Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 12 (1966)

Heft: 1-2: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÜBER EINE FUNKTIONALGLEICHUNG

Autor: Domiaty, R. Z. Kapitel: 2. Ein Hilfssatz

DOI: https://doi.org/10.5169/seals-40727

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. EIN HILFSSATZ

Ein wesentliche Rolle wird die folgende Aussage spielen:

HILFSATZ 1. Eine Funktion f(x) ist genau dann eine Lösung von (2), wenn für jedes $x_0 \in (0,1)$ gilt:

- 1. Für jede Folge (x_n) aus $(0, x_0)$ mit $\lim_{n \to \infty} x_n = x_0$ ist $\lim_{n \to \infty} \inf f(x_n) \ge f(x_0)$.
- 2. Für jedes $a \varepsilon [f(x_0), +\infty]$ gibt es eine Folge (y_n) aus $(0, x_0)$ mit $\lim_{n\to\infty} y_n = x_0$ und $\lim_{n\to\infty} f(y_n) = a$.

Beweis. a) Wenn f(x) eine Lösung von (2) ist, folgen die beiden Aussagen unseres Hilfssatzes unmittelbar aus der Bedeutung von $L_f(x_0)$ in (1).

b) Jetzt sei f(x) eine Funktion, die die Eigenschaften 1. und 2. besitzt. x_0 sei ein beliebiger Punkt aus (0,1). Wir zeigen, dass $L_f(x_0) = [f(x_0), +\infty]$ ist. Wegen 1. gilt

$$\bigcup_{\substack{(x_n) \subset (0,x_0) \\ (x_n)' = \{x_0\}}} (f(x_n))' \subseteq [f(x_0), + \infty],$$

und wegen 2. auch

$$\bigcup_{\substack{(x_n) \subset (0,x_0) \\ (x_n)' = \{x_0\}}} (f(x_n))' \supseteq [f(x_0), + \infty].$$

Daraus folgt unsere Behauptung.

3. EINE DARSTELLUNG REELLER ZAHLEN AUS (0,1) DURCH GEWISSE FOLGEN

Um eine nichttriviale Lösung von (2) zu konstruieren, benötigen wir eine spezielle Darstellung der reellen Zahlen aus (0,1), die von den üblichen Darstellungen abweicht. Bekanntlich kann man die Zahlen aus (0,1) eineindeutig durch nicht-abbrechende Dualbrüche darstellen. Wenn also r eine beliebige reelle Zahl aus (0,1) ist, gilt