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OVALES ET OVOÏDES1)

par E. Ehrhart

Introduction

La notion de convexité a toujours joué un rôle important en

géométrie. Il est d'autant plus étonnant que ce n'est qu'en 1887,

que paraît le premier ouvrage consagré uniquement et
systématiquement à la convexité, la thèse de Brunn Ovales et ovoïdes.

Depuis lors de nombreux livres ont été écrits à ce sujet. Parmi
les plus importants citons:

[1] Minkowski, 1905, Théorie des corps convexes.

[2] Blaschke, 1916, Cercle et sphère.

[3] Bonnesen et Fenchel, 1934, Théorie des corps convexes.

[4] Jaglom et Boltyanski, 1951, Figures convexes.

[5] Egglestone, 1957, Applications de la convexité.

[6] Hadwiger, 1958, Cours sur le volume, la surface et Visopérimétrie.

[7] 1963, Convexité, par la Société Mathématique américaine.

Le plus complet de ces ouvrages est sans doute [3]. (Il
commence malheureusement à dater). On y cite plus de 200 auteurs et

près de 800 titres. En particulier on y trouve mentionnées en
bonne place une douzaine de publications de Jean Favard.
[4] est un livre admirable de simplicité et d'ingéniosité. Quoi qu'il
s'adresse à des élèves, on y trouve mainte question ouverte.
Il se lit vraiment comme un roman, un roman policier, car les

questions posées ensemble dans une première partie sont résolues

dans la seconde. [5] montre à quel point la convexité s'introduit

dans les disciplines mathématiques les plus variées. [7],
gros ouvrage de plus de 500 pages, est le compte rendu du
Symposium sur la Convexité, qui a eu lieu en juin 1961 à Seattle
(Washington). On y engrange une ample moisson de résultats
récents. J'ai eu l'agréable surprise de m'y voir cité une dizaine
de fois.
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Il est remarquable que d'une hypothèse aussi réduite que la
convexité — cette restriction n'empêche que l'ovale dépende
d'une infinité de paramètres — on ait pu déduire tant de résultats
nullement évidents, et cela en l'absence de toute méthode
générale. On ne peut évidemment espérer trouver des égalités,
mais on obtient des inégalités, ou ce qui revient au même, des

extrema. L'absence de méthode classique déjà signalée, que l'on
retrouve d'ailleurs dans toute la moderne géométrie finie, est
un des attraits du sujet. Paul Montel l'a magistralement
caractérisée au Colloque de Liège de 1955:

« L'application à ces questions des méthodes usuelles de

l'analyse se heurte le plus souvent à de très grandes difficultés.
l'imagination y joue autant de rôle que l'esprit critique,

car les méthodes doivent être créées de toutes pièces, dès que
l'on abandonne le support analytique. »

Terminologie

Rappelons d'abord quelques définitions essentielles de la
théorie des corps convexes. Un corps est convexe, s'il contient
tout segment dont il contient les extrémités. Une figure plane
convexe et bornée, autre qu'un segment de droite, sera appelée
ovale, même si son contour comporte des points anguleux ou des

segments de droite. (On précisera s'il y a lieu, s'il s'agit de l'ovale
ouvert ou fermé). Une droite-support d'un ovale est une droite
de son plan qui contient au moins un point de son bord, et qui
laisse l'ovale entièrement d'un même côté. La plus grande et la

plus petite distance entre deux droites-supports parallèles d'un
ovale sont respectivement son diamètre et sa largeur. Définition
analogue du plan-support de l'ovoïde — la figure convexe
bornée à trois dimensions — de son diamètre et de sa largeur.

Naturellement il ne peut pas être question de faire ici un
rapport exhaustif sur le sujet. On ne peut que citer quelques
résultats particulièrement intéressants à tel ou tel égard. Je vais
classer les théorèmes choisis en quatre catégories, quelque peu
arbitrairement.
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