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UBER EINE FUNKTIONALGLEICHUNG

von R. Z. DoMmiaTYy

1. EINLEITUNG UND PROBLEMSTELLUNG

Unter Funktionen f(z),g (x),z(z),... verstehen wir 1m
weiteren ausnahmlos eindeutige, reelle Funktionen, die auch
+ oo als Funktionswerte annehmen diirfen, mit dem Definition-
bereich (0,1). Dabei bezeichnet (a,b) das offene Intervall
a <z < b und [a, b] das abgeschlossene Intervall ¢ S 2 < 6.

An jeder Stelle z, des Definitionsbereiches kann man einer
Funktion f (x) eine Menge L, (x,) nach der Vorschrift

L, (x0) = U (f (xn)’ X, ¢ (0,1) (1)

(xn) © (0,x9)
(xn)’ = {x¢}
zuordnen. Dabei verstehen wir unter (a,) eine Folge und unter
(a,) die Haufungswertmenge von (a,). Mit U A, bezeichnen
A

wir die Vereinigungsmenge der Mengen A ;. Somit ist L, (z,) eine
Verallgemeinerung des Begriffes der Hiille einer Funktion an
einer Stelle ihres Definitionsbereiches; vgl. z.B. [1], S. 188.

In der vorliegenden Arbeit betrachten wir die Funktional-
gleichung

L;(x) = [f(x), + ] x£(0,1). (2)

Eine Funktion g (z) heisst eine Ldsung von (2), wenn g (x)
die Funktionalgleichung (2) identisch, d.h. in jedem Punkt aus
(0,1), erfiillt.

Wie man sieht, ist die Funktion % (z) = -+ oo eine Lisung
von (2). Diese bezeichnen wir als die triviale Lisung von (2).
Jede andere Losung von (2) heisst eine nichitriviale Losung.

Ziel dieser Arbeit ist die Konstruktion einer nichttrivialen
Losung von (2), und zwar ohne Verwendung des Auswahl-
axioms oder gleichwertiger Sitze.
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2. Ein HiLrssaTz

Ein wesentliche Rolle wird die folgende Aussége spielen:

Hivrsarz 1. Eine Funktion f (x) ist genau dann eine Lisung
von (2), wenn fir jedes x, ¢ (0,1) gilt:
1. Fiir jede Folge (x,) aus (0, zy) mut lim x, = x, ist

n—>x

lim inf f(z,) = f (%) .

2. Fir jedes ace[f (x,), + o] gibt es eine Folge (y,) aus
(0, o) mit im y, = z, und lim f(y,) = a.

Beweis. a) Wenn f (z) eine Losung von (2) ist, folgen die
beiden Aussagen unseres Hilfssatzes unmittelbar aus der Be-
deutung von L, (z,) in (1).

b) Jetzt sei f(x) eine Funktion, die die Eigenschaften 1.
und 2. besitzt. x, sei ein beliebiger Punkt aus (0,1). Wir zeigen,
dass Ly (xo) = [f (o), + o] 1st. Wegen 1. gilt

U  (f&n) [f(x0), + o],

(xn) = (0,xp)
(xn)" = {xp}

und wegen 2. auch

U (f) 2[F(xo), + o].
(?;))fzz((z;;(;)

Daraus folgt unsere Behauptung.

3. EINE DARSTELLUNG REELLER ZAHLEN
AUs (0,1) purcH GEWISSE FOLGEN

Um eine nichttriviale Losung von (2) zu konstruieren,
benotigen wir eine spezielle Darstellung der reellen Zahlen aus
(0,1), die von den iiblichen Darstellungen abweicht. Bekanntlich
kann man die Zahlen aus (0,1) eineindeutig durch nicht-abbre-
chende Dualbriiche darstellen. Wenn also r eine beliebige reelle

Zahl aus (0,1) ist, gilt
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= 0, 51 52 53 ...5[-.. 51 = 0 Odel‘ 1

mit den folgenden zwei Eigenschaften:

(E,) Es gibt einen Index m, m = 1, fir den 6,, =0 1st.
(E,) In der Folge der Zahlen 6., 0,, ..., J;, ... kommt die
Zahl 1 unendlich oft vor.

Die Aussage (E,) trifft zu, weil r # 1 ist. (£,) ist erfiillt, weil
wir abbrechende Dualbriiche ausgeschlossen haben.

Jeder solchen Dualbruchentwicklung und damit jeder
reellen Zahl aus (0,1) konnen wir in eindeutiger Weise eine
Folge nichtnegativer ganzer Zahlen, in der mindestens ein
positives Element vorkommt, auf die folgende Art zuordnen:

(Z) Wenn re¢ (0,1) ist und die Dualbruchentwicklung
P =0,0,08,..0;... = 0,0...010...010... 010 ...

[P N S —

d, d, dy
Nullen Nullen Nullen

mit den Eigenschaften (#£,) und (£,) besitzt, dann wird der
Zahl r die Folge (d,,) zugeordnet. Diese Folge nennen wir im
weiteren die zugeordnete Folge, kurz: die Z-Folge, von r.

D sei die Menge aller Folgen (d,) mit den Eigenschaften:

(Z,) Fir alle m 1st d,, eine nichtnegative ganze Zahl.
(Z,) Es gibt einen Index ¢, fir den d, > 0 1st.

Dann stellt die Zuordnungsvorschrift (Z) eine eineindeutige
Abbildung von (0,1) auf D dar.

Wir konnen daher mit der gleichen Berechtigung, mit der
wir eine reelle Zahl r aus (0,1) durch einen Dualbruch darstellen,
jetzt eine reelle Zahl durch die ihr nach (Z) zugeordnete Z-Folge
aus D darstellen.

Die Dezimaldarstellung einer reellen Zahl r, die einer Z-Folge

(d,,) aus D zugeordnet ist, kann man mittels der Formel

M
-IM+ % dp
m=1

ro= i 2 (3)
M=

~angeben.
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4. SATzE UBER DAS RECHNEN MIT Z-FOLGEN

Die eineindeutige Zuordnung der reellen Zahlen aus (0,1) zu
den Z-Folgen aus D schreiben wir abgekiirzt in der Form

xo(d,) xe(0,1), (d,)eD.

Damit ist gemeint, dass (d,) die der Zahl z gemiss (Z) zuge-
ordnete Z-Folge ist. Daraus kann man sofort folgende Aussage
ableiten:

(A) Wenn z; & (d,,,) und z, « (d,,,) 1st, so st z, = x,
gleichbedeutend mit d, ,, = d,,, fir alle m = 1,2, 3, ...

Das gibt jetzt Anlass zu der

DeriniTioNn 1. Die natiirliche Zahl 1 = 1 (x,, x,) heisst der
Index zweier verschiedener reeller Zahlen x; und z, aus (0,1),
wenn folgendes gilt:

1_ xl (—)(dl,m) und .X2 ('—)(dz’m)

2. dy,; #4dy,
3. Wenn ¢ > 1 ist, so sei auch d, , = d, , fur alle k = 1,2, ...,
1 — 1.
Mit dieser Bezeichnung gilt jetzt
(B) Es sei
xl # x?.)xl H(dl,m)s x2 H(dZ,m) und 1= i(x19x2) .

Dann ist x; > x, gleichbedeutend mit d, ; < d, ;.

Hivrssarz 2. a) Es sei x — (d,). Dann gibt es zu jedem
e > 0 ein k(e) derart, dass fir alle ye (0,1) aus der Beziehung
1 (x,y) > k die Beziehung |x — y| < ¢ folgt.

b) Es set

Ty > (dp,m)y T < (dy), T, # 2 und 1, = 1 (z,, 2)

fir n=1,2,... Dann folgt aus lim i, = oo die Beziehung
n—
lim x, = x.

n-—oo



Beweis. Da b) unmittelbar aus @) folgt, geniigt es, a) zu
beweisen. ¢ > 0 sei beliebig und fest. Wir wihlen jetzt eine
natiirliche Zahl & so, dass ¢ > 2'*ist, und betrachten nur solche
y aus (0,1), fiir die 7 (z,y) = &k + 1 ist. Ein solches y greifen wir
heraus. Die zugeordnete Z-Folge sei (d,), und der Index sei i*.
Dann kann man die Differenz |xr — y| vermoge (3) abschétzen:

lx — y| — |2—(d1+---+dk+1+k+1) '3 9 —(i+..+dg 2 +k+2) + ..

— @t gtk D) o=@ttt a ki)

A

2—(d1+...+dk+k+1)[2-—dk+1 4 2 Wrprtdig2+l) Lo
4+ 27kt 4 Whpitdi2t ) ]

é 2—(d1+...+dk+k+1)[1 + 2-—1 3 2—2 e 1+ 2—1 o 2—2 .3 ]

é 2—(d1+"'+d,k) 2—k+1 <e.

Damit ist der Hilfssatz bewiesen.
Bemerkenswert ist die Tatsache, dass die Aussage b) in
Hilfssatz 2 nicht umkehrbar ist. Das zeigt das Beispiel

X, =21 +27% +27%"(,,) =(0,3,n,0,0,...0,..)
x =2"'+2%-(d,) =(0,4,0,0,...0,..).

Es gilt Iim z, = z, aber lim 7, = 2.

n—* o0 n-> oo

Im weiteren bendtigen wir oft den bekannten

Hivrssatz 3. (q,) set eine Folge natiirlicher Zahlen. Dann ist
die Negation der Aussage lim g, = oo gleichwertig mit der Aus-

-
- sage, dass in der Folge (¢;) ene feste natiirliche Zahl k unendlich
- oft vorkommd.

Weiter brauchen wir den

/ HivLrssatz 4. Es sei z, o (d,,), o (d,), z, <z und
1, =1 (2, %) firn =1,2,3, ... Dann ist lim z, = x gleichwertig
mit lim i, = o . e

n— o
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Beweis. Wegen Hilfssatz 2, b) haben wir nur zu beweisen,
dass unter der angegebenen Voraussetzung aus lim z, = z die

n—aoo

Behauptung lim i, = oo folgt. Wir fithren den Beweis indirekt.

n—oc

Aus der Annahme, dass lim ¢, = oo nicht gilt, folgt mit Hilfs-

satz 3, dass es eine natiirliche Zahl k& gibt, die in der Folge der
(1,) unendlich oft vorkommt. Es sei also (4,) eine unendliche Teil-
folge aus der Folge der natiirlichen Zahlen (r) mit der Eigen-
schaft

i, =k (n =1,2,..). (4)

Fir alle n gilt wegen (4)

xo — xln —_ 2“(d1+1) + 2"(d1+d~2+2) + L. + 2-(d1+...+dk+k) + .

D I e N
e N L AL
_ oy @ittt +2—(d1+...+dk+1+k+1)

~@,,  trtda, k) teeddy o k1)

—_— 2_(d’1n,1

2—(d1+...+dk_1 +k) {2 —dy,

~2

—(dptdr+1t+1)

+ 2 + ...

- [2—d,1,,,k + LT R SRR ] j -

Nach unserer Voraussetzung sind alle z,, kleiner als x. Weil
fir jedes A, stets i (x, ,x) = k ist, gilt also wegen (B) fiir alle
A, die Beziehung

d.+1=d; .

Setzt man das in die vorhergehende Formel ein, so erhdlt man
fir alle n

—(dy+ ... +d +k —dk+1+1)
B i P SU RN

n

xO‘—xl

— 2—(d}'n,k-dk)[1 = 2-(dln,k+1+1) + ]}

2—(d1+...+dk+k))[1 4 2"("k+1+1) _2—1(1 + 2—1 + )]

v

—(di+ . tdg4q thk+1)

=2 > 0.
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Fir alle n gilt demnach

X — x,Zn ; 2“(d1+... +dp41t+tk+1) > 0.

Das bedeutet aber gerade
lim inf (x —x, ) > 0,

d.h. die Folge (z,) kann nicht gegen x konvergieren. Damit ergibt
sich ein Widerspruch gegen die Annahme, dass lim i, = o0

nicht gilt. Somit ist diese Annahme falsch und der Hilfssatz
bewiesen.

5. KONSTRUKTION EINER LOSUNG VON (2)

Es sei (d,) eine Z-Folge aus D. (Siehe Abschnitt 2). Jeder
solchen Folge kann man einen Ausdruck

z = Y*d,' (5)
m=1

zuordnen. Dabei bedeutet Y * die Summe iiber alle m, fir die

d, # 0 1st. Es lasst sich zeigen, dass z entweder eine positive
reelle Zahl 1st oder co. Denn nach Definition einer Z-Folge (d,,)
sind alle d,, nicht negativ, und mindestens ein d,, ist von Null
verschieden. Die Folge der Partialsummen

(Zre)

~1st daher eine monoton steigende Folge. Also ist z entweder
- konvergent oder bestimmt divergent. Es gilt daher

z&(0, o0].

Nach den Uberlegungen im Abschnitt 3 kann man jeder

reellen Zahl aus (0,1) in eineindeutiger Weise eine Z-Folge aus

- D zuordnen. Somit kann man mit (5) auf folgende Art eine
positive reelle Funktion erkliaren: Wenn

x «(d,)
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1st, so soll
z2(x) = i*d{,}‘ (6)
sein. "
Fir diese Funktion gilt
0<z(x) 2w x¢(0,1). @)

Jetzt beweisen wir den folgenden

Satz 1. z(x) ist eine nichttriviale Losung der Funktional-
gleichung (2).

Bewers. Der Beweis wird in drei Schritten gefiihrt.

1. Schritt. Es wird folgende Aussage bewiesen:

(4;) Wenn a4 ¢(0,1), z(x) = o0, (2,) < (0,2) mit lim z,
= x, 1st, dann gilt: lim z (x,) = . n—oo

Es sei 5 « (d,), z, < (d,,) und i, = t (z,, x) fir n = 1, 2,
3, ... Nach Hilfssatz 4 ist Aussage lim z, = 2, gleichbedeutend
mit lim ¢, = oo . Unter Beachtung der Voraussetzung

n—oo
s
z(xo) = ) *dn'
m=1

kann man jetzt zeigen, dass z (z,) bebliebig gross gemacht werden
kann, wenn man nur n geniigend gross wihlt; zu einer beliebig
grossen Zahl K > 0 wihlen wir eine natiirliche Zahl M so, dass

M
K< Y*d,!

m=1

ist. Weiter wihlen wir eine zweite geniigend grosse natiirliche
Zahl IV so, dass
i, >M n>N

ist. Betrachten wir jetzt solche z,, fiir die n > IV ist, so erhalten
wir die Abschitzung

0 M od] M
2(X) = L dpm = X¥dpm + ¥ dom = Y*da!
m=1 m=1 m=M+1 m=1

+ Y*d, . > K.

m=M+1
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Das bedeutet aber gerade

lim z(x,) = o,

n—oo

und somit ist (A4,) verifiziert.

2. Schritt. Es wird gezeigt:

(A,) Wenn z, ¢ (0,1) und z (x,) = a < oo ist, dann gilt fir
alle Folgen (z,) = (0, z,), die die Bedingung lim z, = x, erfiillen,
die Beziehung e

lim inf z(x,) = z(x,) .

Wir beweisen (A4,), indem wir die gegenteilige Annahme zu
einem Widerspruch fithren. Aus dieser Annahme kann man
folgern: Es gibt einen Punkt x, und eine Folge (z,) < (0, z,) ,
fiir welche gilt:

lim x, = x,,

n— oo

lim z(x,) = b <z(xy) =a.

n-—oo

Die entsprechenden Z-Folgen seien
Xp € (dm)

d
%"H(. mm) } n=1,2..
i, = l(xmxo)

Danach (A4,) die Beziehung z, < z, gilt, konnen wir wieder
Hilfssatz 4 anwenden, und erhalten wegen lim z, = xz, die
Beziehung e

lim i, = .

n— oo

Weil z (z,) = Y *d,' = a ist, folgt nach bekannten Sitzen

m=1
tiber unendliche Reihen, dass ein K angegeben werden kann,
fir das
a—b
2

e o]
Y*d, ' <
K

L’Enseignement mathém., t. XII, fasc. 1. 4
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gilt. (Ein solches K existiert, da @ — b > 0 ist.) Weiter wihlen
wir zu diesem K ein NV derart, dass

i, > K n>N

1st. Fiir diese Werte N, K und n > N schiatzen wir jetzt die
folgende Differenz ab:

z(xo) — z(x,) = Y*d,' — Y*d,,
m=1 1
K—-1 o K-1 e}
= Y*d' + Yr*d,' = Yrd, . - Y*d.,
m=1 m=K m=1 m=K

— Yragt - Yeasi <20
m=K m=K 2

Es gilt daher

—b
z(x(,)—z(x,,)<a2 n>N.
Das bedeutet aber gerade
- b
lim { z(xo) — z(x,) } < a——z——,

n-—* o0

und dieses Resultat steht wegen unserer Annahme & < a im
Widerspruch zu
lim {z(x¢) —z(x,)} =a —b.

n-—* oo

Es ist somit b < a falsch und daher (A4,) richtig.

3. Schritt. Nun zeigen wir:

(A3) Wenn z, ¢ (0,1) und z () = a < oo ist, dann gibt es
zu jedem ¢ = a eine Folge (z,) < (0, 2) mit lim z, = z, und
lim z (z,) = c. e

n— oo

Um (4;) zu beweisen, greifen wir wieder ein ¢ = a und
beliebiges z, ¢ (0,1) heraus. Dann werden wir eine Folge (z,)
< (0, 2y) mit lim z, = z, konstruieren, fiir die gilt:

lim z(x,) =c.

n— 0
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Dem 2, sei die Z-Folge (d,) zugeordnet. Nun stellen wir die
Folgenglieder z, wieder durch Z-Folgen dar,

X, <> (d, ) n=12..
Die d, ,, werden nach folgender Vorschrift bestimmt:

o = dy, n=1,23,..

Ww.
(W) d,, =d, +n n=12..n-1

Damit sind aber in jeder Z-Folge (d, ,,) erst die ersten n Folgen-
glieder festgelegt. Die restlichen werden auf die folgende Art
bestimmt: Wir setzen

Die d, ,.,, m > n, sollen so bestimmt werden, dass
(W,) Y* dy ., = a, n=1,2,..
m=n+1

ist. (Falls alle @, = 0 sind, werden alle d, ,, = 0 gewéhlt, und
die linke Seite wird gleich null gesetzt). Nicht-negative ganze

~ Zahlen d,,, so zu finden, dass (W,) erfiillt ist, ist im allgemeinen

sogar auf unendlich viele Arten mdoglich.
Hat man jetzt emn System von Folgen (d, ,) nach (W,)
und (W,) gefunden, so erfiillt die diesen Z-Folgen zugeordnete

- Folge (z,) die Bedingungen

Xy < Xg

weil nach (W,) 1, = i (x,,29) = n und d,,, > d, ist, [vgl. (B)
Abschnitt 4] und

lim x, = x,,

n—> o0

' weil nach (W,) lim i, = oo ist [vel. Hilfssatz 2 (b)]. Ausserdem

n— oo

gilt unter Verwendung von (W,) und (W,):

2(xp) = 2(Xo) = Y*dpm — Y*d,' =
m=1 m=1
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n—-1 0 n—1 9]
= Y*dom+d,, + Y*din— Y*d, - Y*d;!
m=1 m=1 m=n

m=n+1

=d,,i—n+a"—mz=::d;1
_ 1 o -1 w1
—d,,+n+c—a+m§,, dn ——m};n dn
1
=d,,+n+c_a’
also
lim z(x,) — z (xg) = ¢ —a
oder o

lim z(x,) = c.

n—> oG

Damit ist auch (A4;) bewiesen.
(4y), (4;) und (A;) ergeben mit Hilfssatz 1 gerade die

Behauptung unseres Satzes 1.

6. WEITERE FOLGERUNGEN

Es sei £ die Menge aller x ¢ (0,1), fir die z () < oo ist und
F die Menge aller x ¢ (0,1), fiir die z () = oo ist. Trivialerweise
gilt _
EnF =9 und EJUF = (0,1).

Die Lage von E und F in (0,1) beschreibt der folgende

Sarz 2. Jeder Punkt x¢(0,1) ist ein Kondensationspunkt
der Menge E und auch der Menge F. (Genauer: In jeder Um-
gebung von x kann man ewne Teilmenge von F bzw. G angeben, die

die Mdchtigkeit des Kontinuums besiizt. )
Insbesondere ist damit (0,1) in zwei elementefremde Teil-

mengen der Michtigkeit des Kontinuums zerlegt worden, die
beide in (0,1) dicht liegen.

Beweisskizze. Satz 2 i1st bewiesen, wenn man zeigt, dass zu
zwel beliebigen Punkten z; und z, (z; < z,) aus (0,1) eine konti-



nuumsméchtige Teilmenge E* < E und eine kontinuums-

michtige Teilmenge F* < F existieren, die in (z,, x,) liegen. Es
sel

Xy o (dy ), Xa o (dy ), | =1(x4,%,) und dy ; > d, ;.

Unter (p,) wollen wir im weiteren eine unendliche Folge ver-
stehen, die aus der Folge (2%) durch eine beliebige Umordnung
entsteht. P seil die Menge aller Folgen (p,). P besitzt die Machtig-
keit des Kontinuums, denn P kann als die Menge aller Anordnun-
gen der abzdhlbar-unendlichen Menge 2!, 2% ... aufgefasst
werden, und diese ist von der Maichtigkeit des Kontinuums;

vgl. [3], §. 67.
Es sei £* die Menge aller y ¢ (0,1), wobei
ye(d,)
mit (p,) ¢ P und
dy m fiir m <1
dm=d2,i+1+1fﬁrm=i+1

gilt. Diese Menge E* ist von der Méchtigkeit des Kontinuums,
denn man kann jedem ye&FE* genau eine Anordnung (p,) & P
zuordnen. Nach der Konstruktionsvorschrift ist ferner fiir jedes
yeE*
| i(y,xy) =1, i(y,x) =i +1,
dy,; > d;, diy1 >dy ivq -
Also ist
X, <y <X, yeE* .

‘ Da aber auch

z(y) = Y*d, +d  + Y ot
k=1

m=1

i 1
= Y+ Y2 F < oo
mél B dz,i+1 +1 k=21 :

gilt, ist somit die Existenz von E* bewiesen. Der Existenz-
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beweis von F* verliuft analog, wobei nur anstelle der Folge
(2% die Folge (k) zu setzen ist. Damit ist der Satz 2 bewiesen.

Bezeichnet man mit A4 (a), 0 < ¢ < o, die Menge aller
z € (0,1), fir welche z () = a ist, so kann man auch den folgenden
Satz beweisen.

Satz 3. 1. A (a) hat die Mdchtigkeit des Kontinuums.
2. A (a) ist nirgends dicht in (0,1).

Beweisskizze. Zu Punkt 1. Jede positive reelle Zahl a kann in
der Form

a =ry+ 2277

i=1

dargestellt werden, wobei r, eine nicht-negative ganze Zahl ist
und r; natiirliche Zahlen sind, fir dier; < r;,; gilt (j = 1, 2, ...).
Es sei ( die Menge aller Folgen (¢,), wobei (¢,) Folgen sind,
die aus der Folge (2"*) durch beliebige Umordnungen her-
vorgehen. M sei die Menge aller z ¢ (0,1), fiir die

x & (dy)
mit (95) eQ wund
q, fiir m = 2t—1
d, =31 fir m = 2tund t < n, t=1,2,..

0 fir m = 2tund t > n,

gilt. M besitzt die Michtigkeit des Kontinuums, und fiir jedes
xeM ist

z(x) = Y*d,  =ny + Y q, =a.
m=1 s=1
Es ist aber (0,1) 2 A (a) 2 M, und somit besitzt auch 4 (a) die
Michtigkeit des Kontinuums.
Zu Punkt 2. Man zeigt zunéichst (dhnlich wie beim Beweis zu
Hilfssatz 4), dass lim xz, = z, gleichwertig mit lim i, = oo ist,

n— oo n—aoC

wenn man folgendes voraussetzt:

xO H(dm)s Xn H(dm,n)’ xn # an in = i(xmxo) und (dm)
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enthalt unendlich viele positive Glieder. Damit beweist man, dass
aus
z(xy) = oo und lim x, = Xxq

n— oo

die Aussage

lim z(x,) =
folgt. Den Beweis, dass A (a) nirgends dicht in (0,1) ist, fiihrt
man dann indirekt. Aus der gegenteiligen Annahme folgt, dass
eine Umgebung U, < (0,1) existiert, in der A (a) dicht liegt.
Da nach Satz 2 die Menge F in (0,1) dicht liegt, liegt £ auch
U, dicht. Nun sei y e U, n F' . Es 1st dann

z(y) = ©.

Weil A (a) in U, dicht, liegt muss es eine Folge (y,) < 4 (a)
geben, fiir die lim y, = y ist. Nach dem obigen muss dann
einerseits e

lim z (y,) = ®©

sein. Da aber anderseits fiir alle n stets z (y,) = a ist, gilt auch

limz(y,) = a.

n—» o

Das stellt einen Widerspruch gegen unsere Annahme dar.
Somit ist diese Annahme falsch und damit unser Satz bewiesen.
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