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ayant le branchement simple pour espaces des feuilles, résultat qui précise
ici un théoreme général de W. Kaplan [2].

Dans une dernicre partie on restreint le groupe structural des fibrés au
groupe des translations et au groupe des difféomorphismes de R. Dans ce
cas-ci on obtient aussi un théoréme de classification des fibrés différentiables
séparés; par contre on ne peut plus en déduire une classification différen-
tiable des feuilletages différentiables du plan.

2. LE BRANCHEMENT SIMPLE

Soient R; et R, deux exemplaires de la droite réelle paramétrés respec-
tivement par x, et x,. Le branchement simple X est le quotient de la somme
topologique ¥ = R, U R, par la relation d’équivalence qui identifie les
points x; et x, pour x; = x, = x < 0. On note =« la projection de X sur X.

L’espace X est une variété topologique de dimension 1 non séparée.
En effet U, = n (R,) et U, = n (R,) sont des ouverts de X, et les restric-
tions de = a R, et R, définissent un atlas de X; on identifiera 'intersection
U = U, n U, avec l'intervalle ] — o0, 0 [ de R. Les points 0, € U, et o, € U,,
images par n des origines de R, et R,, sont les points de branchement de X
(points non séparés).

L’involution de X qui échange les deux exemplaires R, et R, définit une
involution continue 4 de X qui échange les deux ouverts U, et U, en laissant
fixes les points de U.

Plus généralement, un homéomorphisme f de X laisse U; et U, inva-
riants ou les permute; le premier cas est caractérisé par f(o;) = o0, (ou
f(0,) = 0,), le second par f(0;) = 0, (ou f(0,) = 0y). Dans tous les cas
onaf(U)=U.

On peut enfin remarquer que le branchement simple est un espace
contractile, donc acyclique.

3. FIBRES SUR LE BRANCHEMENT SIMPLE

Soit # = (E, p, X) un fibré localement trivial de base X et de fibre %R;
tous les fibrés intervenant dans la suite étant de ce type, on dira simplement

que n est un fibré sur X.
On peut considérer 7 comme un fibré & groupe structural au sens de
Steenrod [3]; le groupe de structure est ici le groupe G des homéomor-
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phismes de la droite réelle R muni de la topologie de la convergence uni-
forme sur les compacts.

Les fibrés induits par n sur les ouverts U, et U, sont triviaux. Deux tri-
vialisations @,: U, X R - p 1 (U)) et &,: U, Xx R— p~ 1 (U,))den/U, et
n/U, déterminent alors un changement de carte continu g:]—00,0[ - G
(noté x — g,) tel que

Dy (xy,y) = ‘pz(xzagx()’)) pour x; = x, = x<0.

Réciproquement une application continue g de ]—oo, 0 [ dans G per-
met de construire un fibré y = (E, p, X) sur X ; g détermine de plus des
triavialisations @, et &, de /U, et n/U,.

Soit g’ une seconde application continue de ]—oo, 0 [ dans G et soient
n = (E’,p', X) le fibré associé, @, et ¥, les trivialisations correspondantes
de /U, et #'/U,. Un isomorphisme F de n sur ' détermine un homéo-
morphisme f de X. Si o; est un point fixe de f, on peut trouver deux appli-
cations continues « et f de R dans G telles que

Fdsl (xla _V) = @’1 (f(xl)a axl (y))
F&,(x,,y) = (p’z (f(xz)aﬂxg (J’))Q

la condition de compatibilité s’écrit alors
9 % = Brg, pourtout x <O.

Réciproquement la donnée de deux applications continues « et f de R
dans G et d’'un homéomorphisme f de ]— o0, 0] vérifiant la condition de
compatibilité précédente permet de construire un isomorphisme F de 7
sur n'.

Si par contre f échange o, et 0, la condition de compatibilité s’écrit

e = ¢ rx)Bxge pour tout x <O0.

Les fibrés n et n’ sont équivalents dans G si on peut trouver un isomor-
phisme F pour lequel f est I'identité.

PrOPOSITION 1.
Soit # = (E, p, X) un fibré sur X. On peut réduire le groupe de
structure de n au sous-groupe G* des homéomorphismes croissants
de ‘R.
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Démonstration. — Le groupe G des homéomorphismes de R a deux
composantes connexes par arcs: le sous-groupe G* et ’ensemble G~ des
homéomorphismes décroissants.

Soit g le changement de carte associé a des trivialisations de n/U, et
n/U,. Si g est & valeurs dans G, 5 est équivalent au fibré associé & —g; il
suffit en effet de prendre o, = — B, = identité pour tout x e R.

COROLLAIRE.
Tout fibré sur X est orientable.

On supposera dorénavant que les fibrés sur X sont définis par un chan-
gement de carte a valeurs dans G*

PRroPOSITION 2.
Les fibrés # et 5’ associés aux changements de carte x — g et
x — g: ! sont isomorphes dans G*.

Il suffit en effet de prendre pour « et § 'application constante de ‘R sur
I’identité, et pour homéomorphisme de X I'involution 4.

Remarque. — Les fibrés n et ' ne sont pas en général équivalents dans
1
G* comme le montre I'exemple ol g est défini par g, (y) = y -+ —.
X

Mais dans cet exemple n et ' sont équivalents dans G (on prend
o, = B, = — identité pour tout x e R). Par contre si g est défini par
g.(y) = — xy, n et n’ ne sont pas équivalents dans G.

ProrosITION 3.
Soit # = (E, p, X) un fibré sur X. L’espace E est une variété
topologique de dimension 2 (en général non séparée), simplement
connexe et acyclique.

Cette proposition est une conséquence immédiate de la trivialité locale
et de la suite exacte d’homotopie de y [3].

COROLLAIRE.
Si E est séparé, il est homéomorphe au plan R>. Les fibres de 1

définissent alors un feuilletage du plan ayant X pour espace des
feuilles.

Remarque. — Dans cette derniere situation le changement de carte g
définit non seulement une orientation du feuilletage, mais aussi une orien-
tation du plan.



— 281 —

Si deux tels fibrés sont isomorphes dans G*, I’'homéomorphisme corres-
pondant du plan est compatible avec ces deux orientations; par contre un
isomorphisme dans G, et non dans G induit un homéomorphisme compa-
tible avec les orientations des feuilletages, mais renversant I’orientation du
plan.

4. CRITERES DE SEPARATION

Soient 1 = (E, p, X) un fibré sur X, @, et &, des trivialisations de n/U;
et n/U,, et g le changement de carte associé.

Les ensembles p ! (U,), p~* (U,) et p7' (X — { 01, 0, }) sont des ouverts
séparés de E. Par conséquent sie; e p~! (U,) et e, € p~* (U,) sont des points
non séparés de £ on a e, = &, (0,y) et e, = &, (0, 2).

PROPOSITION 4.
Pour que E soit non séparé, il faut et il suffit qu’il existe
une suite (£,) de nombres négatifs tendant vers O,
une suite (y,) ayant une limite finie y,
telles que la suite (g, (»,) ait une limite finie z.

Démonstration. — La condition est suffisante car la suite ¢, = @, (&,,
v = D,(&,, g: (y,) converge simultanement vers les points €; = &, (0,y)
ete, = 9,(0,2).

Supposons réciproquement que e; = &, (0,y) et e, = @, (0,z) soient deux
points non séparés de E. Soient (V,)) .y (resp. (W,) ,cn) un systeme fonda-
mental de voisinages emboités de e, (resp. de e,) contenus dans p~*! (Uj)
(resp. p~ ' (U,)). Pour tout n on peut trouver un point ¢, = D, (&,y,) =
®, (&, g, (vn) dans V, N1 W, . La suite (g,) tend alors simultanément vers
e, et vers e, ; les suites (,), (v,) et (g (£,) y,) ont donc respectivement O,
y et z pour limites.

C.q.f.d.

COROLLAIRE.
Soit z un point d’accumulation de g, (y) pour y fixé et x tendant
vers 0. Alors les points @, (0, y) et @, (0, z) ne sont pas séparés
dans E.

Exemples. — Soient (1;)0<;<7 les fibrés associés aux changements de
carte suivants:
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