

D I e N
e N L AL
_ oy @ittt +2—(d1+...+dk+1+k+1)

~@,,  trtda, k) teeddy o k1)

—_— 2_(d’1n,1

2—(d1+...+dk_1 +k) {2 —dy,

~2

—(dptdr+1t+1)

+ 2 + ...

- [2—d,1,,,k + LT R SRR ] j -

Nach unserer Voraussetzung sind alle z,, kleiner als x. Weil
fir jedes A, stets i (x, ,x) = k ist, gilt also wegen (B) fiir alle
A, die Beziehung

d.+1=d; .

Setzt man das in die vorhergehende Formel ein, so erhdlt man
fir alle n

—(dy+ ... +d +k —dk+1+1)
B i P SU RN

n

xO‘—xl

— 2—(d}'n,k-dk)[1 = 2-(dln,k+1+1) + ]}

2—(d1+...+dk+k))[1 4 2"("k+1+1) _2—1(1 + 2—1 + )]

v

—(di+ . tdg4q thk+1)

=2 > 0.
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Fir alle n gilt demnach

X — x,Zn ; 2“(d1+... +dp41t+tk+1) > 0.

Das bedeutet aber gerade
lim inf (x —x, ) > 0,

d.h. die Folge (z,) kann nicht gegen x konvergieren. Damit ergibt
sich ein Widerspruch gegen die Annahme, dass lim i, = o0

nicht gilt. Somit ist diese Annahme falsch und der Hilfssatz
bewiesen.

5. KONSTRUKTION EINER LOSUNG VON (2)

Es sei (d,) eine Z-Folge aus D. (Siehe Abschnitt 2). Jeder
solchen Folge kann man einen Ausdruck

z = Y*d,' (5)
m=1

zuordnen. Dabei bedeutet Y * die Summe iiber alle m, fir die

d, # 0 1st. Es lasst sich zeigen, dass z entweder eine positive
reelle Zahl 1st oder co. Denn nach Definition einer Z-Folge (d,,)
sind alle d,, nicht negativ, und mindestens ein d,, ist von Null
verschieden. Die Folge der Partialsummen

(Zre)

~1st daher eine monoton steigende Folge. Also ist z entweder
- konvergent oder bestimmt divergent. Es gilt daher

z&(0, o0].

Nach den Uberlegungen im Abschnitt 3 kann man jeder

reellen Zahl aus (0,1) in eineindeutiger Weise eine Z-Folge aus

- D zuordnen. Somit kann man mit (5) auf folgende Art eine
positive reelle Funktion erkliaren: Wenn

x «(d,)
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