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OVALES ET OVOÏDES1)

par E. Ehrhart

Introduction

La notion de convexité a toujours joué un rôle important en

géométrie. Il est d'autant plus étonnant que ce n'est qu'en 1887,

que paraît le premier ouvrage consagré uniquement et
systématiquement à la convexité, la thèse de Brunn Ovales et ovoïdes.

Depuis lors de nombreux livres ont été écrits à ce sujet. Parmi
les plus importants citons:

[1] Minkowski, 1905, Théorie des corps convexes.

[2] Blaschke, 1916, Cercle et sphère.

[3] Bonnesen et Fenchel, 1934, Théorie des corps convexes.

[4] Jaglom et Boltyanski, 1951, Figures convexes.

[5] Egglestone, 1957, Applications de la convexité.

[6] Hadwiger, 1958, Cours sur le volume, la surface et Visopérimétrie.

[7] 1963, Convexité, par la Société Mathématique américaine.

Le plus complet de ces ouvrages est sans doute [3]. (Il
commence malheureusement à dater). On y cite plus de 200 auteurs et

près de 800 titres. En particulier on y trouve mentionnées en
bonne place une douzaine de publications de Jean Favard.
[4] est un livre admirable de simplicité et d'ingéniosité. Quoi qu'il
s'adresse à des élèves, on y trouve mainte question ouverte.
Il se lit vraiment comme un roman, un roman policier, car les

questions posées ensemble dans une première partie sont résolues

dans la seconde. [5] montre à quel point la convexité s'introduit

dans les disciplines mathématiques les plus variées. [7],
gros ouvrage de plus de 500 pages, est le compte rendu du
Symposium sur la Convexité, qui a eu lieu en juin 1961 à Seattle
(Washington). On y engrange une ample moisson de résultats
récents. J'ai eu l'agréable surprise de m'y voir cité une dizaine
de fois.
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Il est remarquable que d'une hypothèse aussi réduite que la
convexité — cette restriction n'empêche que l'ovale dépende
d'une infinité de paramètres — on ait pu déduire tant de résultats
nullement évidents, et cela en l'absence de toute méthode
générale. On ne peut évidemment espérer trouver des égalités,
mais on obtient des inégalités, ou ce qui revient au même, des

extrema. L'absence de méthode classique déjà signalée, que l'on
retrouve d'ailleurs dans toute la moderne géométrie finie, est
un des attraits du sujet. Paul Montel l'a magistralement
caractérisée au Colloque de Liège de 1955:

« L'application à ces questions des méthodes usuelles de

l'analyse se heurte le plus souvent à de très grandes difficultés.
l'imagination y joue autant de rôle que l'esprit critique,

car les méthodes doivent être créées de toutes pièces, dès que
l'on abandonne le support analytique. »

Terminologie

Rappelons d'abord quelques définitions essentielles de la
théorie des corps convexes. Un corps est convexe, s'il contient
tout segment dont il contient les extrémités. Une figure plane
convexe et bornée, autre qu'un segment de droite, sera appelée
ovale, même si son contour comporte des points anguleux ou des

segments de droite. (On précisera s'il y a lieu, s'il s'agit de l'ovale
ouvert ou fermé). Une droite-support d'un ovale est une droite
de son plan qui contient au moins un point de son bord, et qui
laisse l'ovale entièrement d'un même côté. La plus grande et la

plus petite distance entre deux droites-supports parallèles d'un
ovale sont respectivement son diamètre et sa largeur. Définition
analogue du plan-support de l'ovoïde — la figure convexe
bornée à trois dimensions — de son diamètre et de sa largeur.

Naturellement il ne peut pas être question de faire ici un
rapport exhaustif sur le sujet. On ne peut que citer quelques
résultats particulièrement intéressants à tel ou tel égard. Je vais
classer les théorèmes choisis en quatre catégories, quelque peu
arbitrairement.
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I. Théorèmes importants

Si les propositions de ce chapitre ont de nombreuses applications,

cela vient sans doute de leur généralité; on peut en effet
les étendre à l'espace à n dimensions.

Rappelons d'abord quelques propriétés, qui, pour être banales,
n'en sont pas moins importantes:

— L'intersection de plusieurs ovales est un ovale. Théorème ana¬

logue pour les ovoïdes. Toute section plane d'un ovoïde est

un ovale. L'ombre au soleil d'un ovale ou d'un ovoïde est un
ovale.

Encore intuitif, mais plus difficile à démontrer:

— Le périmètre d'un ovale est plus court que toute courbe
fermée qui l'entoure; de même la surface d'un ovoïde est
inférieure à toute surface fermée qui le contient.

— Tout ovoïde est rigide, c'est-à-dire qu'il n'existe pas de

déformation continue, conservant les longueurs des courbes
tracées sur sa surface.

Et voici deux propositions capitales, aussi générales que
simples, les théorèmes de Brunn et de Helly.

Théorème de Brunn: Dans le cas le plus complet, la variation
des cordes parallèles d'un ovale ne présente que trois phases
successives: croissance, constance, décroissance; une ou deux
de ces phases peuvent d'ailleurs manquer (pensons par exemple
aux cordes d'un triangle parallèles à un côté.) « Un ovale normal
(c'est-à-dire dont le contour ne comporte pas de segment de
droite) présente toujours juste deux phases: croissance et décroissance.

» De même les aires des sections planes parallèles d'un
ovoïde ne présentent, dans le cas le plus complet, que les trois
phases de variation précédentes. « Si l'ovoïde est normal (c'est-à-
dire si sa surface ne comporte ni facette plane, ni portion
cylindrique), la variation se réduit juste à croissance puis décroissance.

» Il est remarquable que, « si l'on remplace les aires des
sections planes par leurs périmètres, la proposition de Brunn
subsiste ». (On l'appele parfois le théorème de la pomme de terre.)
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Le théorème de Helly date de 1921, mais on n'en a vu tout
l'intérêt — aussi en analyse — que récemment: Si des ovales ont
trois à trois un point commun, ils ont tous un point commun;
il en est de même d'ovoïdes qui ont quatre à quatre un point
commun. On en a déduit, par exemple, que si un ovale peut
couvrir tout triplet d'un ensemble fini d'ovales, il peut les couvrir
tous; en particulier si un cercle est un couvercle pour tout triplet
d'un ensemble fini de points d'un plan, il est un couvercle pour
tous.

Voyons maintenant quelques opérations qui « transforment »

un ovale en ovale, un ovoïde en ovoïde. Soulignons d'avance qu'il
ne s'agit pas de transformations ponctuelles:

La symétrisation.

1) D'un ovale par rapport à une droite A de son plan: on rem¬

place toute corde perpendiculaire à cette droite par un
segment de même support et de même longueur, centré sur elle.
Cette symétrisation conserve l'aire de l'ovale et ne peut
augmenter son périmètre.

2) D'un ovoïde par rapport à un plan P: dans la définition
précédente on substitue P à A.

3) D'un ovoïde par rapport à une droite: on remplace toute
section plane perpendiculaire à cette droite par un cercle de

même plan et de même aire, centré sur elle.

Les symétrisations 2) et 3) ne peuvent augmenter la surface
de l'ovoïde et conservent son volume (principe de Cavalieri).

Le tassement.

Tasser un ovale sur une droite A, c'est remplacer toute corde

perpendiculaire par un segment AB de même support et de

même longueur, de manière que tous les A soient sur A et tous les

B du même côté de cette droite. Définition analogue pour le

tassement d'un ovoïde sur un plan. Remarquons que le tassement

d'un ovale étant un ovale, il en résulte le théorème de Brunn

avec une précision supplémentaire:

Soit C(X) la longueur d'une corde d'un ovale perpendiculaire
à un axe 0.X, en fonction de son abscisse. Non seulement la
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variation de C (X) est au plus triphasée, mais encore C (X) est

une fonction convexe.

La combinaison linéaire lat 0,. de plusieurs ovales ou ovoïdes est

respectivement un ovale ou un ovoïde.

Précisons le sens de cette combinaison linéaire. Soit P un
point fixe. Alors a{ correspond à 0t dans l'homothétie (P, af).

Quant à 0' + 0" c'est l'ovale (ou l'ovoïde) constitué par
l'ensemble des points M tels que PM — PM' + PM" où M' et
M" sont respectivement des points arbitraires de 0' et de 0".

(Si on change le point fixe P, le corps convexe Iat 0f subit
simplement une translation). (2)

L'ovale
^ ^——

a des propriétés remarquables: il a un
A

centre de symétrie; il a mêmes diamètre, largeur et périmètre
que 0; son aire ne peut être inférieure à celle de 0. De même

l'ovoïde
° + (~Q)

a un centre de symétrie, conserve le diamètre,
2

la largeur et la surface de 0, et son volume ne peut être inférieur
à celui de 0.

II. Quelques recherches personnelles récentes

Le trait commun aux théorèmes groupés dans ce chapitre
est qu'ils me sont particulièrement familiers, soit parce que j'en
ai donné une nouvelle démonstration, soit même parce que je les

ai trouvés.

Le théorème des quatre sommets. — « Tout ovale, dont la courbure

du contour est définie en chaque point, a au moins quatre
sommets », c'est-à-dire que sa courbure passe par quatre extrema
au moins. Cette proposition, aujourd'hui bien classique, a été
trouvée en 1908 par l'Indien Mukhopadyaya. J'en ai donné
une démonstration purement géométrique, dans un article
intitulé « spirales et ovales ». (3)

Le théorème des deux tiers. — Appelons noyau d'un ovale son
intersection avec le symétrique par rapport à son centre de
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gravité (plaque homogène). « L'aire du noyau est supérieure ou
égale aux deux tiers de celle de l'ovale; l'égalité n'est atteinte
que par les triangles. » Je l'ai trouvé et démontré avec quelques
restrictions en 1955 (4). Trois ans après il a été établi complètement

par l'Américain Stewart et le Russe Kozinec,
indépendamment l'un de l'autre.

Le théorème des quatre cinquièmes. — « Le rapport de la plus
petite à la plus grande des deux aires découpées dans un ovale

par une droite qui passe en son centre de gravité est supérieur ou
égal à 0,8; l'égalité ne peut être atteinte que par un triangle. »

Cette propriété a été découverte par Winternitz en 1923. J'en ai
donné une nouvelle démonstration (5), puis, en 1955, j'ai trouvé
et démontré la proposition analogue de l'espace: «Soit V le

volume d'un ovoïde et v celui d'une portion détachée par un
v /3V

plan passant en son centre de gravité. Alors ^>>1 ^
5 l'égalité

ne peut être atteinte que par un cône » (6). Dans (4) j'avais formulé
la conjecture générale suivante: «Soit V la mesure d'un corps
convexe à n dimensions et ç celle d'une portion détachée par
un hyperplan (n — l)-dimensionnel, passant en son centre de

en 1960 par Grünbaum(7) et par P.C. Hammer(8). Remarquons
v 1

qu'il en résulte que — > — quel que soit n (Le rapport critique est

donc toujours compris entre - et -

Pour terminer je mentionnerai deux théorèmes concernant les

corps convexes placés dans un réseau entier (9) :

Généralisation du théorème de Minkowski. — Rappelons
d'abord ce théorème fondamental de la géométrie des nombres.
« Si un corps convexe à n dimensions a un centre de symétrie
0, appartenant à un réseau rc-dimensionnel, et que sa mesure
réticulaire est supérieure à 2", 0 n'est pas le seul point entier
interne. Il existe une infinité de parallélotopes de mesure 2", dont
le centre est le seul point entier interne.» Cette année (10) j'ai

Cette conjecture a été démontrée

1 1
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indiqué les raisons pour lesquelles on peut très probablement
remplacer dans cet énoncé « centre de symétrie » par « centre de

(» + !)"
gravité », si l'on remplace la mesure critique 2" par j—

et le mot « parallélotope » par « simplexe ». En particulier je Tai
démontré pour n 2 (n) : « Si le centre de gravité d'un ovale est

placé en un point entier 0 d'un réseau, dont une base est un carré
de côté 1, et que son aire est supérieure à f, il renferme un point
entier autre que 0; il existe une infinité de triangles d'aire f, dont
le centre de gravité est le seul point entier intérieur. »

Théorème des points entiers. — Cette année également, j'ai
établi dans VEnseignement Mathématique (12) le résultat suivant :

« Soient S et l l'aire et le périmètre d'un ovale situé dans le plan
d'un réseau orthonormé, et / le nombre de points entiers situés dans

l
l'ovale ou sur son bord. Alors / < S + - + t ; l'égalité ne peut

être atteinte que par des rectangles. » Dans la même note j'ai
établi des bornes analogues pour le / d'un ovoïde. Mais je n'ai
pu démontrer que pour certaines familles de corps convexes,
l'intéressante conjecture suivante: « Soient V et S le volume et la
surface d'un ovoïde, et a, 6, c ses hauteurs dans la direction des

S
axes d'un réseau orthonormé. Alors / < ^ ~b ~ -f- # + fr + c

+ 1 ; l'égalité ne peut être atteinte que par des parallélépipèdes
rectangles. » (A fortiori, si D désigne le diamètre de l'ovoïde,

S

j < V + —» + 3 D + 1, borne non stricte, mais qui a l'avantage

d'être invariante par rapport aux déplacements.)

III. Théorèmes curieux

Peut être vous rappelez-vous comme moi de l'étonnement
qui fut le vôtre, le jour où pour la première fois on vous a parlé
de la roue de Reuleau: il y a une infinité d'ovales, autres que le
cercle, qui ont même hauteur dans toutes les directions. C'est

que dans le domaine qui nous occupe, il faut se méfier tout parti-
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culièrement de l'intuition. On s'en rend compte en essayant de

répondre aux questions suivantes, dont on lira plus loin les

réponses.

Questions :

1) Quels sont les ovoïdes dont toute section plane a un centre
de symétrie

2) Quels sont les ovoïdes dont tous les contours apparents
sont plans

3) Quels sont les ovoïdes (solides homogènes) qui restent
en équilibre sur un plan horizontal en toute position

4) L'ellipse est-elle le seul ovale ayant un cercle orthoptique
5) Existe-t-il des ovales non circulaires ayant un point inté¬

rieur tel que toutes les cordes qui y passent soient égales

6) Existe-t-il un ovale ayant deux tels points

Réponses :

1) et 2) l'ellipsoïde seulement;

3) la sphère seulement;

4) non;
5) oui, une infinité pour chaque longueur donnée de la corde;

6) non.

IV. Théorèmes d'extrema

Tout le monde sait qu'à volume donné l'ovoïde de surface

minimum est la sphère ; cela ne signifie pas que la démonstration
en soit facile.

A volume donné, l'ovoïde de plus petit diamètre est la sphère.
A volume et à hauteur donnés, quel est l'ovoïde de révolution

de surface maximum? C'est un cylindre, un cône ou un tronc de
h3

cône, suivant la valeur du rapport —.

A largeur donnée, l'ovale de plus petite surface est le triangle
équilatéral.
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Le plus petit disque qui peut couvrir tout ovale de diamètre D
D

a pour rayon R —jr..3

Tout ovale a-t-il un cercle circonscrit minimum et un cercle

inscrit maximum uniques? — Oui pour le premier, non pour le

second. (Pour le deuxième pensons à un rectangle.)
Soit un arc de courbe de longueur donnée, s'appuyant en ses

extrémités sur les deux côtés d'un angle fixe. Steiner a démontré

que faire limitée par l'angle et l'arc est maximum, si l'arc est

circulaire et centré au sommet de l'angle.
Inutile de dire que de nombreux problèmes sur les ovales et les

ovoïdes sont encore ouverts, telle la question de Henri Lebesgue:
quel est l'ovale, d'aire minimum, pouvant couvrir tous les ovales
de même diamètre donné

Quelques démonstrations typiques

S'il n'y a pas de principe général pour aborder les problèmes
des corps convexes, il y a cependant quelques méthodes de

démonstration auxquelles on recourt fréquemment.

Le polygone convexe.

Si une propriété est démontrée pour tout polygone convexe,
elle est vraie pour l'ovale, que l'on peut considérer comme un tel
polygone de côtés infiniment petits. Le cas extrême est alors
souvent le triangle. C'est de cette manière qu'on peut, par
exemple, démontrer le théorème des quatre cinquièmes. On peut
aussi comparer un ovale à un polygone. Ainsi pour démontrer le
théorème des points entiers, on remplace l'ovale par le polygone
qui est l'enveloppe convexe de ses points entiers intérieurs ou
périphériques. (La démonstration complète dans (12) prend moins
d'une page.)

La fonction continue.

Soit, par exemple, à démontrer que tout ovale admet au moins
un carré circonscrit, c'est-à-dire formé par des droites supports.
Prenons dans le plan orienté de l'ovale un axe fixe X A une
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direction S caractérisée par Tangle (3, S) X, correspond un
rectangle circonscrit, dont les côtés parallèles et perpendiculaires
à ~S ont pour longueurs respectivement a0 et b0. Quand ~S aura

7c a
tourné de -, le rapport -, fonction continue de X, aura passé

a0 ^
bo

de — à —. Il aura donc pris au moins une fois la valeur 1. (13)
b0 a0
On peut démontrer de façon analogue, que tout ovale admet

un carré inscrit; que tout point intérieur d'un ovale est le milieu
d'une corde ; qu'il existe une droite qui bissecte à la fois les aires de

deux ovales donnés, ou un plan qui bissecte les volumes de trois
ovoïdes donnés.

La récurrence.

Démontrons par exemple le théorème de Helly pour les
ovales. Montrons d'abord qu'il est vrai pour quatre ovales 0X,

O25 03, 04. Désignons par (ijK) le point commun à 0f, 0y, 0X, et
écartons le cas banal où trois de ces points seraient alignés. Alors
ou bien trois des points — soit pour fixer les idées, (123), (134),
(142) — déterminent un triangle, qui renferme le quatrième
(234), ou bien les quatre points forment un quadrilatère convexe,
soit par exemple (123) (234) (341) (413). On voit alors aisément

que les quatre ovales ont en commun le point (234) dans le

premier cas, le point d'intersection des diagonales dans le second.

Supposons maintenant le théorème de Helly vrai pour n ovales,
et considérons n ~f- 1 ovales 0l7 02 0„, 0„ + 1 ayant trois à trois
un point commun. Désignons 0„ n 0W + 1 par 0. Les quatre corps
0/, 0/, 0n, 0W + 1, ayant trois à trois un point commun, ont tous un
point commun, qui est aussi commun au triplet 0f, Oy, 0. Les n
ovales 0l7 02,..., 0„_! 0' ont donc trois à trois un point commun,
et par suite ont tous un point commun, qui appartient aussi à

0„ et à 0„ + 1

Evidemment certaines démonstrations nécessitent des outils
plus compliqués. Ainsi pour établir le théorème de Brunn sur
les ovoïdes, on se sert de l'importante inégalité de Brunn-
Minkowski: « Soient P', P, P" trois plans sécants parallèles d'un
ovoïde, se suivant dans cet ordre. Désignons par 6", S, S" les
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aires des trois sections par hf et h" les distances de P' et de P"
à P, et posons h' + h" h Alors

hjs^ h" JS'+ ;

l'égalité n'est atteinte que si la portion de l'ovoïde comprise entre
P' et P" est un tronc de cône. "

UNE CLASSIFICATION DES OVALES (14)

Considérons un ovale dont le contour a une courbure définie
en chaque point (15) et ne comporte pas d'arc de cercle. On sait que
ses sommets sont en nombre pair, les points de courbure maximum

et minimum alternant. On peut alors classer l'ovale d'après
le nombre de ses côtés, en appelant côté tout arc qui joint deux
sommets à courbure maximum consécutifs. La forme de Vocale

trilatère (trois côtés) ou quadrilatère, par exemple, se rapproche
de celle du triangle ou du quadrilatère. Le cercle étant écarté, le

plus simple des ovales est bilatère (théorème des quatre sommets) ;

l'ellipse en est un cas particulier.

Remarque.

Un ovale a une tangente en tout point, sauf éventuellement
en un nombre fini de points anguleux. Même s'il ne présente pas
de tels points, il peut avoir autant de points à courbure non
définie que l'on veut. Pour le voir il suffit de penser à un ovale
formé par 4n arcs, raccordés tangentiellement, qui sont prélevés
alternativement sur deux cercles de rayons différents et ont tous

pour mesure en radians —.2n

Notion de spirale.

J'appelle ainsi tout arc de courbe, dont la variation de la courbure

est monotone. Chaque côté d'un ovale se compose donc de
deux spirales. Dans (3) j'ai établi un certain nombre de propriétés
de la spirale, telles que: elle ne peut se recouper; en chacun de ses

points le cercle de courbure la traverse; elle est située entièrement
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dans la couronne que forment ses deux cercles de courbure
extrêmes; si elle est intérieure au triangle formé par les tangentes
en ses extrémités et leur corde de contact AB, la variation de

/\l'angle AMB inscrit dans la spirale est monotone.
En définitive, ne trouvez-vous pas que le sujet simple et un

peu insolite de cet exposé ne manque pas d'intérêt

(1) Conférence faite aux Journées d'Etudes de l'A.P.M. (Association des Professeurs
de Mathématiques de l'Enseignement Public) en février 1966 à Strasbourg.

(2) Les ovales du plan offrent un exemple intéressant d'un ensemble, muni de deux
lois de composition externe et interne, qui ne forme pas un espace vectoriel. (En particulier

0+ (—0) n'est pas égal à l'ovale nul.)
(3) Revue de Mathématiques Spéciales; octobre et novembre 1953.
(4) Comptes Rendus, 241, 1955, pp. 274-275.
(5) Comptes Rendus, 240, 1955, p. 483.
(6) Comptes Rendus, 240, 1955, p. 584.
(7) Pacific J. Math. 10, 1960, pp. 1257-1261 (« Partitions of mass-distributions and

of convex bodies by hyperplanes »).

(8) Mathematika (« Volumes cut from convex bodies by planes »).

(9) Dans ma thèse, j'ai étudié entre autres les polyèdres convexes, dont les sommets
ont des coordonnées entières ou rationnelles. (Sur un problème de géométrie diophantienne
linéaire, Grenoble, juin 1964).

(10) Comptes Rendus, 258, 1964, pp. 4885-4887 (Une généralisation probable du
théorème fondamental de Minkowski).

(11) Comptes Rendus, 240, 1955, pp. 483-485.
(12) Enseignement Math., fasc. 1-2 de 1964, pp. 138-146.
(13) Remarquons que ce raisonnement reste valable pour des courbes fermées non

convexes.
(14) J'ai proposé cette classification en 1953 dans 3).
(15) On peut aussi admettre des points anguleux, en les considérant comme des

sommets à courbure maximum (infinie), sans considération de courbure à gauche ou
à droite. (On peut imaginer le raccord fait au point anguleux par un arc infiniment petit,
dont le rayon de courbure tend vers zéro.)

(Reçu le 15 février 1965)

11, rue de Bruges
Strasbourg
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