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OVALES ET OVOIDES?Y)

par E. EBRHART

INTRODUCTION

La notion de convexité a toujours joué un role important en
géométrie. Il est d’autant plus étonnant que ce n’est qu’en 1887,
que parait le premier ouvrage consagré uniquement et systé-
matiquement & la convexité, la thése de Brunn Ovales et ovoides.
Depuis lors de nombreux livres ont été écrits a ce sujet. Parmi
les plus importants citons:

[1] Minkowskl, 1905, Théorie des corps convexes.

[2] BrascHKE, 1916, Cercle et sphére.

[3] BonnEsEN et FENcHEL, 1934, Théorie des corps convezxes.

[4] JacLom et BoLtyanskr, 1951, Figures conyexes.

(5] EccLEsTONE, 1957, Applications de la convexité.

[6] HADWIGER, 1958, Cours sur le volume, la surface et I'isopérimeétrie.
[7] 1963, Convexité, par la Société Mathématique américaine.

Le plus complet de ces ouvrages est sans doute [3]. (Il com-
mence malheureusement a dater). On y cite plus de 200 auteurs et
prés de 800 titres. En particulier on y trouve mentionnées en
bonne place une douzaine de publications de Jean Favard.
[4] est un livre admirable de simplicité et d’ingéniosité. Quoi qu’il
s'adresse a des éléves, on y trouve mainte question ouverte.
Il se lit vraiment comme un roman, un roman policier, car les
questions posées ensemble dans une premiere partie sont réso-
lues dans la seconde. [5] montre & quel point la convexité s’intro-

duit dans les disciplines mathématiques les plus variées. [7],

gros ouvrage de plus de 500 pages, est le compte rendu du Sym-
posium sur la Convexité, qui a eu lieu en juin 1961 a Seattle

(Washington). On y engrange une ample moisson de résultats

récents. J'air eu 'agréable surprise de m’y voir cité une dizaine
de fois.
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I est remarquable que d’une hypothése aussi réduite que la
convexité — cette restriction n’empéche que 'ovale dépende
d’une infinité de parameétres — on ait pu déduire tant de résultats
nullement évidents, et cela en l'absence de toute méthode
générale. On ne peut évidemment espérer trouver des égalités,
mais on obtient des inégalités, ou ce qui revient au méme, des
extrema. L’absence de méthode classique déja signalée, que 1’on
retrouve d’ailleurs dans toute la moderne géométrie finie, est
un des attraits du sujet. Paul Montel I’a magistralement carac-
térisée au Colloque de Liége de 1955:

« L’application a ces questions des méthodes usuelles de
I'analyse se heurte le plus souvent & de trés grandes difficultés.
. 'imagination y joue autant de réle que Pesprit critique,
car les méthodes doivent étre créées de toutes piéces, dés que
I'on abandonne le support analytique. »

TERMINOLOGIE

Rappelons d’abord quelques définitions essentielles de la
théorie des corps convexes. Un corps est conveze, s'il contient
tout segment dont il contient les extrémités. Une figure plane
convexe et bornée, autre qu'un segment de droite, sera appelée
ovale, méme si son contour comporte des points anguleux ou des
segments de droite. (On précisera s’il y a lieu, s’il s’agit de I'ovale
ouvert ou fermé). Une droite-support d'un ovale est une droite
de son plan qui contient au moins un point de son bord, et qui
laisse 'ovale entiérement d’un méme co6té. La plus grande et la
plus petite distance entre deux droites-supports paralléles d’un
ovale sont respectivement son diamétre et sa largeur. Définition
analogue du plan-support de l'ovoide — la figure convexe
bornée a trois dimensions — de son diametre et de sa largeur.

Naturellement il ne peut pas étre question de faire ici un
rapport exhaustif sur le sujet. On ne peut que citer quelques
résultats particuliérement intéressants a tel ou tel égard. Je vais
classer les théorémes choisis en quatre catégories, quelque peu
arbitrairement.
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I. THEOREMES IMPORTANTS

Si les propositions de ce chapitre ont de nombreuses applica-
tions, cela vient sans doute de leur généralité; on peut en effet
les étendre & l'espace & n dimensions.

Rappelons d’abord quelques propriétés, qui, pour étre banales,
n’en sont pas moins importantes:

— L’intersection de plusieurs ovales est un ovale. Théoréme ana-
logue pour les ovoides. Toute section plane d'un ovoide est
un ovale. I ombre au soleil d’un ovale ou d’un ovoide est un
ovale.

Encore intuitif, mais plus difficile & démontrer:

— Le périmétre d’un ovale est plus court que toute courbe
fermée qui Ventoure; de méme la surface d’un ovoide est
inférieure & toute surface fermée qui le contient.

— Tout ovoide est rigide, c’est-d-dire qu’il n’existe pas de
déformation continue, conservant les longueurs des courbes
tracées sur sa surface.

Et voici deux propositions capitales, aussi générales que
simples, les théorémes de Brunn et de Helly.

Théoréme de Brunn: Dans le cas le plus complet, la variation
des cordes paralléles d'un ovale ne présente que trois phases
successives: crolssance, constance, décroissance; une ou deux
de ces phases peuvent d’ailleurs manquer (pensons par exemple
aux cordes d’un triangle paralleles & un c¢6té.) « Un ovale normal
(c’est-a-dire dont le contour ne comporte pas de segment de
droite) présente toujours juste deux phases: croissance et décrois-
sance. » De méme les aires des sections planes paralléles d’un
ovoide ne présentent, dans le cas le plus complet, que les trois
phases de variation précédentes. « Si I’ovoide est normal (¢’est-a-
dire s1 sa surface ne comporte ni facette plane, ni portion cylin-
drique), la variation se reduit juste & croissance puis décrois-
sance. » Il est remarquable que, «si 'on remplace les aires des
sections planes par leurs périmétres, la proposition de Brunn
subsiste ». (On I'appele parfois le théoréme de la pomme de terre.)
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Le théoréme de Helly date de 1921, mais on n’en a vu tout
I'intérét — aussi en analyse — que récemment: Si des ovales ont
trois & trois un point commun, ils ont tous un point commun;
il en est de méme d’ovoides qui ont quatre & quatre un point
commun. On en a déduit, par exemple, que si un ovale peut
couvrir tout triplet d’un ensemble fini d’ovales, il peut les couvrir
tous; en particulier si un cercle est un couvercle pour tout triplet
d’un ensemble fini de points d’un plan, il est un couvercle pour
tous.

Voyons maintenant quelques opérations qui « transforment »
un ovale en ovale, un ovoide en ovoide. Soulignons d’avance qu’il
ne s’agit pas de transformations ponctuelles:

La symétrisation.

1) D’un ovale par rapport & une droite 4 de son plan: on rem-
place toute corde perpendiculaire & cette droite par un seg-
ment de méme support et de méme longueur, centré sur elle.
Cette symétrisation conserve l'aire de l'ovale et ne peut
augmenter son périmetre.

2) D’un ovoide par rapport & un plan P: dans la définition
précédente on substitue P a A.

3) D’un ovoide par rapport a une droite: on remplace toute
section plane perpendiculaire a cette droite par un cercle de
méme plan et de méme aire, centré sur elle.

Les symétrisations 2) et 3) ne peuvent augmenter la surface
de I'ovoide et conservent son volume (principe de Cavalieri).

Le tassement.

Tasser un ovale sur une droite 4, ¢’est remplacer toute corde
perpendiculaire par un segment AB de méme support et de
méme longueur, de maniére que tous les A soient sur 4 et tous les
B du méme coté de cette droite. Définition analogue pour le
tassement d’un ovoide sur un plan. Remarquons que le tassement
d’un ovale étant un ovale, il en résulte le théoréme de Brunn
avec une précision supplémentaire:

Soit C (X) la longueur d’une corde d’un ovale perpendiculaire
a un axe 0X, en fonction de son abscisse. Non seulement la
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variation de C (X) est au plus triphasée, mais encore C (X) est
une fonction convexe.

La combinaison linéaire Za; 0; de plusieurs ovales ou ovoides est
respectivement un ovale ou un ovoide.

Précisons le sens de cette combinaison linéaire. Soit P un
point fixe. Alors a; 0; correspond & 0; dans ’homothétie (P, a;).
Quant & 0" + 0", c’est Yovale (ou 'ovoide) constitué par I'en-
semble des points M tels que pJj = PM' + PM", ou M’ et
M" sont respectivement des points arbitraires de 0" et de 0”.
(Si on change le point fixe P, le corps convexe Za; 0; subit
simplement une translation). ()

0+ (-0) : .
L’ovale — @ des propriétés remarquables: 1 a un
centre de symétrie; il a mémes diameétre, largeur et périmeétre
que 0; son aire ne peut étre inférieure a celle de 0. De méme

0 -0 : .
Iovoide ——% a un centre de symétrie, conserve le diametre,

la largeur et la surface de 0, et son volume ne peut étre inférieur
a celui de 0.

II. QUELQUES RECHERCHES PERSONNELLES RECENTES

Le trait commun aux théorémes groupés dans ce chapitre
est qu’ils me sont particulierement familiers, soit parce que j’en
ai donné une nouvelle démonstration, soit méme parce que je les
a1 trouvés.

Le théoréme des quatre sommets. — « Tout ovale, dont la cour-
bure du contour est définie en chaque point, a au moins quatre
sommets », ¢’est-a-dire que sa courbure passe par quatre extrema
au moins. Cette proposition, aujourd’hui bien classique, a été
trouvée en 1908 par I'Indien Mukhopadyaya. J’en ai donné
une démonstration purement géométrique, dans un article
intitulé « spirales et ovales ». (3)

Le théoréme des deux tiers. — Appelons noyau d’un ovale son
intersection avec le symétrique par rapport 4 son centre de
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gravité (plaque homogeéne). « L’aire du noyau est supérieure ou
égale aux deux tiers de celle de 'ovale; I’égalité n’est atteinte
que par les triangles. » Je I’ai trouvé et démontré avec quelques
restrictions en 1955 (%). Trois ans apres il a été établi comple-
tement par I’Américain Stewart et le Russe Kozinec, indépen-
damment 'un de Iautre.

Le théoréme des quatre cinquiémes. — « Lie rapport de la plus
petite a la plus grande des deux aires découpées dans un ovale
par une droite qui passe en son centre de gravité est supérieur ou
égal & 0,8; ’égalité ne peut étre atteinte que par un triangle. »
Cette propriété a été découverte par Winternitz en 1923. J’en ai
donné une nouvelle démonstration (%), puis, en 1955, j’ai trouvé
et démontré la proposition analogue de l’espace: «Soit V le
volume d’un ovoide et ¢ celui d’une portion détachée par un

v 3\°
plan passant en son centre de gravité. Alors % ><21> ; Pégalité

ne peut étre atteinte que par un cone» (®). Dans (%) j’avais formulé
la conjecture générale suivante: « Soit V la mesure d’un corps
convexe a n dimensions et ¢ celle d’'une portion détachée par
un hyperplan (n —1)-dimensionnel, passant en son centre de

v n
oravité. Alors — >
° Vo (n +1

en 1960 par Griinbaum (%) et par P.C. Hammer (8). Remarquons

v 1 "
qu’il en résulte que % > — quel que soit n (Le rapport critique est
e

n
>». Cette conjecture a été démontrée

1 1
touj I tre — et .
donc toujours compris entre 3 e 2,72>

Pour terminer je mentionnerai deux théorémes concernant les
corps convexes placés dans un réseau entier (°):

Généralisation du théoréme de Minkowski. — Rappelons
d’abord ce théoréme fondamental de la géométrie des nombres.
«Si un corps convexe & n dimensions a un centre de symétrie
0, appartenant & un réseau n-dimensionnel, et que sa mesure
réticulaire est supérieure a 2", 0 n’est pas le seul point entier
interne. I1 existe une infinité de parallélotopes de mesure 2", dont
le centre est le seul point entier interne.» Cette année (19) j’ai
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indiqué les raisons pour lesquelles on peut tres probablement
remplacer dans cet énoncé « centre de symétrie » par « centre de
(n+ 1)
n!
et le mot « parallélotope » par « simplexe ». En particulier je I'ai
démontré pour n = 2 (11): «Si le centre de gravité d’un ovale est
placé en un point entier 0 d'un réseau, dont une base est un carré
de coté 1, et que son aire est supérieure a 3, il renferme un point
entier autre que 0; il existe une infinité de triangles d’aire 3, dont
le centre de gravité est le seul point entier intérieur. »

gravité », si l'on remplace la mesure critique 2" par

Théoréme des points entiers. — Cette année également, j’ai
établi dans I’ Ensetgnement Mathématique (*2) le résultat suivant:
« Sotent § et [ I'aire et le périmetre d’un ovale situé dans le plan
d’un réseau orthonormé, et jle nombre de points entiers situés dans

I'ovale ou sur son bord. Alors j << .§ 4 5 + 1 ; I’égalité ne peut

étre atteinte que par des rectangles.» Dans la méme note j’ai
établi des bornes analogues pour le j d'un ovoide. Mais je n’ai
pu démontrer que pour certaines familles de corps convexes,
Pintéressante conjecture suivante: « Soient V et § le volume et la
surface d’un ovoide, et a, b, ¢ ses hauteurs dans la direction des

S
axes d’un réseau orthonormé. Alors j < V + 5 +a+b-+ec

-+ 1 ; I’égalité ne peut étre atteinte que par des parallélépipedes
rectangles. » (A fortiori, si D désigne le diametre de Yovoide,

5
<V 4+ > + 3 D + 1, borne non stricte, mais qui a ’avantage

d’étre invariante par rapport aux déplacements.)

I[II. THEOREMES CURIEUX

Peut étre vous rappelez-vous comme moi de 1’étonnement
qui fut le votre, le jour ol pour la premiere fois on vous a parlé
de la roue de Reuleau: il y a une infinité d’ovales, autres que le
cercle, qui ont méme hauteur dans toutes les directions. C’est
que dans le domaine qui nous occupe, il faut se méfier tout parti-
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culierement de V'intuition. On s’en rend compte en essayant de
répondre aux questions suivantes, dont on lira plus loin les
réponses.

Questions :
1) Quels sont les ovoides dont toute section plane a un centre
de symétrie ?
2) Quels sont les ovoides dont tous les contours apparents
sont plans ?

3) Quels sont les ovoides (solides homogénes) qui restent
en équilibre sur un plan horizontal en toute position ?

4) Ll’ellipse est-elle le seul ovale ayant un cercle orthoptique ?

5) Existe-t-1l des ovales non circulaires ayant un point inté-
rieur tel que toutes les cordes qui y passent soient égales ?

6) Existe-t-1l un ovale ayant deux tels points ?

Réponses :

1) et 2) Iellipsoide seulement;
3) la sphére seulement;

N

non;

ot

)
) oui, une infinité pour chaque longueur donnée de la corde;
)

<D

non.

IV. THEOREMES D'EXTREMA

Tout le monde sait qu’a volume donné I'ovoide de surface
minimum est la sphére; cela ne signifie pas que la démonstration
en soit facile.

A volume donné, I'ovoide de plus petit diametre est la sphére.

A volume et a hauteur donnés, quel est ’ovoide de révolution

de surface maximum? C’est un cylindre, un cone ou un tronc de
3

cOne, suivant la valeur du rapport 7

A largeur donnée, 'ovale de plus petite surface est le triangle
équilatéral.



Le plus petit disque qui peut couvrir tout ovale de diametre D
D
a pour rayon R = —=.
P y \/3

Tout ovale a-t-il un cercle circonscrit minimum et un cercle
inscrit maximum uniques? — Oui pour le premier, non pour le
second. (Pour le deuxiéme pensons a un rectangle.)

Soit un arc de courbe de longueur donnée, s’appuyant en ses
extrémités sur les deux cotés d’un angle fixe. Steiner a démontré
que l'aire limitée par I'angle et 'arc est maximum, si 'arc est
circulaire et centré au sommet de ’angle.

Inutile de dire que de nombreux problemes sur les ovales et les
ovoides sont encore ouverts, telle la question de Henri Lebesgue:
quel est 'ovale, d’aire minimum, pouvant couvrir tous les ovales
de méme diametre donné ?

(QUELQUES DEMONSTRATIONS TYPIQUES

S’1l n’y a pas de principe général pour aborder les problemes
des corps convexes, 11 y a cependant quelques méthodes de
démonstration auxquelles on recourt fréquemment.

Le polygone convexe.

Si une propriété est démontrée pour tout polygone convexe,
elle est vraie pour 'ovale, que 1’on peut considérer comme un tel
polygone de cOtés infiniment petits. Le cas extréme est alors
souvent le triangle. C’est de cette maniére qu’on peut, par
exemple, démontrer le théoréme des quatre cinquiemes. On peut
aussl comparer un ovale a un polygone. Ainsi pour démontrer le
théoréme des points entiers, on remplace ’ovale par le polygone
qui est I’enveloppe convexe de ses points entiers intérieurs ou
périphériques. (La démonstration compléte dans (2) prend moins
d’une page.)

La fonction continue.

Soit, par exemple, a démontrer que tout ovale admet au moins
un carré circonscrit, ¢’est-a-dire formé par des droites supports.
Prenons dans le plan orienté de I'ovale un axe fixe A. A une
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direction S caractérisée par I'angle (4, 3) = X, correspond un
rectangle circonscrit, dont les cotés paralléles et perpendiculaires
a § ont pour longueurs respectivement a, et b,. Quand S aura

T a , .
tourné de 5 le rapport 5 fonction continue de X, aura passé

ao . b . : ;
de — & —. Il aura donc pris au moins une fois la valeur 1. (%)
o 4o

On peut démontrer de facon analogue, que tout ovale admet
un carré inscrit; que tout point intérieur d’un ovale est le milieu
d’une corde; qu’il existe une droite qui bissecte a la fois les aires de
deux ovales donnés, ou un plan qui bissecte les volumes de trois
ovoides donnés.

La récurrence.

Démontrons par exemple le théoreme de Helly pour les
ovales. Montrons d’abord qu’il est vrai pour quatre ovales 0,,
0,, 03, 04. Désignons par (77K) le point commun & 0;, 0;, Ok, et
écartons le cas banal ou trois de ces points seraient alignés. Alors
ou bien trois des points — soit pour fixer les idées, (123), (134),
(142) — déterminent un triangle, qui renferme le quatriéme
(234), ou bien les quatre points forment un quadrilatére convexe,
soit par exemple (123) (234) (341) (413). On voit alors aisément
que les quatre ovales ont en commun le point (234) dans le
premier cas, le point d’intersection des diagonales dans le second.
Supposons maintenant le théoréme de Helly vrai pour n ovales,
et considérons n + 1 ovales 0,,0,...0,,0,,, ayant trois a trois
un point commun. Désignons 0, n 0, ,, par 0. Les quatre corps
0; 0;,0,, 0,4, ayant trois & trois un point commun, ont tous un
point commun, qui est aussi commun au triplet 0;, 0;, 0. Les n

ovales 0,, 05, ..., 0,_; , 0" ont done trois a trois un point commun,
et par suite ont tous un point commun, qui appartient aussi a
0,eta0,,,.

Evidemment certaines démonstrations nécessitent des outils
plus compliqués. Ainsi pour établir le théoreme de Brunn sur
les ovoides, on se sert de I'importante inégalité de Brunn-
Minkowski: « Soient P’, P, P” trois plans sécants paralléles d’un
ovoide, se suivant dans cet ordre. Désignons par S’, S, 5" les
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aires des trois sections par &’ et 2" les distances de P’ et de P”
a P, et posons 2" + k" = h. Alors

hSzh" /S +h.S";

I'égalité n’est atteinte que si la portion de 'ovoide comprise entre
P’ et P” est un tronc de cone.”

UNE CLASSIFICATION DES OVALES (1)

Considérons un ovale dont le contour a une courbure définie
en chaque point (*) et ne comporte pas d’arc de cercle. On sait que
ses sommets sont en nombre pair, les points de courbure maxi-
mum et minimum alternant. On peut alors classer 'ovale d’apres
le nombre de ses cotés, en appelant cité tout arc qui joint deux
sommets & courbure maximum consécutifs. La forme de Iovale
trilatére (trois cotés) ou quadrilatére, par exemple, se rapproche
de celle du triangle ou du quadrilatére. Le cercle étant écarté, le
plus simple des ovales est bilatére (théoréme des quatre sommets);
Iellipse en est un cas particulier.

Remarque.

Un ovale a une tangente en tout point, sauf éventuellement
en un nombre fini de points anguleux. Méme §’il ne présente pas
de tels points, il peut avoir autant de points a courbure non
définie que 'on veut. Pour le voir il suffit de penser & un ovale
formé par 4n arcs, raccordés tangentiellement, qui sont prélevés
alternativement sur deux cercles de rayons différents et ont tous

_ T
pour mesure en radians >
n

Notion de spirale.

J’appelle ainsi tout arc de courbe, dont la variation de la cour-
bure est monotone. Chaque c6té d’un ovale se compose donc de
deux spirales. Dans (3) j’ai établi un certain nombre de propriétés
de la spirale, telles que: elle ne peut se recouper; en chacun de ses
points le cercle de courbure la traverse; elle est située entiérement
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dans la couronne que forment ses deux cercles de courbure
extrémes; si elle est intérieure au triangle formé par les tangentes
en ses extrémités et leur corde de contact AB, la variation de

N

V'angle A MB inscrit dans la spirale est monotone.
En définitive, ne trouvez-vous pas que le sujet simple et un
peu insolite de cet exposé ne manque pas d’intérét ?

(1) Counférence faite aux Journées d’Etudes de PA.P.M. (Association des Professeurs
de Mathématiques de ’Enseignement Public) en février 1966 & Strasbourg.

(2) Les ovales du plan offrent un exemple intéressant d’un ensemble, muni de deux
lois de composition externe et interne, qui ne forme pas un espace vectoriel. (En parti-
culier 0+ (—0) n’est pas égal & 1’ovale nul.)

(3) Revue de Mathématiques Spéciales; octobre et novembre 1953.

(4) Comples Rendus, 241, 1955, pp. 274-275.

(5) Comptes Rendus, 240, 1955, p. 483.

(6) Comptes Rendus, 240, 1955, p. 584.

(7) Pacific J. Math. 10, 1960, pp. 1267-1261 (« Partitions of mass-distributions and
of convex bodies by hyperplanes »).

(8) Mathematika (« Volumes cut from convex bodies by planes »).

(9) Dans ma theése, j’ai étudié entre autres les polyédres convexes, dont les sommets
ont des coordonnées entiéres ou rationnelles. (Sur un probléme de géométrie diophantienne
lindaire, Grenoble, juin 1964).

(10) Comptes Rendus, 258, 1964, pp. 4885-4887 (Une généralisation probable du
théoréme fondamental de Minkowski).

(11) Comptes Rendus, 240, 1955, pp. 483-485.

(12) Enseignement Math., fasc. 1-2 de 1964, pp. 138-146.

(13) Remarquons que ce raisonnement reste valable pour des courbes fermées non
convexes.

(14) J’ai proposé cette classification en 1953 dans 3).

(15) On peut aussi admettre des points anguleux, en les considérant comme des
sommets 4 courbure maximum (infinie), sans considération de courbure & gauche ou
a droite. (On peut imaginer le raccord fait au point anguleux par un arc infiniment petit,
dont le rayon de courbure tend vers zéro.)

(Recgu le 15 février 1965)

11, rue de Bruges
Strasbourg
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