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Si deux tels fîbrés sont isomorphes dans G+, l'homéomorphisme
correspondant du plan est compatible avec ces deux orientations; par contre un

isomorphisme dans G, et non dans G+ induit un homéomorphisme compatible

avec les orientations des feuilletages, mais renversant l'orientation du

plan.

4. Critères de séparation

Soient rj (E, p, X) un fibré sur X, et &2 des trivialisations de rj/U1

et rf/U2, et g le changement de carte associé.

Les ensembles p-1 (È/j), p~x (U2) et/?-1 (X — { ou o2 }) sont des ouverts

séparés de E. Par conséquent si ei g p-1 (C/J et e2ep~1 (U2) sont des points
non séparés de E on a ex (Pl (0, y) et e2 $2 (0, z).

Proposition 4.

Pour que E soit non séparé, il faut et il suffit qu'il existe

une suite (£n) de nombres négatifs tendant vers 0,

une suite (yn) ayant une limite finie y,
telles que la suite (g^n (yn) ait une limite finie z.

Démonstration. — La condition est suffisante car la suite sn (£n,
yn) <P2 (én, gçn (yn)) converge simultanément vers les points e- (0,y)
et e2 <P2 (0,z).
Supposons réciproquement que q1 (0,y) et e2 (P2 (0,z) soient deux

points non séparés de E. Soient (V„) neN (resp. (W„) neN) un système
fondamental de voisinages emboités de ei (resp. de e2) contenus dans p-1 (Ui)
(resp. p-1 (U2)). Pour tout n on peut trouver un point s„ — (£„,y„)

(£«> g!;n (Yn)) dans V„nw„. La suite (e„) tend alors simultanément vers

e! et vers e2 ; les suites (Q, (y„) et (g (£„) yn) ont donc respectivement 0,
y et z pour limites.

C.q.f.d.

Corollaire.
Soit z un point d'accumulation de gx (p) pour y fixé et x tendant

vers 0. Alors les points <P1 (0, y) et #2 (0, z) ne sont pas séparés
dans E.

Exemples. — Soient (rjdo^i^i les fibrés associés aux changements de

carte suivants:
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On déduit du corollaire précédent que les fibrés (rji)0^i^5 ne sont pas
séparés, et de la proposition 4 que r\6 est aussi non séparé alors que rj7 est

séparé.

On peut d'ailleurs remarquer, en considérant les ensembles d'accumulation

de gx (y) pour y fixé et x tendant vers 0, que ces fibrés sont tous
distincts (deux à deux non isomorphes).

Ces exemples montrent aussi comment on peut varier à l'infini le type
des fibrés sur X.

Proposition 5.

Pour que E soit séparé il faut et il suffit que pour tout y dans 91

on ait lim gx (y) — co (ou + oo).
x-+0

Démonstration. — Si E est séparé, le corollaire de la proposition 4

montre que gx (y) n'a pas de point d'accumulation à distance finie pour y
fixé et x tendant vers 0; on a donc lim | gx (y) | oo pour tout y dans 91.

Désignons par A (resp. B) l'ensemble des points y de 9ï tels que

limgx(7) — oo (resp. +oo) et supposons A et B non vides.
x->0



— 283 —

Si y0 est dans A (resp. y% dans B) on a aussi y dans A (resp. dans B) pour
y rg y0 (resp. y ^ yx). Les ensembles^ et F sont donc des intervalles

disjoints recouvrant 5t. L'un des deux, par exemple A, est fermé; on note alors z

le plus grand élément de A.
Soit (Ç„) une suite de nombres négatifs tendant vers 0 telle que g^n (z) < 0

pour tout n. On peut trouver une suite strictement décroissante (yn) tendant

vers z telle que g^n (y„) < 0. Chacun des yn étant dans B, il existe Çn > Çn

tel que g^n (yn) 0. La proposition 4 montre alors que cette situation est

impossible si E est séparé; on a donc A <fi ou B </>.

Supposons maintenant que pour tout y dans 5t on a lim gx (y) — oo.
x^O

Soient (£„) une suite de nombres négatifs tendant vers 0 et (yn) une suite

ayant une limite finie. Si z est un majorant de la suite (yn) on a g^n (yn) ^ gçn(z)

pour tout n; et par suite lim g^n (y„) — oo. L'espace E est donc séparé.
n-* oo

C.q.f.d.

Corollaire.
Si lim gx (y) — oo pour tout y dans lim g"1 (y) +oo pour

tout y e 5?.

5. Classification des fibres séparés

Soient rj (E, p. X) et r\ (E\p\ X) deux fibrés sur X associés à

des changements de carte g et g', et tels que E et E' soient séparés.

Proposition 6.

Soit Fun isomorphisme de rj sur r\ pour le groupe G+ induisant
un homéomorphisme / de X ayant ot comme point fixe. On a alors
lim gx (y) lim gx (y) pour tout y dans 5t.
x^O x^O

La démonstration est immédiate.
Plus précisément, on a d'ailleurs:

Théorème.
Pour que les fibrés séparés rj et rj' soient équivalents dans le

groupe G + il faut et il suffit qu'on ait lim gx (y) lim g'x(y) pour
tout y dans 5t x^° x~*°

La condition nécessaire est une conséquence de la proposition 6. Supposons

donc que lim gx (y) lim gx (y) - oo pour tout y dans 5t (le cas
x-+0 x->0
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