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Si deux tels fibrés sont isomorphes dans G*, I’'homéomorphisme corres-
pondant du plan est compatible avec ces deux orientations; par contre un
isomorphisme dans G, et non dans G induit un homéomorphisme compa-
tible avec les orientations des feuilletages, mais renversant I’orientation du
plan.

4. CRITERES DE SEPARATION

Soient 1 = (E, p, X) un fibré sur X, @, et &, des trivialisations de n/U;
et n/U,, et g le changement de carte associé.

Les ensembles p ! (U,), p~* (U,) et p7' (X — { 01, 0, }) sont des ouverts
séparés de E. Par conséquent sie; e p~! (U,) et e, € p~* (U,) sont des points
non séparés de £ on a e, = &, (0,y) et e, = &, (0, 2).

PROPOSITION 4.
Pour que E soit non séparé, il faut et il suffit qu’il existe
une suite (£,) de nombres négatifs tendant vers O,
une suite (y,) ayant une limite finie y,
telles que la suite (g, (»,) ait une limite finie z.

Démonstration. — La condition est suffisante car la suite ¢, = @, (&,,
v = D,(&,, g: (y,) converge simultanement vers les points €; = &, (0,y)
ete, = 9,(0,2).

Supposons réciproquement que e; = &, (0,y) et e, = @, (0,z) soient deux
points non séparés de E. Soient (V,)) .y (resp. (W,) ,cn) un systeme fonda-
mental de voisinages emboités de e, (resp. de e,) contenus dans p~*! (Uj)
(resp. p~ ' (U,)). Pour tout n on peut trouver un point ¢, = D, (&,y,) =
®, (&, g, (vn) dans V, N1 W, . La suite (g,) tend alors simultanément vers
e, et vers e, ; les suites (,), (v,) et (g (£,) y,) ont donc respectivement O,
y et z pour limites.

C.q.f.d.

COROLLAIRE.
Soit z un point d’accumulation de g, (y) pour y fixé et x tendant
vers 0. Alors les points @, (0, y) et @, (0, z) ne sont pas séparés
dans E.

Exemples. — Soient (1;)0<;<7 les fibrés associés aux changements de
carte suivants:



0—- g,.(») =y

1
1 — g,(») =y + sin-
X
1.1
2 - g9,(y) =y +|-sin-
X X
1 1
3 — g.(y) =y + -sin-
X X
4 — g.(y) = —xy
— Xy si |yl =1
5= g =3 —x+y-—-1si y 21
x+y+1lsi y <-—1
” 1
y + - si y =20
X
6 — ! =
y+-texpl—-+ = si y >0
X x y
1
7= 9:(y) =y +-
X

On déduit du corollaire précédent que les fibrés (17,)<;<s ne sont pas
séparés, et de la proposition 4 que 54 est aussi non séparé alors que 7, est
séparé.

On peut d’ailleurs remarquer, en considérant les ensembles d’accumu-
lation de g, (y) pour y fixé et x tendant vers O, que ces fibrés sont tous
distincts (deux & deux non isomorphes). |

Ces exemples montrent aussi comment on peut varier a I'infini le type
des fibrés sur X.

PROPOSITION 5.
Pour que E soit séparé il faut et il suffit que pour tout y dans R

on aitlim g, (y) = — oo (ou +o0).
x—0
Démonstration. — S1 E est séparé, le corollaire de la proposition 4
montre que g, (y) n’a pas de point d’accumulation a distance finie pour y
fixé et x tendant vers 0; on a donc lim | g, (¥) | = oo pour tout y dans R.
Désignons par A4 (resp. B) ’ensemble des points y de R tels que
lim g, (y) = — oo (resp. = +0o0) et supposons 4 et B non vides.

x—0
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Si y, est dans A4 (resp. y; dans B) on a aussi y dans 4 (resp. dans B) pour
y < yo (resp. y = y,). Les ensembles 4 et Bsont donc des intervalles dis-
joints recouvrant R. L’un des deux, par exemple 4, est fermé; on note alors z
le plus grand élément de A.

Soit ({,) une suite de nombres négatifs tendant vers O telle que g, (z) <O
pour tout n. On peut trouver une suite strictement décroissante (y,) tendant
vers z telle que g, (y,) < 0.Chacun des y, étant dans B, il existe ¢, > (,
tel que g (y,) = 0. La proposition 4 montre alors que cette situation est
impossible si E est séparé; on a donc A = ¢ ou B = ¢.

Supposons maintenant que pour tout y dans R on a lim g, (y) = — oo.

x—=0
Soient (£,) une suite de nombres négatifs tendant vers O et (y,) une suite

ayant une limite finie. Si z est un majorant de la suite (y,) ona g, (y,) =< g¢,.(2)

pour tout n; et par suite lim g: (y,) = —o0. L’espace E est donc séparé.
C.q.f.d.
COROLLAIRE. .
Si lim g, (y) = — oo pour tout y dans R, limg; ' (y) = + o0 pour
tout y € R. o

5. CLASSIFICATION DES FIBRES SEPARES

Soient # = (E, p. X) et ' = (E’, p/, X) deux fibrés sur X associés a
des changements de carte g et g’, et tels que E et E' soient séparés.

PROPOSITION 6.
Soit F un isomorphisme de # sur #’ pour le groupe G* induisant
un homéomorphisme f de X ayant o, comme point fixe. On a alors
lim g, (y) = lim g, () pour tout y dans R.

x—0 x—0

La démonstration est immédiate.
Plus précisément, on a d’ailleurs:

THEOREME.
Pour que les fibrés séparés n et n’ soient équivalents dans le
groupe G7, il faut et il suffit qu’on ait lim g, () = lim g'x(y) pour
tout y dans R *=0 *=0

La condition nécessaire est une conséquence de la proposition 6. Suppo-
sons donc que lim g, (y) = lim g, (y) = — oo pour tout y dans R (Ie cas

x—0 x—0
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