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4. Sätze über das Rechnen mit Z-Folgen

Die eineindeutige Zuordnung der reellen Zahlen aus (0,1) zu
den Z-Folgen aus D schreiben wir abgekürzt in der Form

x^(dm) x g (0,1), (dJsD.
Damit ist gemeint, dass (dm) die der Zahl x gemäss (Z)
zugeordnete Z-Folge ist. Daraus kann man sofort folgende Aussage
ableiten:

(A) Wenn x1 <-» (dlim) und x2 <-» (d2,m) ist, so ist xt x2

gleichbedeutend mit d1>m d2>m für alle m — 1, 2, 3,
Das gibt jetzt Anlass zu der

Definition 1. Die natürliche Zahl i i (%, x2) heisst der
Index zweier verschiedener reeller Zahlen xx und x2 aus (0,1),
wenn folgendes gilt:

1. *!<->(<li,m) und x2 «-> (d2>m)

2. d1}i 7^ d2>i

3. Wenn i > 1 ist, so sei auch dlfk — d2tk für alle k — 1,2,...,
i — 1

Mit dieser Bezeichnung gilt jetzt
(B) Es sei

x± ^ x2,xx <-*(duJ,x2 <-+(d2tm) und i i(xux2).

Dann ist x\ > x2 gleichbedeutend mit dlfi < d2ti.

Hilfssatz 2. a) Es sei x <-* (dm) Dann gibt es zu jedem

e > 0 ein k (e) derart, dass für alle y s (0,1) aus der Beziehung
i (x, y) > k die Beziehung \x — y\ < e folgt.

b) Es sei

<-* (dn,m), X <-> (rfj, # X und in i x)

für n — 1, 2, Dann folgt aus lim in oo die Beziehung
n-+ x

lim x
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Beweis. Da b) unmittelbar aus a) folgt, genügt es, a) zu
beweisen, e > 0 sei beliebig und fest. Wir wählen jetzt eine

natürliche Zahl k so, dass e > 21~k ist, und betrachten nur solche

y aus (0,1), für die i (x, y) ^ k + 1 ist. Ein solches y greifen wir
heraus. Die zugeordnete Z-Folge sei (d*m), und der Index sei i*.
Dann kann man die Differenz \x — y\ vermöge (3) abschätzen:

_ y| _ |2~(rfl + -" + dfc + 3 + k+1) _j_ 2 ~(dl + '" + dk + 2 + k + 2)

_ 2~ (d*+ - + dk+ l + k+ iy _ 2-(dk+ l + -~ + 4+2+k + 2) _

< 2~(di+~'+dk+k+iy ^2~dk+1 -f 2~^dk+1+dk+2+1^ +

_l_ 2~4-fi _|_ 2~(dk+1+dk+2 + l) + ...]

<; 2~^di+-+dk+k+i'>[i+ 2"1 + 2-2 + + 1 + 2'1 + 2~2 + ...]
< 2~~ (di+---+dk) 2~k+1 < e

Damit ist der Hilfssatz bewiesen.
Bemerkenswert ist die Tatsache, dass die Aussage b) in

Hilfssatz 2 nicht umkehrbar ist. Das zeigt das Beispiel

x„ 2"1 + 2-5 + 2-s-^(d„J (0, 3, 0,0,... 0,...)
x 2~l + 2-s^(dm) (0,4,0,0, ...0,...).

Es gilt lim x„x, aber lim i„ 2
«->oo «~>oo

Im weiteren benötigen wir oft den bekannten

Hilfssatz 3. (qt) sei eine Folge natürlicher Zahlen. Dann ist
die Negation der Aussage lim ql oo gleichwertig mit der Aus-

Z-> oo

sage, dass in der Folge (qt) eine feste natürliche Zahl k unendlich
oft vorkommt.

Weiter brauchen wir den

Hilfssatz 4. Es sei xn (dn>m), x <-> (dm), xn < x und
in — i (xn, #) /wr n 1, 2, 3, Dann ist lim xn x gleichwertig
mit lim in co "~*°°

«->oo
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Beweis. Wegen Hilfssatz 2, b) haben wir nur zu beweisen,
dass unter der angegebenen Voraussetzung aus lim xn — x die

/»-oo

Behauptung lim in oo folgt. Wir führen den Beweis indirekt.
n-+ ac

Aus der Annahme, dass lim in — oo nicht gilt, folgt mit Hilfs-
n-* oo

satz 3, dass es eine natürliche Zahl k gibt, die in der Folge der

(i„) unendlich oft vorkommt. Es sei also (An) eine unendliche
Teilfolge aus der Folge der natürlichen Zahlen (n) mit der Eigenschaft

k (n 1,2,...). (4)

Für alle n gilt wegen (4)

x0 - xÄn2~(d' + 1) + 2'^1+d2+2) + + 2~(d, + -+d"+k> +

_ 2~(dx"-l + '" +ä;in-2+k)-
_ 2~(dl + -- + dk+k) _j_2~^1 + "' + rffc+1+fc+1)

_j_

~(d2 + — +d2 +k) „~(di + — +dx tj_+k+l)9 v l An k ' 9 1 An k~f- l

_ 2~än + •••+ dk-i +fc) 12 ~dk 2~^fc+dfc+1+1) _|_

_ [2~dXn'k + 2~(d *n'k+d *n'k+1 + 1) + ...]}.

Nach unserer Voraussetzung sind alle xkn kleiner als x. Weil
für jedes An stets i (xXn, x) k ist, gilt also wegen (B) für alle

An die Beziehung

dk + 1 ^ dXn k.

Setzt man das in die vorhergehende Formel ein, so erhält man

für alle n

x0-xXn 2~("l+-+dk+k){l+
+1 * +

_ 2~(dx">k~dk) [1 + 2~(d Xn>k+1 + 1) + •••] }

^ 2~(dk + 1+1 '
— 2_'(1 + 2~*+ ...)]

_2 ~ (d{ + +d k+ \ +k+ l ^ q
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Für alle n gilt demnach

x - x, >2~{dl+-+dk+l> 0.
An —n

Das bedeutet aber gerade

lim inf (x — xkj) > 0

d.h. die Folge (xn) kann nicht gegen x konvergieren. Damit ergibt
sich ein Widerspruch gegen die Annahme, dass lim in oo

nicht gilt. Somit ist diese Annahme falsch und der Hilfssatz
bewiesen.

Es sei (dm) eine Z-Folge aus D. (Siehe Abschnitt 2). Jeder
solchen Folge kann man einen Ausdruck

zuordnen. Dabei bedeutet die Summe über alle m, für die

dm 0 ist. Es lässt sich zeigen, dass z entweder eine positive
reelle Zahl ist oder oo. Denn nach Definition einer Z-Folge (dm)

sind alle dm nicht negativ, und mindestens ein dm ist von Null
verschieden. Die Folge der Partialsummen

ist daher eine monoton steigende Folge. Also ist z entweder
konvergent oder bestimmt divergent. Es gilt daher

z £ (0, oo]

Nach den Überlegungen im Abschnitt 3 kann man jeder
reellen Zahl aus (0,1) in eineindeutiger Weise eine Z-Folge aus
D zuordnen. Somit kann man mit (5) auf folgende Art eine
positive reelle Funktion erklären: Wenn

5. Konstruktion einer Lösung von (2)

Z I'd»1 (5)

m

X <r+(dm)
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