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aires des trois sections par hf et h" les distances de P' et de P"
à P, et posons h' + h" h Alors

hjs^ h" JS'+ ;

l'égalité n'est atteinte que si la portion de l'ovoïde comprise entre
P' et P" est un tronc de cône. "

UNE CLASSIFICATION DES OVALES (14)

Considérons un ovale dont le contour a une courbure définie
en chaque point (15) et ne comporte pas d'arc de cercle. On sait que
ses sommets sont en nombre pair, les points de courbure maximum

et minimum alternant. On peut alors classer l'ovale d'après
le nombre de ses côtés, en appelant côté tout arc qui joint deux
sommets à courbure maximum consécutifs. La forme de Vocale

trilatère (trois côtés) ou quadrilatère, par exemple, se rapproche
de celle du triangle ou du quadrilatère. Le cercle étant écarté, le

plus simple des ovales est bilatère (théorème des quatre sommets) ;

l'ellipse en est un cas particulier.

Remarque.

Un ovale a une tangente en tout point, sauf éventuellement
en un nombre fini de points anguleux. Même s'il ne présente pas
de tels points, il peut avoir autant de points à courbure non
définie que l'on veut. Pour le voir il suffit de penser à un ovale
formé par 4n arcs, raccordés tangentiellement, qui sont prélevés
alternativement sur deux cercles de rayons différents et ont tous

pour mesure en radians —.2n

Notion de spirale.

J'appelle ainsi tout arc de courbe, dont la variation de la courbure

est monotone. Chaque côté d'un ovale se compose donc de
deux spirales. Dans (3) j'ai établi un certain nombre de propriétés
de la spirale, telles que: elle ne peut se recouper; en chacun de ses

points le cercle de courbure la traverse; elle est située entièrement
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dans la couronne que forment ses deux cercles de courbure
extrêmes; si elle est intérieure au triangle formé par les tangentes
en ses extrémités et leur corde de contact AB, la variation de

/\l'angle AMB inscrit dans la spirale est monotone.
En définitive, ne trouvez-vous pas que le sujet simple et un

peu insolite de cet exposé ne manque pas d'intérêt

(1) Conférence faite aux Journées d'Etudes de l'A.P.M. (Association des Professeurs
de Mathématiques de l'Enseignement Public) en février 1966 à Strasbourg.

(2) Les ovales du plan offrent un exemple intéressant d'un ensemble, muni de deux
lois de composition externe et interne, qui ne forme pas un espace vectoriel. (En particulier

0+ (—0) n'est pas égal à l'ovale nul.)
(3) Revue de Mathématiques Spéciales; octobre et novembre 1953.
(4) Comptes Rendus, 241, 1955, pp. 274-275.
(5) Comptes Rendus, 240, 1955, p. 483.
(6) Comptes Rendus, 240, 1955, p. 584.
(7) Pacific J. Math. 10, 1960, pp. 1257-1261 (« Partitions of mass-distributions and

of convex bodies by hyperplanes »).

(8) Mathematika (« Volumes cut from convex bodies by planes »).

(9) Dans ma thèse, j'ai étudié entre autres les polyèdres convexes, dont les sommets
ont des coordonnées entières ou rationnelles. (Sur un problème de géométrie diophantienne
linéaire, Grenoble, juin 1964).

(10) Comptes Rendus, 258, 1964, pp. 4885-4887 (Une généralisation probable du
théorème fondamental de Minkowski).

(11) Comptes Rendus, 240, 1955, pp. 483-485.
(12) Enseignement Math., fasc. 1-2 de 1964, pp. 138-146.
(13) Remarquons que ce raisonnement reste valable pour des courbes fermées non

convexes.
(14) J'ai proposé cette classification en 1953 dans 3).
(15) On peut aussi admettre des points anguleux, en les considérant comme des

sommets à courbure maximum (infinie), sans considération de courbure à gauche ou
à droite. (On peut imaginer le raccord fait au point anguleux par un arc infiniment petit,
dont le rayon de courbure tend vers zéro.)

(Reçu le 15 février 1965)

11, rue de Bruges
Strasbourg
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