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SOME APPLICATIONS OF THE GAUSS-LUCAS
THEOREM1)

par L. A. RuBEL

The Gauss-Lucas Theorem, that the zeros of the derivative
of a non-constant polynomial lie in the convex hull of the set
of zeros of the polynomial, is a surprisingly powerful and versatile
tool in classical analysis, despite its simplicity. To illustrate this
point, we prove several results, using the Gauss-Lucas Theorem
as our principal tool. To begin with, we present a short proof
of the Gauss-Lucas Theorem. As applications, we first give a
new lower bound on the largest modulus of the zeros of a poly-
nomial, in terms of the coefficients of the polynomial. Next, we
strengthen slightly a result of Edrei[2] on the zeros of the partial
sums of a power series. Finally, we reformulate a method of
Fejér, and use it to strengthen some classical results on lacunary
polynomials and entire functions with lacunary power series.

Tue Gavuss-Lucas Turorem. The zeros of the derivative of
a non-constant polynomial P lie in the convex hull of the set
of zeros of P.

Proof. It 1s enough to prove that any open half-plane that
contains the zeros of P contains the zeros of P’'/P. Without loss
of generality, we may suppose that all the zeros of P lie in the
open right half-plane. Writing.

P(2) = all(z~2),

with z, = z, + Wy, , =, > 0, we have

P'(2)[P(z) = }.(z—z,)"",

1) This study was partially supported by the United States Air Force Office of
Scientific Research Grant AF OSR 460-63.
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34
so that
Re(P'(2)/P(2)) = Y (x—x,) |z — 2,7 .
Hence, if z < 0, then Re (P’ (z)/P (z)) < 0, and P’'/P conse-

quently has no zeros in the open left half-plane.

TueoreEm. IfP(z) =ay+ a2+ ... +a,z", a, # 0, then P
has a zero of modulus at least
}llv

n =1
max
0<svs<n-1 v

Proof. First, considering the v-th derivative of P,

an—v

a

n

n k !
42 _ kv

we see that the product of the zeros of P®) is

so that P™ must have a zero of modulus at least

1/(n—v)

3

a,vi(n—v)!

a, n!

since there are n — v roots. But by the Gauss-Lucas Theorem,
the modulus of the largest root of P cannot be smaller than this,
and the result is proved on interchanging v and n — v.

CoroLLARY. If Q(2) = by + b2+ ... +b,2", by, # 0, then Q
has a zero of modulus at most
}llv

. n
min
0<vsn—1 V

Proof. Apply the preceding theorem to P (z) = z" Q (1/z) .
The first part of the next result was proved in a different

way, by Edrei1 [2].

bo

b,
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TuEOREM. Suppose that the formal power series, not a polynomual,
f(z) =ap+a;z+a,z2+..., ag#0, |

has the property that for infinitely many n, there is a closed
half-plane T, that contains the origin and that contains all the
zeros of the partial sum S,(z) = ay+ a2 + ... +a,z" .
Then no two consecutive coefficients of f (z) may vanish. If one
coefficient vanishes, then there is a line through the origin that
contains all the zeros of all the partial sums.

Proof. Suppose, by way of contradiction, that two consecutive
coefficients of f do vanish. They are contained in a block of zero
coefficients, flanked left and right by non-zero coefficients, say
a, and a,, respectively. Choose n = ¢, and differentiate S,
successively p times, to get S, = S,? |

Sy(z) =a, +a,z" + 27" R(2),

where a, # 0, a;, #0, r =¢q — p, R is a polynomial, and
S, has degree n — p. Now define S, by S, (z) = 2" ? S, (1/2),
so that S, is again a polynomial. Differentiate S, successi-
vely m times, where m = n — ¢, to get a polynomial S},

1] _ sk **% o
S, (z) =a, +a, z*°,

where a;” # 0, a, # 0, and s =¢ — p = 3. Now if §, has
all 1ts zeros in a closed half-plane 7', that contains the origin,
then repeated applications of the Gauss-Lucas Theorem show
that S, also has all its zeros in T,. Then S, has all its zeros in
the closed half-plane 7, = {1/z:z¢ T,} U {0}. Again repeatedly
applying the Gauss-Lucas Theorem, we see that S, has all
its zeros in 7,. But the zeros of S, are just s-th roots of
— a; |a, , and since s = 3, we have a contradiction.

In the sequel, the word « set » will denote subsets of the finite
complex plane.

DeriNiTION. If P is a polynomial, then Z (P) denotes the set of
zeros of P.
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DeriNITION. If E is a finite set, then K (E) denotes the conver
hull of E, and K* (E) denotes K (E) u {0}.

DErINITION. If E is a set, then 1/E denotes the set

1)E = {1/z:z€E, z #0} .

DEeFiNITION: If P is a polynomial,
P(z)=ay+a;z+ ...+a,z", n>0,

then P# denotes the polynomial
# 1 n—1
P#(z2) = ;l—{a0+(a0+a1 z) + ...+ (@g+ayz+...4a,_1 2"},

that ts,

n—1 n—2 1 1

P#(2) = ay + a, z + a, 2% + oo + —ay_y 2"
n

n

In other words, P* is just the arithmetic mean of the proper
partial sums of P. The next result is latent in the paper of Fejér

(3].

THEOREM. If ay # 0 and a, # 0, then
1
1\
K| ——
(Z(P)>
2 1 . 1
Z(P*)) Z(P))

Addendum. It will be clear from the proof that if a, # O,
then Z (P*) < 1/K* (1/Z (P)). Further, Z (P*) < {0} L
1/K (4/Z (P)) if a, # 0 and P (z) # a,z". In any event, so long
as P(z) # a,2", Z(P*) < {0} 1/K* (1/Z (P)).

Z(P#)c

or equivalently,
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Proof. A straightforward computation shows that if

1
R(z) = z"P<—>= a, +a,_1z+ ... +agz".
z

and
d n—1
0(z) = —R(z)—a,, 1 +2a,_,z+ .. +nayz ,
then
_ n—1 1 _—
P#(z) = -z""1'Q - =a, + alz+...+-’;an_1z
n
Hence
1
Z(P*YS —— if ay#0,
Z(Q) °
while
1
Z(P*) c {0} u —— if a9 =0.
{0} 70 0

Since R # const., we may apply the Gauss-Lucas Theorem to get
Z(Q) = K(Z(R)) .

Now

1
Z(R)CZ(—P) if a, #0

while

1 ) _
Z(R) {O}UZ(P) if a,=0.

Combining these results, the theorem is proved.

CoroOLLARY. If a disc with center at the origin is free of zeros of P,
then it is free of zeros of P#.

COROLLARY. If aya, # 0 and if P* has at least three zeros whose
reciprocals are non-collinear, then so does P.

The first corollary i1s the basis of the proofs of the next
results. These results are quite classical, except that the first

18 somewhat elaborated.

't
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THEOREM. Suppose that

ko

P(z) = ay + ay Z 4 a,z?*+ ... +a,,zk"

where 0 <k, <k, <.. <k,, and a; # 0 for j =0,1...,n.
Let
ao  k, ks ki,

A=— :
alkz_k1k3'—k1 kn_kl

Then P has at least one zero in the disc
lz| S |A|7 R,

If ky = 3, then P must have at least two distinct zeros in this
disc, and at least three distinct zeros whose reciprocals lie on
or outside the regular polygon whose vertices are the k,-th roots
of — 1/A.

Proof. Apply the operation 7# repeatedly, taking into account
the degrees of the resulting polynomials, to get the polynomial
kz - kl k3 - kl kn - kl k

a, zt.
k2 k3 kn

P*(z) = a, +

Applying the first corollary, we obtain the first part of the
theorem, since the zeros of P* are the roots of 7 = — A.
The other parts follow from simple geometric considerations
and the fact that

1 1
K < K(=—=].
(Z (P*)> <Z (P)>

THEOREM. Suppose that f is a transcendental entire function with
power series expansion

f@ =Y az%, a #0 for k=012, ..,
k=0

and suppose that
1

Y — < .

np>0 Ny

Then the range of | contains each complex number.
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Proof. 1t is enough to prove that f has a zero, and we may
clearly suppose that n, = 0. From the proceding result, we see
that the n,-th partial sum of the power series for f has a zero in
the disc

\

/ 1/ng

< ‘>
A 3 Gy
n, N, N

But since Y 1/n, < oo, the product [] (1 —(ny/n)) converges,
2

so that there is a fixed disc with center at the origin that contains
a zero of the n,-th partial sum for £ = 2, 3, 4, ... . 1t follows that
f has a zero in this disc, and the result is proved.

It should be pointed out that Biernacki[1] proved, under the
same hypotheses, and using a stronger form of the Gauss-Lucas
Theorem, that f takes each complex value infinitely often. It is
likely that our method can give a slight improvement of the
preceding result, but not to the full strength of Biernacki’s
result. A recent result of G. and M. Weiss [b] gives a partial
analogue for functions regular in the unit disc.
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