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ÜBER EINE FUNKTIONALGLEICHUNG

von R. Z. Domiaty

1. Einleitung und Problemstellung

Unter Funktionen f (#), g (#), z (#), verstehen wir im
weiteren ausnahmlos eindeutige, reelle Funktionen, die auch

± oo als Funktionswerte annehmen dürfen, mit dem Definitionbereich

(0,1). Dabei bezeichnet (a, b) das offene Intervall
a < x < b und [a, b] das abgeschlossene Intervall a ^ x ^ b

An jeder Stelle x0 des Definitionsbereiches kann man einer
Funktion / (x) eine Menge Lf (x0) nach der Vorschrift

Lf(xo) U (/(*„))' jc0 e (0,1) (1)
(xn) <= (0,X0)
(xny {^o}

zuordnen. Dabei verstehen wir unter (an) eine Folge und unter
(a„Y die Häufungswertmenge von (an). Mit U Ax bezeichnen

x

wir die Vereinigungsmenge der Mengen AÄ. Somit istL^(^0) eine

Verallgemeinerung des Begriffes der Hülle einer Funktion an
einer Stelle ihres Definitionsbereiches; vgl. z.B. [1], S. 188.

In der vorliegenden Arbeit betrachten wir die Funktionalgleichung

Lf(x)[/(X), + co] £ (0,1) (2)

Eine Funktion g (x) heisst eine Lösung von (2), wenn g (x)
die Funktionalgleichung (2) identisch, d.h. in jedem Punkt aus
(0,1), erfüllt.

Wie man sieht, ist die Funktion h (x) + oo eine Lösung
von (2). Diese bezeichnen wir als die triviale Lösung von (2).
Jede andere Lösung von (2) heisst eine nichttriviale Lösung.

Ziel dieser Arbeit ist die Konstruktion einer nichttrivialen
Lösung von (2), und zwar ohne Verwendung des Auswahlaxioms

oder gleichwertiger Sätze.
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2. Ein Hilfssatz

Ein wesentliche Rolle wird die folgende Aussage spielen:

Hilfsatz 1. Eine Funktion f (x) ist genau dann eine Lösung
von (2), wenn für jedes x0 e (0,1) gilt:

1. Für jede Folge (xn) aus (0, x0) mit lim xn x0 ist
n-* x

lim inf / (xn) ^ / (x0)

2. Für jedes a&[f{x0)^Jr oo] gibt es eine Folge (yn) aus
(0, x0) mit lim yn x0 und lim / (yn) — a

n-»oo n co

Beweis, a) Wenn f (x) eine Lösung von (2) ist, folgen die
beiden Aussagen unseres Hilfssatzes unmittelbar aus der
Bedeutung von Lf (x0) in (1).

b) Jetzt sei f (x) eine Funktion, die die Eigenschaften 1.

und 2. besitzt. x0 sei ein beliebiger Punkt aus (0,1). Wir zeigen,
dass Lf (x0) [/ (x0), + oo] ist. Wegen 1. gilt

U (/(*„))' £[/(*„), + oo],
(*n) c (0,X0)
(xn)' {*0}

und wegen 2. auch

U (f(.xn))'3[/(x0), + 00 ].
(xn) c (O,X0)
(^n)' {^0}

Daraus folgt unsere Behauptung.

3. Eine Darstellung reeller Zahlen
AUS (0,1) DURCH GEWISSE FOLGEN

Um eine nichttriviale Lösung von (2) zu konstruieren,
benötigen wir eine spezielle Darstellung der reellen Zahlen aus

(0,1), die von den üblichen Darstellungen abweicht. Bekanntlich
kann man die Zahlen aus (0,1) eineindeutig durch nicht-abbre-
chende Dualbrüche darstellen. Wenn also r eine beliebige reelle

Zahl aus (0,1) ist, gilt



— 43 —

r Ö, <5t <52 <53 <5f... <5f 0 oder 1

mit den folgenden zwei Eigenschaften:

(E^ Es gibt einen Index m, m ^ 1 für den 3m =0 ist.
(E2) In der Folge der Zahlen <51? d2, öh kommt die

Zahl 1 unendlich oft vor.

Die Aussage (Ex) trifft zu, weil r # 1 ist. (i£2) ist erfüllt, weil
wir abbrechende Dualbrüche ausgeschlossen haben.

Jeder solchen Dualbruchentwicklung und damit jeder
reellen Zahl aus (0,1) können wir in eindeutiger Weise eine

Folge nichtnegativer ganzer Zahlen, in der mindestens ein

positives Element vorkommt, auf die folgende Art zuordnen:

(.Z) Wenn r & (0,1) ist und die Dualbruchentwicklung

mit den Eigenschaften (/i\) und (E2) besitzt, dann wird der
Zahl r die Folge (dm) zugeordnet. Diese Folge nennen wir im
weiteren die zugeordnete Folge, kurz: die Z-Folge, von r.

D sei die Menge aller Folgen (dm) mit den Eigenschaften:

(Zi) Für alle m ist dm eine nichtnegative ganze Zahl.
(Z2) Es gibt einen Index q, für den dq > 0 ist.

Dann stellt die ZuOrdnungsvorschrift (Z) eine eineindeutige
Abbildung von (0,1) auf D dar.

Wir können daher mit der gleichen Berechtigung, mit der
wir eine reelle Zahl r aus (0,1) durch einen Dualbruch darstellen,
jetzt eine reelle Zahl durch die ihr nach (Z) zugeordnete Z-Folge
aus D darstellen.

Die Dezimaldarstellung einer reellen Zahl r, die einer Z-Folge
(dm) aus D zugeordnet ist, kann man mittels der Formel

r 0,ölö2...öi..< 0,0...010...010...010...

di d2 d 2

Nullen Nullen Nullen

(3)

angeben.
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4. Sätze über das Rechnen mit Z-Folgen

Die eineindeutige Zuordnung der reellen Zahlen aus (0,1) zu
den Z-Folgen aus D schreiben wir abgekürzt in der Form

x^(dm) x g (0,1), (dJsD.
Damit ist gemeint, dass (dm) die der Zahl x gemäss (Z)
zugeordnete Z-Folge ist. Daraus kann man sofort folgende Aussage
ableiten:

(A) Wenn x1 <-» (dlim) und x2 <-» (d2,m) ist, so ist xt x2

gleichbedeutend mit d1>m d2>m für alle m — 1, 2, 3,
Das gibt jetzt Anlass zu der

Definition 1. Die natürliche Zahl i i (%, x2) heisst der
Index zweier verschiedener reeller Zahlen xx und x2 aus (0,1),
wenn folgendes gilt:

1. *!<->(<li,m) und x2 «-> (d2>m)

2. d1}i 7^ d2>i

3. Wenn i > 1 ist, so sei auch dlfk — d2tk für alle k — 1,2,...,
i — 1

Mit dieser Bezeichnung gilt jetzt
(B) Es sei

x± ^ x2,xx <-*(duJ,x2 <-+(d2tm) und i i(xux2).

Dann ist x\ > x2 gleichbedeutend mit dlfi < d2ti.

Hilfssatz 2. a) Es sei x <-* (dm) Dann gibt es zu jedem

e > 0 ein k (e) derart, dass für alle y s (0,1) aus der Beziehung
i (x, y) > k die Beziehung \x — y\ < e folgt.

b) Es sei

<-* (dn,m), X <-> (rfj, # X und in i x)

für n — 1, 2, Dann folgt aus lim in oo die Beziehung
n-+ x

lim x
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Beweis. Da b) unmittelbar aus a) folgt, genügt es, a) zu
beweisen, e > 0 sei beliebig und fest. Wir wählen jetzt eine

natürliche Zahl k so, dass e > 21~k ist, und betrachten nur solche

y aus (0,1), für die i (x, y) ^ k + 1 ist. Ein solches y greifen wir
heraus. Die zugeordnete Z-Folge sei (d*m), und der Index sei i*.
Dann kann man die Differenz \x — y\ vermöge (3) abschätzen:

_ y| _ |2~(rfl + -" + dfc + 3 + k+1) _j_ 2 ~(dl + '" + dk + 2 + k + 2)

_ 2~ (d*+ - + dk+ l + k+ iy _ 2-(dk+ l + -~ + 4+2+k + 2) _

< 2~(di+~'+dk+k+iy ^2~dk+1 -f 2~^dk+1+dk+2+1^ +

_l_ 2~4-fi _|_ 2~(dk+1+dk+2 + l) + ...]

<; 2~^di+-+dk+k+i'>[i+ 2"1 + 2-2 + + 1 + 2'1 + 2~2 + ...]
< 2~~ (di+---+dk) 2~k+1 < e

Damit ist der Hilfssatz bewiesen.
Bemerkenswert ist die Tatsache, dass die Aussage b) in

Hilfssatz 2 nicht umkehrbar ist. Das zeigt das Beispiel

x„ 2"1 + 2-5 + 2-s-^(d„J (0, 3, 0,0,... 0,...)
x 2~l + 2-s^(dm) (0,4,0,0, ...0,...).

Es gilt lim x„x, aber lim i„ 2
«->oo «~>oo

Im weiteren benötigen wir oft den bekannten

Hilfssatz 3. (qt) sei eine Folge natürlicher Zahlen. Dann ist
die Negation der Aussage lim ql oo gleichwertig mit der Aus-

Z-> oo

sage, dass in der Folge (qt) eine feste natürliche Zahl k unendlich
oft vorkommt.

Weiter brauchen wir den

Hilfssatz 4. Es sei xn (dn>m), x <-> (dm), xn < x und
in — i (xn, #) /wr n 1, 2, 3, Dann ist lim xn x gleichwertig
mit lim in co "~*°°

«->oo
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Beweis. Wegen Hilfssatz 2, b) haben wir nur zu beweisen,
dass unter der angegebenen Voraussetzung aus lim xn — x die

/»-oo

Behauptung lim in oo folgt. Wir führen den Beweis indirekt.
n-+ ac

Aus der Annahme, dass lim in — oo nicht gilt, folgt mit Hilfs-
n-* oo

satz 3, dass es eine natürliche Zahl k gibt, die in der Folge der

(i„) unendlich oft vorkommt. Es sei also (An) eine unendliche
Teilfolge aus der Folge der natürlichen Zahlen (n) mit der Eigenschaft

k (n 1,2,...). (4)

Für alle n gilt wegen (4)

x0 - xÄn2~(d' + 1) + 2'^1+d2+2) + + 2~(d, + -+d"+k> +

_ 2~(dx"-l + '" +ä;in-2+k)-
_ 2~(dl + -- + dk+k) _j_2~^1 + "' + rffc+1+fc+1)

_j_

~(d2 + — +d2 +k) „~(di + — +dx tj_+k+l)9 v l An k ' 9 1 An k~f- l

_ 2~än + •••+ dk-i +fc) 12 ~dk 2~^fc+dfc+1+1) _|_

_ [2~dXn'k + 2~(d *n'k+d *n'k+1 + 1) + ...]}.

Nach unserer Voraussetzung sind alle xkn kleiner als x. Weil
für jedes An stets i (xXn, x) k ist, gilt also wegen (B) für alle

An die Beziehung

dk + 1 ^ dXn k.

Setzt man das in die vorhergehende Formel ein, so erhält man

für alle n

x0-xXn 2~("l+-+dk+k){l+
+1 * +

_ 2~(dx">k~dk) [1 + 2~(d Xn>k+1 + 1) + •••] }

^ 2~(dk + 1+1 '
— 2_'(1 + 2~*+ ...)]

_2 ~ (d{ + +d k+ \ +k+ l ^ q
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Für alle n gilt demnach

x - x, >2~{dl+-+dk+l> 0.
An —n

Das bedeutet aber gerade

lim inf (x — xkj) > 0

d.h. die Folge (xn) kann nicht gegen x konvergieren. Damit ergibt
sich ein Widerspruch gegen die Annahme, dass lim in oo

nicht gilt. Somit ist diese Annahme falsch und der Hilfssatz
bewiesen.

Es sei (dm) eine Z-Folge aus D. (Siehe Abschnitt 2). Jeder
solchen Folge kann man einen Ausdruck

zuordnen. Dabei bedeutet die Summe über alle m, für die

dm 0 ist. Es lässt sich zeigen, dass z entweder eine positive
reelle Zahl ist oder oo. Denn nach Definition einer Z-Folge (dm)

sind alle dm nicht negativ, und mindestens ein dm ist von Null
verschieden. Die Folge der Partialsummen

ist daher eine monoton steigende Folge. Also ist z entweder
konvergent oder bestimmt divergent. Es gilt daher

z £ (0, oo]

Nach den Überlegungen im Abschnitt 3 kann man jeder
reellen Zahl aus (0,1) in eineindeutiger Weise eine Z-Folge aus
D zuordnen. Somit kann man mit (5) auf folgende Art eine
positive reelle Funktion erklären: Wenn

5. Konstruktion einer Lösung von (2)

Z I'd»1 (5)

m

X <r+(dm)
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ist, so soll
oc

z(x) (6)
m 1

sein.

Für diese Funktion gilt
0 < z(x) ^ oo x e(0,l). (7)

Jetzt beweisen wir den folgenden

Satz 1. z (x) ist eine nichttriviale Lösung der Funktionalgleichung

(2).

Beweis. Der Beweis wird in drei Schritten geführt.
1. Schritt. Es wird folgende Aussage bewiesen:

(At) Wenn x0 e (0,1), z (x0) oo (xn) c= (0, x0) mit lim xn

x0 ist, dann gilt: lim z (xn) oo.
n-* oo

Es sei x0 <-> (dm), xn <-> (dn>m) und in i (xn, x) für n 1, 2,

3, Nach Hilfssatz 4 ist Aussage lim xn x0 gleichbedeutend
mit lim in — oo Unter Beachtung der Voraussetzung

n-> oo
oo

z(*o)
m 1

kann man jetzt zeigen, dass z (xn) bebliebig gross gemacht werden

kann, wenn man nur n genügend gross wählt; zu einer beliebig
grossen Zahl K > 0 wählen wir eine natürliche Zahl M so, dass

M

K <
m— 1

ist. Weiter wählen wir eine zweite genügend grosse natürliche
Zahl N so, dass

in> M n > N

ist. Betrachten wir jetzt solche xn, für die n > N ist, so erhalten
wir die Abschätzung

oo M oo M

z(*„) Y* + I* dnX Y*d~ml
m—1 m— 1 m — Af+1 m— 1

00

+ x* > K-
m M+ 1
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Das bedeutet aber gerade

lim z (xn) oo
n — oo

und somit ist (A-l) verifiziert.

2. Schritt. Es wird gezeigt:

(A2) Wenn x0 s (0,1) und z (x0) a < oo ist, dann gilt für
alle Folgen (x„) c (0, £0), die die Bedingung lim xn x0 erfüllen,
die Beziehung

lim inf z (x„) ^ z (*o) •

Wir beweisen (A2), indem wir die gegenteilige Annahme zu
einem Widerspruch führen. Aus dieser Annahme kann man
folgern: Es gibt einen Punkt x0 und eine Folge (xn) c= (0, x0)

für welche gilt:
lim xn x0
rt->cc

lim z(xn) — b < z (x0) a
n-* oo

Die entsprechenden Z-Folgen seien

x0 <-> (dm)

xn (dn>m)

K o)
n 1,2,

Danach (A2) die Beziehung xn < x0 gilt, können wir wieder
Hilfssatz 4 anwenden, und erhalten wegen lim xn ~ x0 die
Beziehung n~*°°

lim in oo
n-+ oo

oo

Weil z (x0) ß ist, folgt nach bekannten Sätzen
m= 1

über unendliche Reihen, dass ein K angegeben werden kann,
für das

a — br^<
L'Enseignement inathém., t. XII, fasc. I.
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gilt. (Ein solches K existiert, da — >0 ist.) Weiter wählen
wir zu diesem K ein N derart, dass

i„ >Kn> N

ist. Für diese Werte N, K und schätzen wir jetzt die
folgende Differenz ab:

co oo

z(x0) - z(x„) - £* d~lm
m— 1 1

K- 1 oo K -1 oo

Y?dmy + X*^1 - Y,*dnX
m=l m=K m=1 m—K

00 00 T

m=K m—K 2-

Es gilt daher
a — b

z (x0) - z (x„) < —— n > N

Das bedeutet aber gerade

a — b
lim { z (x0) - z (x„) } ^ ——,
«-+00 ^

und dieses Resultat steht wegen unserer Annahme b < a im
Widerspruch zu

lim { z (x0) — z (xn) } a — b
n~* od

Es ist somit b < a falsch und daher (A2) richtig.

3. Schritt. Nun zeigen wir:
(A3) Wenn x0 £ (0,1) und z (x0) a < °o ist, dann gibt es

zu jedem c ^ a eine Folge (xn) c (0, x0) mit lim xn — x0 und
lim z (xn) c.
«-+ 00

Um (A3) zu beweisen, greifen wir wieder ein c ^ a und

beliebiges x0 e (0,1) heraus. Dann werden wir eine Folge (xn)

<= (0, x0) km xn xo konstruieren, für die gilt:
«->00

lim z (x„) c.
«—>- CO
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Dem x0 sei die Z-Folge (dm) zugeordnet. Nun stellen wir die

Folgenglieder xn wieder durch Z-Folgen dar,

xn*-*(dn,m) n 1,2,...

Die dn>m werden nach folgender Vorschrift bestimmt:

dn,m ~ dm n — 1,2,3,...
l) A A ^ 1 O 1

dn>n dn + n n 1, 2, n — 1

Damit sind aber in jeder Z-Folge (d„)tn) erst die ersten n Folgenglieder

festgelegt. Die restlichen werden auf die folgende Art
bestimmt: Wir setzen

00

an c - a + £ d'1 1,2,...
m n

Die m > n, sollen so bestimmt werden, dass

00

(W2) I* d~lm an 1,2,...
m n+ 1

ist. (Falls alle an 0 sind, werden alle dHf m — 0 gewählt, und
die linke Seite wird gleich null gesetzt). Nicht-negative ganze
Zahlen dWm so zu finden, dass (W2) erfüllt ist, ist im allgemeinen
sogar auf unendlich viele Arten möglich.

Hat man jetzt ein System von Folgen (dn}Tn) nach (Wt)
und (W2) gefunden, so erfüllt die diesen Z-Folgen zugeordnete
Folge (xn) die Bedingungen

V, < *o

weil nach (Wx) in i (xn, x0) n und dlum > dn ist, [vgl. (B)
Abschnitt 4] und

lim xn x0
/J->00

weil nach (Wj) lim in oo ist [vgl. Hilfssatz 2 (6)]. Ausserdem
«->00

gilt unter Verwendung von (Wt) und (W2):

00 00

ZW - zCo) Y?dn,m - Y?dmX
«1=1 m— 1
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ï*<c + dn,n + i* d~i - i*d-j
m — n+l m= 1 m n

1

also

oder

d„+n
1

d„+n
1

</„ + «

lim z (x„) - z (x0) -
n->oo

lim z (x„) c

+ a„ ~ ï*dml
m — n

00 00

+ c - a + Y? dm1 ~ Y^d'1
m n m n

+ c — a

Damit ist auch (A3) bewiesen.

(AJ, (A2) und (t43) ergeben mit Hilfssatz 1 gerade die
Behauptung unseres Satzes 1.

6. Weitere Folgerungen

Es sei E die Menge aller xe (0,1), für die z (x) < oo ist und
F die Menge aller xs (0,1), für die z (x) oo ist. Trivialerweise
gilt

£nF 0 und u (0,1).

Die Lage von E und F in (0,1) beschreibt der folgende

Satz 2. Jeder Punkt #£(0,1) ist ein Kondensationspunkt
der Menge E und auch der Menge F. (Genauer : In jeder
Umgebung von x kann man eine Teilmenge von F bzw. G angeben, die
die Mächtigkeit des Kontinuums besitzt.)

Insbesondere ist damit (0,1) in zwei elementefremde

Teilmengen der Mächtigkeit des Kontinuums zerlegt worden, die
beide in (0,1) dicht liegen.

Beweisskizze. Satz 2 ist bewiesen, wenn man zeigt, dass zu
zwei beliebigen Punkten xt und x2 (xt < x2) aus (0,1) eine konti-
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nuumsmächtige Teilmenge E* ^ E und eine kontinuums -

mächtige Teilmenge F* ^ F existieren, die in (xu x2) liegen. Es
sei

*1 ++(dUm)9 x2 i i(xux2) und dui > d2>i.

Unter (pk) wollen wir im weiteren eine unendliche Folge
verstehen, die aus der Folge (2fe) durch eine beliebige Umordnung
entsteht. P sei die Menge aller Folgen (pk). P besitzt die Mächtigkeit

des Kontinuums, denn P kann als die Menge aller Anordnungen

der abzählbar-unendlichen Menge 21, 22, aufgefasst
werden, und diese ist von der Mächtigkeit des Kontinuums;
vgl. [3], $. 67.

Es sei E* die Menge aller y s (0,1), wobei

y (dm)

mit (pk) e P und

d„,

d2tin für m ^ i

di,i +1 + 1 für m i + 1

pk für m i + 1 -f k

gilt. Diese Menge E* ist von der Mächtigkeit des Kontinuums^
denn man kann jedem yeE* genau eine Anordnung (pn)eP
zuordnen. Nach der Konstruktionsvorschrift ist ferner für jedes
yeE*

1> i(y>*2) i + U

d\,i > di9 df +1 > d211+1

Also ist

x± < y < x2 yeE *

Da aber auch

i co

zW Z*<?ml + dr+.i + 1

m=1 k=1
i -j oo

Z* dj, m + -j —7 + Z ^ k < 00
m= 1 "2,i+ 1 "T" J- fc= i

gilt, ist somit die Existenz von E* bewiesen. Der Existenz-
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beweis von F* verläuft analog, wobei nur anstelle der Folge
(2fc) die Folge (k) zu setzen ist. Damit ist der Satz 2 bewiesen.

Bezeichnet man mit A (a), 0 < a < oo, die Menge aller
x e (0,1), für welche z(x) a ist, so kann man auch den folgenden
Satz beweisen.

Satz 3. 1. A (a) hat die Mächtigkeit des Kontinuums.

2. A (a) ist nirgends dicht in (0,1).

Beweisskizze. Zu Punkt 1. Jede positive reelle Zahl a kann in
der Form

00

a — ro + YJ 2 J

dargestellt werden, wobei r0 eine nicht-negative ganze Zahl ist
und rj natürliche Zahlen sind, für die rj < rj+i gilt (/ 1, 2,
Es sei Q die Menge aller Folgen (qs), wobei (qs) Folgen sind,
die aus der Folge (2r*) durch beliebige Umordnungen
hervorgehen. M sei die Menge aller xe (0,1), für die

x <-* (dm)

mit (qs) e Q und

qs für m 2t — l
dm 1 für m — 2t und t ^ n0 t 1,2,...

0 für m 2t und t > n0

gilt. M besitzt die Mächtigkeit des Kontinuums, und für jedes

x £ M ist
00 00

zW E*^1 «o + £ «s « •

m— 1 s= 1

Es ist aber (0,1) ^ A (a) 3 M und somit besitzt auch A (a) die

Mächtigkeit des Kontinuums.

Zu Punkt 2. Man zeigt zunächst (ähnlich wie beim Beweis zu
Hilfssatz 4), dass lim xn x0 gleichwertig mit lim in oo ist,

«-»00 «-»oo

wenn man folgendes voraussetzt:

*o (^m)» * > (^«j,w)> ^ in i (^«' und
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enthält unendlich viele positive Glieder. Damit beweist man, dass

aus
z (x0) oo und lim xn x0

«-> oc

die Aussage
lim z (xn) oo
«-> oo

folgt. Den Beweis, dass A (a) nirgends dicht in (0,1) ist, führt
man dann indirekt. Aus der gegenteiligen Annahme folgt, dass

eine Umgebung U0 £ (0,1) existiert, in der A (a) dicht liegt.
Da nach Satz 2 die Menge F in (0,1) dicht liegt, liegt F auch

U0 dicht. Nun sei y s U0 n F Es ist dann

z (y) oo

Weil A (a) in U0 dicht, liegt muss es eine Folge (y„) er A (a)

geben, für die lim yn — y ist. Nach dem obigen muss dann
einerseits

lim z (yn) oo
«->00

sein. Da aber anderseits für alle n stets (y„) — a ist, gilt auch

lim 2 (y„) a •

«->00

Das stellt einen Widerspruch gegen unsere Annahme dar.
Somit ist diese Annahme falsch und damit unser Satz bewiesen.
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