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ayant le branchement simple pour espaces des feuilles, résultat qui précise
ici un théoreme général de W. Kaplan [2].

Dans une dernicre partie on restreint le groupe structural des fibrés au
groupe des translations et au groupe des difféomorphismes de R. Dans ce
cas-ci on obtient aussi un théoréme de classification des fibrés différentiables
séparés; par contre on ne peut plus en déduire une classification différen-
tiable des feuilletages différentiables du plan.

2. LE BRANCHEMENT SIMPLE

Soient R; et R, deux exemplaires de la droite réelle paramétrés respec-
tivement par x, et x,. Le branchement simple X est le quotient de la somme
topologique ¥ = R, U R, par la relation d’équivalence qui identifie les
points x; et x, pour x; = x, = x < 0. On note =« la projection de X sur X.

L’espace X est une variété topologique de dimension 1 non séparée.
En effet U, = n (R,) et U, = n (R,) sont des ouverts de X, et les restric-
tions de = a R, et R, définissent un atlas de X; on identifiera 'intersection
U = U, n U, avec l'intervalle ] — o0, 0 [ de R. Les points 0, € U, et o, € U,,
images par n des origines de R, et R,, sont les points de branchement de X
(points non séparés).

L’involution de X qui échange les deux exemplaires R, et R, définit une
involution continue 4 de X qui échange les deux ouverts U, et U, en laissant
fixes les points de U.

Plus généralement, un homéomorphisme f de X laisse U; et U, inva-
riants ou les permute; le premier cas est caractérisé par f(o;) = o0, (ou
f(0,) = 0,), le second par f(0;) = 0, (ou f(0,) = 0y). Dans tous les cas
onaf(U)=U.

On peut enfin remarquer que le branchement simple est un espace
contractile, donc acyclique.

3. FIBRES SUR LE BRANCHEMENT SIMPLE

Soit # = (E, p, X) un fibré localement trivial de base X et de fibre %R;
tous les fibrés intervenant dans la suite étant de ce type, on dira simplement

que n est un fibré sur X.
On peut considérer 7 comme un fibré & groupe structural au sens de
Steenrod [3]; le groupe de structure est ici le groupe G des homéomor-
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