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culierement de V'intuition. On s’en rend compte en essayant de
répondre aux questions suivantes, dont on lira plus loin les
réponses.

Questions :
1) Quels sont les ovoides dont toute section plane a un centre
de symétrie ?
2) Quels sont les ovoides dont tous les contours apparents
sont plans ?

3) Quels sont les ovoides (solides homogénes) qui restent
en équilibre sur un plan horizontal en toute position ?

4) Ll’ellipse est-elle le seul ovale ayant un cercle orthoptique ?

5) Existe-t-1l des ovales non circulaires ayant un point inté-
rieur tel que toutes les cordes qui y passent soient égales ?

6) Existe-t-1l un ovale ayant deux tels points ?

Réponses :

1) et 2) Iellipsoide seulement;
3) la sphére seulement;

N

non;

ot

)
) oui, une infinité pour chaque longueur donnée de la corde;
)

<D

non.

IV. THEOREMES D'EXTREMA

Tout le monde sait qu’a volume donné I'ovoide de surface
minimum est la sphére; cela ne signifie pas que la démonstration
en soit facile.

A volume donné, I'ovoide de plus petit diametre est la sphére.

A volume et a hauteur donnés, quel est ’ovoide de révolution

de surface maximum? C’est un cylindre, un cone ou un tronc de
3

cOne, suivant la valeur du rapport 7

A largeur donnée, 'ovale de plus petite surface est le triangle
équilatéral.



Le plus petit disque qui peut couvrir tout ovale de diametre D
D
a pour rayon R = —=.
P y \/3

Tout ovale a-t-il un cercle circonscrit minimum et un cercle
inscrit maximum uniques? — Oui pour le premier, non pour le
second. (Pour le deuxiéme pensons a un rectangle.)

Soit un arc de courbe de longueur donnée, s’appuyant en ses
extrémités sur les deux cotés d’un angle fixe. Steiner a démontré
que l'aire limitée par I'angle et 'arc est maximum, si 'arc est
circulaire et centré au sommet de ’angle.

Inutile de dire que de nombreux problemes sur les ovales et les
ovoides sont encore ouverts, telle la question de Henri Lebesgue:
quel est 'ovale, d’aire minimum, pouvant couvrir tous les ovales
de méme diametre donné ?

(QUELQUES DEMONSTRATIONS TYPIQUES

S’1l n’y a pas de principe général pour aborder les problemes
des corps convexes, 11 y a cependant quelques méthodes de
démonstration auxquelles on recourt fréquemment.

Le polygone convexe.

Si une propriété est démontrée pour tout polygone convexe,
elle est vraie pour 'ovale, que 1’on peut considérer comme un tel
polygone de cOtés infiniment petits. Le cas extréme est alors
souvent le triangle. C’est de cette maniére qu’on peut, par
exemple, démontrer le théoréme des quatre cinquiemes. On peut
aussl comparer un ovale a un polygone. Ainsi pour démontrer le
théoréme des points entiers, on remplace ’ovale par le polygone
qui est I’enveloppe convexe de ses points entiers intérieurs ou
périphériques. (La démonstration compléte dans (2) prend moins
d’une page.)

La fonction continue.

Soit, par exemple, a démontrer que tout ovale admet au moins
un carré circonscrit, ¢’est-a-dire formé par des droites supports.
Prenons dans le plan orienté de I'ovale un axe fixe A. A une
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