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Mais rj1 et rj2 sont isomorphes dans G+ et équivalents dans G; on a

donc:

Corollaire 2.

Tous les fibrés séparés sur X sont isomorphes pour le groupe G+.

Corollaire 3.

Tous les fibrés séparés sur X sont équivalents pour le groupe G.

On peut traduire ces corollaires dans la théorie des feuilletages du plan.
Rappelons pour cela que deux structures feuilletées J5" et 3F' du plan sont
équivalentes pour un groupe T d'homéomorphismes du plan s'il existe un

homéomorphisme / dans T qui transforme chaque feuille de 3F en une
feuille de 3F* ; si 3F et 3F' sont orientées / doit de plus être compatible avec
les orientations de ces feuilles. On a alors (comparer à [2]):

Corollaire 4.

Tous les feuilletages (non orientés) du plan dont l'espace des

feuilles est le branchement simple sont équivalents pour le groupe
des homéomorphismes conservant l'orientation.

Corollaire 5.

Pour le groupe des homéomorphismes conservant l'orientation,
les feuilletages orientés du plan dont l'espace des feuilles est le

branchement simple se répartissent en deux classes d'équivalence.

Corollaire 6.

Tous les feuilletages orientés du plan dont l'espace des feuilles

est le branchement simple sont équivalents pour le groupe des

homéomorphismes.

6. Spécialisation du groupe de structure

Les résultats précédents montrent que chaque fibré séparé sur X est

équivalent dans G+ à un fibré pour lequel le changement de carte prend

ses valeurs dans le groupe Tdes translations de 3t. On peut donc se proposer
d'étudier les fibrés localement triviaux de base X, de fibre 3t et de groupe T ;

un changement de carte s'identifie alors à une application continue de

]-oo, 0 [ dans 3t. Si oc et ß sont deux telles applications, les fibrés associés

sont isomorphes dans T si et seulement si il existe un homéomorphisme/de
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] — oo, 0] tel que a (x) - ß (/ (x)) se prolonge à 9?; ils sont équivalents si

1

a (x) — ß (x) se prolonge à 91. Par exemple les fibrés définis par a (x) -

et ß (x) — sont isomorphes, mais ne sont pas équivalents dans T; les
x

1 11 •

fibrés définis par a (x) - et ß (x) - + sin - ne sont pas isomorphes
x xx

dans T (mais sont équivalents dans G+).
On peut aussi réduire le groupe de structure au sous-groupe H des

difféomorphismes de 91 et au sous-groupe H+ H n G+.
Si l'on suppose de plus que X est muni d'une structure differentiate,

on peut aussi se restreindre aux applications / dans H (ou H+) qui
déterminent des applications differentiates du produit de la source de / par 91

dans 9t. Avec cette restriction, on démontre, comme dans le cas continu,
le même théorème de classification des fibrés differentiates séparés sur X.

Par contre on ne peut pas déduire de ce résultat une classification
differentiate simple des feuilletages differentiates du plan. Il existe en effet
des structures feuilletées differentiates du plan ayant le branchement simple

pour espace des feuilles, et induisant sur X des structures differentiates non
difféomorphes [1].
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