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Si y0 est dans A (resp. y% dans B) on a aussi y dans A (resp. dans B) pour
y rg y0 (resp. y ^ yx). Les ensembles^ et F sont donc des intervalles

disjoints recouvrant 5t. L'un des deux, par exemple A, est fermé; on note alors z

le plus grand élément de A.
Soit (Ç„) une suite de nombres négatifs tendant vers 0 telle que g^n (z) < 0

pour tout n. On peut trouver une suite strictement décroissante (yn) tendant

vers z telle que g^n (y„) < 0. Chacun des yn étant dans B, il existe Çn > Çn

tel que g^n (yn) 0. La proposition 4 montre alors que cette situation est

impossible si E est séparé; on a donc A <fi ou B </>.

Supposons maintenant que pour tout y dans 5t on a lim gx (y) — oo.
x^O

Soient (£„) une suite de nombres négatifs tendant vers 0 et (yn) une suite

ayant une limite finie. Si z est un majorant de la suite (yn) on a g^n (yn) ^ gçn(z)

pour tout n; et par suite lim g^n (y„) — oo. L'espace E est donc séparé.
n-* oo

C.q.f.d.

Corollaire.
Si lim gx (y) — oo pour tout y dans lim g"1 (y) +oo pour

tout y e 5?.

5. Classification des fibres séparés

Soient rj (E, p. X) et r\ (E\p\ X) deux fibrés sur X associés à

des changements de carte g et g', et tels que E et E' soient séparés.

Proposition 6.

Soit Fun isomorphisme de rj sur r\ pour le groupe G+ induisant
un homéomorphisme / de X ayant ot comme point fixe. On a alors
lim gx (y) lim gx (y) pour tout y dans 5t.
x^O x^O

La démonstration est immédiate.
Plus précisément, on a d'ailleurs:

Théorème.
Pour que les fibrés séparés rj et rj' soient équivalents dans le

groupe G + il faut et il suffit qu'on ait lim gx (y) lim g'x(y) pour
tout y dans 5t x^° x~*°

La condition nécessaire est une conséquence de la proposition 6. Supposons

donc que lim gx (y) lim gx (y) - oo pour tout y dans 5t (le cas
x-+0 x->0
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où cette limite est +00 se traiterait de façon analogue).

Lemme 1.

Il existe une application /de [— 1, 0 [ dans 51 ayant les propriétés
suivantes :

a) lim f(x)= +00

b) g-1 (/ — i)) 0

c) 9x{f(x))<0 pour tout x > — 1

d)lim gx(f(x))-co.
x->0

Démonstration. — Soit (yn)n^1 une suite strictement croissante de

nombres positifs tendant vers l'infini. On peut construire une suite strictement

croissante (On^i dans ] — 1, 0 [ tendant vers 0 et telle que l'on ait pour
tout n gx(yn) < -n pour x ^

On a alors

9x(y„) <-npour xe[£„, £„ + 1]

9in+1(y)< -(" + P°ur ye [>„,y„ + 1]

Il existe donc un homéomorphisme croissant /„de [£„, £„+1]sur [yn,yn + 1]

tel que gx (/„ (x)) < —n pour tout x e [£„, Çn+1]. Le recollement des fn détermine

/ sur l'intervalle [£ls 0 [; on étend alors / à [ — 1, 0 [ de façon à satisfaire

aux conditions a) et h/ Cqfd
On construit de même une application /' de [— 1, 0 [ dans 51 ayant les

propriétés a), b), c), d) du lemme 1 avec g' en place de g.
On désigne par F (resp. F') le fermé réunion de la droite x 0 et de

l'ensemble des points (x, y) tels que —1 ^ x < 0 et \ y | ^ | (/ (v)) |

(resp. \y\g I g'(/'(x)) |.

Lemme 2.

Il existe un homéomorphisme de F sur F' de la forme

(x, y) -» (x, ex (y)) où pour tout x, ex est une application croissante,

et e0 identité.

Démonstration. — On définit ex (y) par

ex(y) y Si \yIg inf(|^(/(x))|, \g'x(f(x)\)
ex(dx(/(*))) g'x(f(x))
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ex(-gx{f {*))) ~g'x{f(x))
exest affine pour y^iinf(| |, I 0* (/'(*)) I)

et y g | g'x(f (x)) |)
C.q.f.d.

Lemme 3.

Il existe une application continue a de 51 dans G+ ayant les

propriétés suivantes:

ax — identité pour x rg — 1 et x 0

«Ay) dx1 e'1 g'x(y)si g

On construit a par un procédé analogue à celui utilisé dans la démonstration

du lemme 2.

Démonstration du théorème. — On définit une application continue ß

de 51 dans G+ par

ßx identité si x ^ 0

ßx(y)ex(y) Si Oc,y) 6

ßx(y) g'x^A 9xAy)six < O et (x,y)$F.

On a alors ßx gx <xx — gx pour tout x < 0.

C.q.f.d.

Corollaire 1.

Pour le groupe G+ il existe deux classes d'équivalence de fibrés

séparés sur X.

En effet, si rj est défini par un changement de carte g tel que
lim gx (y) — oo pour tout y dans 5t il est équivalent dans G+ au fibré rji
x-+0

associé au changement de carte gx (y) y ~f—.
x

Si, par contre, lim gx{y) +oo pour tout y dans SR, rj est équivalent
x->0

dans G+ au fibré rj2 associé au changement de carte g"x (y) — y —
x

Enfin on a remarqué après la proposition 2 que les fibrés rjt et rj2 ne sont
pas équivalents dans G.
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Mais rj1 et rj2 sont isomorphes dans G+ et équivalents dans G; on a

donc:

Corollaire 2.

Tous les fibrés séparés sur X sont isomorphes pour le groupe G+.

Corollaire 3.

Tous les fibrés séparés sur X sont équivalents pour le groupe G.

On peut traduire ces corollaires dans la théorie des feuilletages du plan.
Rappelons pour cela que deux structures feuilletées J5" et 3F' du plan sont
équivalentes pour un groupe T d'homéomorphismes du plan s'il existe un

homéomorphisme / dans T qui transforme chaque feuille de 3F en une
feuille de 3F* ; si 3F et 3F' sont orientées / doit de plus être compatible avec
les orientations de ces feuilles. On a alors (comparer à [2]):

Corollaire 4.

Tous les feuilletages (non orientés) du plan dont l'espace des

feuilles est le branchement simple sont équivalents pour le groupe
des homéomorphismes conservant l'orientation.

Corollaire 5.

Pour le groupe des homéomorphismes conservant l'orientation,
les feuilletages orientés du plan dont l'espace des feuilles est le

branchement simple se répartissent en deux classes d'équivalence.

Corollaire 6.

Tous les feuilletages orientés du plan dont l'espace des feuilles

est le branchement simple sont équivalents pour le groupe des

homéomorphismes.

6. Spécialisation du groupe de structure

Les résultats précédents montrent que chaque fibré séparé sur X est

équivalent dans G+ à un fibré pour lequel le changement de carte prend

ses valeurs dans le groupe Tdes translations de 3t. On peut donc se proposer
d'étudier les fibrés localement triviaux de base X, de fibre 3t et de groupe T ;

un changement de carte s'identifie alors à une application continue de

]-oo, 0 [ dans 3t. Si oc et ß sont deux telles applications, les fibrés associés

sont isomorphes dans T si et seulement si il existe un homéomorphisme/de
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