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SOME APPLICATIONS OF THE GAUSS-LUCAS

THEOREM1)

par L. A. Rubel

The Gauss-Lucas Theorem, that the zeros of the derivative
of a non-constant polynomial lie in the convex hull of the set

of zeros of the polynomial, is a surprisingly powerful and versatile
tool in classical analysis, despite its simplicity. To illustrate this
point, we prove several results, using the Gauss-Lucas Theorem
as our principal tool. To begin with, we present a short proof
of the Gauss-Lucas Theorem. As applications, we first give a

new lower bound on the largest modulus of the zeros of a
polynomial, in terms of the coefficients of the polynomial. Next, we
strengthen slightly a result of Edrei [2] on the zeros of the partial
sums of a power series. Finally, we reformulate a method of
Fejér, and use it to strengthen some classical results on lacunary
polynomials and entire functions with lacunary power series.

The Gauss-Lucas Theorem. The zeros of the derivative of
a non-constant polynomial P lie in the convex hull of the set

of zeros of P.

Proof. It is enough to prove that any open half-plane that
contains the zeros of P contains the zeros of P'fP. Without loss
of generality, we may suppose that all the zeros of P lie in the
open right half-plane. Writing.

P(z) a Y\(z -zn)

with zn — xnAr iyn, xn > 0 we have

P'(z)/P(z) Kz-z,,)-1

i) This study was partially supported by the United States Air Force Office of
Scientific Research Grant AF OSR 460-63.
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so that

Re{P'(z)IP(z)) £(x-x„)|z -zj
Hence, if a: < 0 then Re (Pf {z)jP (z)) < 0 and P'jP
consequently has no zeros in the open left half-plane.

Theorem. If P (z) a0 + ax z + + an zn, an ^ 0, then P
has a zero of modulus at least

max
O ^ v ^ n- 1

f(T a«-v 1

IW an J

1/v

Proof. First, considering the v-th derivative of P,

k\
Piv)(z)

*=v (k—v)\

we see that the product of the zeros of P(v) is

av v (n — v)
±~

an n

so that P(v) must have a zero of modulus at least

1 /(n-v)avv\(n—v)l
ar, n

since there are n — v roots. But by the Gauss-Lucas Theorem,
the modulus of the largest root of P cannot be smaller than this,
and the result is proved on interchanging v and n — v

Corollary. If Q (z) b0 + 2 + ••• + bnzn, b0 ^ 0, then Q

has a zero of modulus at most

mm
0 ^ V ^ n- 1

bo

bv

1/v

Proof. Apply the preceding theorem to P (z) z11 Q (Ifz)
The first part of the next result was proved, in a different

way, by Edrei [2].
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Theorem. Suppose that the formal power series, not a polynomial,

/(z) a0 + ax z + a2 z2 + a0 =£ 0

has the property that for infinitely many n, there is a closed

half-plane Tn that contains the origin and that contains all the

zeros of the partial sum Sn (z) aQ + al z + + an zn.

Then no two consecutive coefficients of f (z) may vanish. If one

coefficient vanishes, then there is a line through the origin that
contains all the zeros of all the partial sums.

Proof. Suppose, by way of contradiction, that two consecutive
coefficients of / do vanish. They are contained in a block of zero

coefficients, flanked left and right by non-zero coefficients, say
ap and aq, respectively. Choose n ^ <7, and differentiate Sn

successively p times, to get S*n Sn(p)

S*n (z) a\ + a*q zr + zr+l R(z)

where a*p ^ 0 a*q ^ 0 r q — p R is a polynomial, and
S*n has degree n — p Now define S*n* by S*n* (z) — zn~p S*n (1fz),
so that S*n* is again a polynomial. Differentiate S*n* successively

m times, where m n — q to get a polynomial S***,

*** s ** ** „Sn (z) aq + ap zs

,where aq ^ 0 ap ^ 0 and s q — p ^ 3. Now if Sn has
all its zeros in a closed half-plane Tn that contains the origin,
then repeated applications of the Gauss-Lucas Theorem show
that S*n also has all its zeros in Tn. Then S*n* has all its zeros in
the closed half-plane T*n {1/z: z s Tn} kj {0}. Again repeatedly
applying the Gauss-Lucas Theorem, we see that S*n** has all
its zeros in T*. But the zeros of S*n** are just s-ih roots of
— a*qfa*p and since s ^ 3 we have a contradiction.

In the sequel, the word « set » will denote subsets of the finite
complex plane.

Definition. If P is a polynomial, then Z (P) denotes the set of
zeros of P.
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Definition. If E is a finite set, then K (E) denotes the convex
hull of E, and K* (E) denotes K (E) u {0}.

Definition. If E is a set, then 1 fE denotes the set

1 /E {1/z: zg£, z ^0}

Definition: If P is a polynomial,

P(z) a0 + flj z + + anzn n > 0,

then P# denotes the polynomial

P#(z) - {a0+ + z) + +(fl0+fliZ + ...+fl„-1z""1)},
n

that is,

^ n — 1 n — 2 „ 1

P# (z) — a0 z H z +..•+- 0„-i
n n n

In other words, P# is just the arithmetic mean of the proper
partial sums of P. The next result is latent in the paper of Fejér
[3].

Theorem. If aQ ^ 0 and an # 0 then

Z(P#)s= -
1

K

or equivalently,

1

Z(P),

x[ —4^
Z (P*)J \Z(P).

Addendum. It will be clear from the proof that if # 0

then Z (i>#) S 1 IK*(1\Z(P)).Further, Z £ {0} u
1 IK(i/Z (P)) if a„ ¥= .0 and P(z) / In any event, so long
as P(z) * anz" Z (P*) S {0} u 1 (1/Z (i>)).
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Proof. A straightforward computation shows that if

and

R(z) z"P an + a„_i z + + a0 z"

6 (z) — Ä(z) «„-1 + 2«„_2z + ••• + na0zn
1

az

then

P*(z) - z"-' Q -a0 + o, z + + - z"-1
n z n n

Hence

while

Z(P#) c — if a0 =£ 0^ ' Z(Q)

Z(P*)s {0} u if 0

Since i? 7^ const., we may apply the Gauss-Lucas Theorem to get

Z(Q) £ K(Z(R))
Now

while

z{r)~Y(p) if an*°

Z(R) ~ {0}uz|p) if a" 0'

Combining these results, the theorem is proved.

Corollary. If a disc with center at the origin is free of zeros of P,
then it is free of zeros of P#.

Corollary. If a0an ^ 0 and if P* has at least three zeros whose

reciprocals are non-collinear, then so does P.

The first corollary is the basis of the proofs of the next
results. These results are quite classical, except that the first
is somewhat elaborated.
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Theorem. Suppose that

P (z) üq + a,i zkl -f- a2 z*2 -f- 4- an zkn

where 0 < kl < k2 < < kn, and aj ^ 0 for j 0,1 n

Let

a0 k2 k3 kn

ax k2 — kL k3 — kt kn — /cj

Then P has at least one zero in the disc

I z I ^ I a ri/ki.
If kl è 3 then P must have at least two distinct zeros in this
disc, and at least three distinct zeros whose reciprocals lie on

or outside the regular polygon whose vertices are the krth roots

of - 1/A.

Proof. Apply the operation # repeatedly, taking into account
the degrees of the resulting polynomials, to get the polynomial

k2 fc, k'j ki kn ki

k2 k3 kn

Applying the first corollary, we obtain the first part of the

theorem, since the zeros of P* are the roots of zkl — — A.
The other parts follow from simple geometric considerations
and the fact that

K I -A—) ç
1

Z(P*)J \Z(P)

Theorem. Suppose that f is a transcendental entire function with

power series expansion

00

/(z) £ akznkak*0 for 0,1, 2,
k=0

and suppose that

v
1

nk> 0 nk

Then the range of f contains each complex number.
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Proof. It is enough to prove that / has a zero, and we may
clearly suppose that nQ 0 From the proceding result, we see

that the nk-th partial sum of the power series for / has a zero in
the disc

I J i/"k

But since £ ijnk < oo the product ~(nilnk)) converges,
2

so that there is a fixed disc with center at the origin that contains
a zero of the nk-th partial sum for k 2, 3, 4, It follows that
/ has a zero in this disc, and the result is proved.

It should be pointed out that Biernacki [1] proved, under the
same hypotheses, and using a stronger form of the Gauss-Lucas

Theorem, that / takes each complex value infinitely often. It is

likely that our method can give a slight improvement of the
preceding result, but not to the full strength of Biernacki's
result. A recent result of G. and M. Weiss [5] gives a partial
analogue for functions regular in the unit disc.
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