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SUR LES POLYGONES DE PERIMETRE MAXIMUM
INSCRITS DANS UNE ELLIPSE

par A. LOEFFLER

TuroriME I. — Sur tout arc UV d’une ellipse ¥ 1l y a un
point X et un seul tel que le contour polygonal UXV soit
maximum.

Démonstration. — Soient UMV et UNV les deux arcs de
% sous-tendus par la corde UV. O désignant le milieu du segment
UV, posons:

UO =0V =c¢c>0

Prenons O comme origine, et OV comme axe des x d’un systéme
de coordonnées rectangulaires. 4 désignant une valeur positive
quelconque, ’équation:

E,=xE+P+DHyy - 1222+ =0

représente I'une des ellipses homofocales qui ont U et V comme
foyers.

Les extrémités A’ et A du grand axe de &, sont sur 'axe
des z, et extérieures a %, puisque 'on a:

|A” O] = |OA| = JA* +c% >c.

Soient L le point de Varc UNV situé sur 'axe des y, et OB’
un segment variable de cet axe, de méme sens que OL. Posons
|OB’| = A. Le point B’ est une des extrémités du petit axe de
Pellipse &,;.

Supposons qu’on ait:

4 = |OB’| < |OL].

Le point B’ est alors a I'intérieur de 4. A’ étant & V'extérieur de
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cette courbe, 'arc A" B" de &, rencontre € en un point § situé
entre A" et B’. De méme &, rencontre % en un point R situé
entre B’ et A.

Fig. 1

Désignons par s la surface comprise entre I'arc RS de &,
et arc SR de €. 51 Uon a: 4, > 4, , on sait que lellipse &,
enveloppe complétement I'ellipse homofocale &,,. Il ’ensuit que,
si A varie en croissant d’une maniére continue, la surface s ira
en diminuant. Elle n’existe plus pour des valeurs suffisamment
grandes de A pour lesquelles &, enveloppe . Il y a donc une
valeur 4, de A pour laquelle s se réduit a 0. Ceci n’est possible
que si les deux points S et R sont confondus en un méme point X;
et par suite &, est tangente & % en X. Il n’y a qu’une seule
ellipse qui jouisse de cette propriété. Pour 1 < 4y, &, coupe s,
et par suite aussi 'arc UNV en deux points R et S distincts.
Pour 2 > Ay, &, enveloppant &,, enveloppe aussi 'arc UNYV et
ne peut ni le couper, ni lui étre tangente.

Si 2a est la longueur du grand axe de &,,, on a: UX 4 XV
= 2a, puisque X est sur &,;,. Tous les points de 'arc UNV
distincts du point X sont & I'intérieur de &,,. Donc, si P est un
de ces points, on a: UP + PV < 2a, ou: UX + XV > UP
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-+ PV, ce qui démontre le théoréme I. De la méme maniére
on établit Iexistence sur 'arc UMV d’un point unique Y tel
que la longueur du contour UY + YV soit maximum.

TutoREME 2. — Sur tout arc UNV dune ellipse € il y a
toujours un point Z et un seul tel que Uangle UZV admette comme
bissectrice intérieure la normale @ € en ce point.

En effet, supposons qu’il existe un pareil point Z. Considérons
I'ellipse & dont les foyers sont les points U et V et qui passe par Z.
On sait que la bissectrice intérieure de 'angle UZV est la normale
a & au point Z. Mais, par hypothése, cette bissectrice est aussi
la normale & € en Z. Donc & et € ont la méme tangente au point
commun Z. On a vu, en démontrant le théoreme I, que, parmi
les ellipses de foyers U et V, il y en a une et une seule &,, qui
soit tangente & 'arc U/NV en un point X. D’apres le théoréme I,
& se confond donc avec &,, et Z avec X. On sait que ce point
existe toujours et qu’il est unique. Le théoréme est donc
démontré.

Nous conviendrons de dire, par la suite, que le point X est le
point d'impact sur 'arc UN V. En effet, on déduit du théoréeme 2
que si ¥ est la bande d’un billard elliptique, X représente le
point ou une bille partant de U doit étre renvoyée par la bande
pour parvenir en V apres avoir touché une fois 'arc UNV.

X est aussi le point ol un rayon lumineux issu de U doit
rencontrer ¢ pour atteindre le point V aprés une seule réflexion
sur I’arc UNV qu’on suppose étre la projection orthogonale d’un
miroir cylindrique.

Remarquons que si les points U et V sont permutés, le point
X ne change pas.

DEriniTION. — Etant donnés une ellipse € et un entier n
supérieur a 2, nous dénommerons polygone o, de % tout polygone
convexe de n cotés, inscrit dans € et tel que chacun de ses som-
mets soit le point d’impact de 'arc limité par les deux sommets
VoISInS. ‘

Il faut démontrer qu’il existe de pareils polygones quel que
soit n. C’est ce que nous établirons a 'aide des deux théorémes
sulvants.
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TurorEME 3. — Etant donnés un entier n, plus grand que 2,
et une ellipse €, il existe toujours une ellipse homofocale I', et
une seule, telle que U'on puisse inscrire dans € un polygone convexe
de n cotés circonserit a T,

Démonstration. — Soient F et F' les foyers de lellipse %,
et b*>x? + a*y®* — a*b*> = 0 son équation, ou Von suppose
0 <b < a. Pour toute valeur de A1 comprise entre 0 et b2
Iéquation:

E,=B*=Dx2+ (@2 =N)y* —(@=DB*=2) = 0

représente 'une quelconque des ellipses homofocales qui sont
intérieures a %. Nous supposerons que A1 est positif. On sait
alors que Vellipse &4, est intérieure a4 &,;. Ayant choisi arbi-
trairement P, inscrivons dans % les deux lignes polygonales
convexes de n cOtés:

& = POQ ... S, circonscrite a &, et
L' = PO'Q"...§’, circonscrite & &4, -
P — P~ —
On entendra par PO, 0Q, ..., RS; PO, 0" Q',...R"S’, les plus
petits des arcs de € sous-tendus par la corde correspondante, et
on supposera qu’ils sont tous décrits dans un méme sens choisi
comme sens positif. Le point O est situé sur le prolongement de
Yarc PO, puisque PO’ est tangente & &, 4, qui est intérieure & &,.
On a done:

AN N ~
00" > 0, et PO’ > PO.

Menons la corde O’ Q"' de % tangente a &,, et telle que ’arc O’ Q”
soit positif. Si 'on imagine que la droite OQ roule sur &, jusqu’a
coincider avec la droite O’ Q”, 1l est évident que I'arc QQ” est
positif puisque I'arc OO’ I'est.

D’autre part, O’ Q' étant tangente a &,,4,, donc sécante a
&, on a: @’ > 0. Donc Yarc POQ est plus petit que larc
PO’ Q'. En poursuivant ce raisonnement on obtient:

RS A e
POQ...S < PO Q... 8
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Si s (A) désigne la longueur de l'arc sous-tendu par £, on a
donc l'inégalité:

s(A) <s(A+44)

I1 s’ensuit que s (1) croit lorsque 4 croit de 0 & b?.

Soit 0 un quelconque des sommets de £. Si on rapporte ¥
ala tangente t et & la normale n en O, son équation est dela forme:

y2 + 2Bxy +yx2 + 0y =0

ou I'on doit avoir: f2 — y < 0, puisque € est une ellipse, et par

suite: y > 0. On peut choisir sur ¢ le sens de ’axe Ox de facon que
RS . )
o, = Ot, OP soit un angle aigu. Sur I'axe des y, on choisira un

sens tel quon ait: OG> 0, ou G désigne I'extrémité sur € de la
normale n. De I'équation de C on tire: — 0G = § < 0, et, par
la substitution:

x = OP cos ay

OP sin «, ,

S
I
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oP = — — 0 sin ?‘1
sin® oy + 2B cos o, sin «; + 7 cos® o
2 . 1
= (1 +m7) sin o -
T(ay)

1 2p Y

en posant: m;, = tga,, et T(o;) = — gm1 — 3"’”1 s T est
2——

positif, quel que soit my, et passe par un minimum k, = A 5 !

Quelle que soit la position de O sur €, on a: f? —y=f <0,

et |0] = OG < 2a = grand axe de €, donc k, >—2—>O.
a

1. S1 4 — 0, en parcourant une suite de valeurs décroissantes,
on voit, d’aprés leurs équations, que les ellipses &, correspon-
dantes, dont chacune enveloppe la précédente, tendent d’une
facon continue vers . Il s’ensuit que a, — 0. On voit que, en
négligeant un infiniment petit du troisieme ordre par rapport
a oy, on peut écrire:

sin o;  2a sin o

OP < <
ki —f

PO tend donc vers 0 avec A, et il en est de méme de 'arc PO,

PO :
puisque — — 1. On peut évidemment établir ce résultat pour

PO

chacun des n arcs sous-tendus par %, et, comme rn est fini, I’arc

POQ ... S tend vers 0 avec 1. On peut donc dire, en particulier,
. Ty
que, si  est la longueur du périmetre de €, on a: POQ...§ < ®

lorsque A est voisin de 0.

2. Si A — b2, Vellipse &, tend vers le segment rectiligne FF,
et on peut dire qu’a la limite toute tangente & % passera par F”
ou F. Pour n = 3, la ligne polygonale %, qui passe par O est

formée des trois segments P, O, 0Q,, Qo R, et la figure montre
~ N R

que I'arc qu’elle soustend s, = Py O 4 0Q¢ + Qo R, est supé-
rieur & . Ceci est vrai, a fortiori, pour n > 3.



En résumé, quel que soit U'entier n considéré, la longueur de
I'arc s sous-tendu par la ligne polygonale POQ ... S varie, d’une
valeur inférieure & w, 4 une autre valeur supérieure a o, en crois-
sant constamment, lorsque A croit de 0 & b%. L’équation s (1) = o,
admet donc une solution A, comprise entre 0 et 4%, et une seule.
Parmi les ellipses homofocales &, 11 y en a donc une et une seule
&, qui admette un polygone circonscrit de n cOtés inscrit dans
%. Le théoréeme est donc démontré. On désignera par I, I'ellipse
& ,, quon vient de trouver.

THEOREME 4. — Pour qu’un polygone convexe, inscrit dans
une ellipse € soit un polygone o,, il faut et il suffit qu’il soit circons-
crit a une ellipse I', qui a les mémes foyers que €.

Démonstration. — 1. La condition est nécessaire. — En effet,
soit L un polygone o, de 4. Considérons des sommets consécutifs
P, 0, Q, R de L. On sait qu’il existe une conique I', et une seule
qui a les foyers /7 et /' et qui est tangente au coté PO. Soit ON
la normale a % en 0. ¥ étant une conique, on sait que ON bissecte
I'angle FOF'. 11 s’ensuit que ON bissecte aussi 'angle des tan-
gentes & I', issues de O, comme on le voit en remarquant que
F et I'" sont les foyers de I',, et en appliquant un théoréme connu.
Or une de ces tangentes est OP. L’autre doit étre OQ puisque,
L étant un polygone o,, ON bissecte I’angle POQ. On voit de
méme que, si I', est tangente & OQ, elle touche QR ... etc. ..
Donc L est bien circonscrit a I',,.

2. La condition est suffisante. — En effet, soit Z un polygone
mscrit dans € et circonscrit & une conique homofocale I',. Si
P, O et Q sont trois sommets consécutifs de L, OP et OQ étant
tangents & I',, on sait que les angles POQ et FOF' ont une méme
bissectrice intérieure ON. O étant sur €, la bissectrice intérieure
de 'angle FOF’ se confond avec la normale & € en 0. Comme elle
bissecte 'angle POQ, O est le point d’impact de 'arec POQ. L est
donc un polygone o,. Le théoréme 4 est ainsi démontré.

TuiEorEME 5. — Etant donnés un entier n > 2, et une ellipse
quelconque %, 1l existe une infinité de polygones o, de C. Ces
polygones sont tous circonscrits & une ellipse homofocale.
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Démonstration. — On sait d’apres le théoréeme 3 qu'on peut
trouver & l'intérieur de € une ellipse homofocale I',, telle qu’il
existe un polygone convexe de n cdtés inserit dans € et cir-
conscrit & I',. D’apres un théoréme de Poncelet, il s’ensuit qu’il
y a alors une infinité de polygones satisfaisant a ces deux condi-
tions. !

D’apres le théoreme 4 ce sont tous des polygones o,. Il n'y
en a pas d’autres, car si L est un polygone o, de &, il doit étre
circonserit a une ellipse homofocale, en vertu du théoréme 4,
et d’aprés le théoreme 3 cette ellipse ne peut étre que I',. Le
théoréeme 5 est donc démontré.

Exemple. — Proposons-nous de déterminer les polygones o,
d’une ellipse ¥ qu'on supposera donnée par son équation:
b* 2% + a* y* — a? b®> = 0, dansun systéme d’axes rectangulaires.
Soit AA” = 2a le grand axe de &, et B’ B = 2b son petit axe.

Le losange A’ B’ AB est évidemment un des quadrilateres
o, de ¥ puisqu’en chacun de ses sommets la normale a % est
la bissectrice intérieure de l’angle du losange. L’ellipse I', est
déterminée par ses foyers F' et I’ et par une de ses tangentes qui
peut étre 'un quelconque des cotés du losange. On peut facile-
ment vérifier que:

Y =a*u® +b*0® — (@®+bH)w =0
est 'équation tangentielle de I'y. En effet:

1. Y =0,siu= +b;¢v= *a;w= — ab. Ceci montre
que la conique ) est tangente aux quatre cotés du losange qui
ont comme équations: + bx + ay —ab = 0.

2. Y =0,siu= t1i;¢=1;w= % ic. Ceci montre que
Y est tangente aux droites isotropes issues de F et de F”, et
qu’elle a par suite ces points comme foyers. Donc ), = 0 est bien
I'équation tangentielle de I',.

Soit MNOP un quadrilatére o, de €. On sait que tous ses
cOtés sont tangents & I'4, et que ses sommets sont des points de %.
Soient V, W, Y et Z les poles respectifs de PM, MN, NO et OP

1 Voir J. V. PoNCELET , Traité des propriétés projectives des figures. Tome I-565-566.
Gauthier-Villars (1865).



par rapport & ¥. L’équation de la polaire de W (x,,y,) est:
b*x,x + a*y,y — a*b* = 0. Cest aussi celle de la droite MV
qui est tangente & I',. Donc I’équation ), = 0 doit étre vérifiée
si: uw=0b*z;0v=20a’y;;w= —a®*b*>. On a done:

a*b*x? + b*a*y? — (@®>+bDa*b* =0,
ou:
x3 +y} —(@*+b?) =0.

Donc le lieu de W est le cercle orthoptique de € que ’on désignera
par . On sait par suite que les tangentes WV et WY menées
de W a € forment un angle droit. De méme on voit que J est le
lieude Y, Z, et V, et que le quadrilatere VW YZ est un rectangle.
Il ressort aussi de ce qui précede que les courbes A et I', se
correspondent dans une transformation par polaires réciproques,
par rapport a €.

Fig. 3

On voit qu’il est aisé de construire un quadrilatére o, quel-
conque de €, par exemple celui dont un des sommets est un point
M choisi arbitrairement sur cette courbe. On meéne, pour cela,
la tangente en M a %, puis la tangente qui lui est paralléle et qui
touche € au point O, symétrique de M par rapport & I. On cons-
truit ensuite les deux tangentes & ¢ qui sont perpendiculaires aux
précédentes et qui les coupent aux points V, W, Y et Z. Ces

L’Enseignement mathém,, t. XII, fasc. 1. 2
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points sont situés sur A", puisque de chacun d’eux, on voit €
sous un angle droit. Soient IV et P les points de contact des deux
derniéres tangentes. La figure montre que MV est la polaire de
W par rapport a €. W étant sur ", MN est tangente & I,
puisque I', est la transformée de o par polaires réciproques,
par rapport & ¢. De méme on voit que NO, OP et PM sont tan-
gentes & I',. D’apres le théoreme 4, le quadrilatere M/ NOP est
donc un polygone o, de ¥.

On peut aussi déduire de la figure que tous les quadrilateres
o4, de € sont isopérimetres.

Pour le montrer, remarquons d’abord que MO et P.V sont
des diameétres de ¥ qui ont chacun comme milieu le centre I de
cette conique. Le quadrilatere M/NVOP est donc un parallélo-
gramme.

V étant le pole de M P, et Y le pole de NO, la droite V'Y est
la polaire du point d’intersection de MP et NO. Ce point étant
a I'infini, V'Y passe par 7 et coupe les segments M P et NO en leurs
milieux G et H. On en déduit: MN || VY.

Si 2p est le périmétre de MNOP, on a: p = MN + MP.

Soit, L le point ou le prolongement de NM coupe celui de ZV.
MNOP étant un polygone oy, la tangente V.M bissecte I'angle
LMP, et Yon a:

LM = MP .

Donc: p = NM + MP = NM + LM = LN. D’autre part,
ona: MN || VY, donc LN || VY, et LV||NY.

Onentire: p = LN = VY = diamétrede # = 2 /a® + b*

Donc tous les quadrilateres MNOP ont le méme périmetre
2p = 4 \/a* + b*> = constante.

La proposition qu’on vient de démontrer sur les polygones
o, n'est qu'un cas particulier du théoréme suivant:

THEOREME 6. — St deux ellipses homofocales sont telles qu’tl
existe deux polygones convexes de n cétés inscrits dans l'une et
circonscrits a U autre, ces polygones sont iLsopérimétres.

Démonstration. — Soient € et I' les ellipses de I'énoncé, I
étant intérieure & . On sait que, si, d’'un point P de ¢, on mene
les deux tangentes PA et PB a I', la différence PA + PB — arc
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AB reste constante lorsque le point P parcourt Iellipse %.
Cette proposition sur les ellipses homofocales a été démontrée
par le géometre anglais Graves 1.

Soient O, P, Q, R, ... T les sommets d'un des polygones de
I'énoncé; A, B, C, ... H les points ou les cdtés OP, PQ, R, ..., TO
touchent respectivement I'. Soient O’, P’, Q',... T’ les sommets
du second polygone, et A’, B’, ..., H" ses points de contact.
D’apres Graves, on a:

AP+ PB —arc AB=A'P' + P' B —arc A’ B’
BO 4+ QC — arc BC = B' Q' + Q' C' — arc B' C’

HO +0OA —arc HA=H' 0"+ 0" A" — arc H' A’
Additionnons ces n égalités. Si p, p’ et [ sont respectivement les

mesures des périmetres des deux polygones et de Uellipse I') on
voit qu'on obtient:

p —1l=p —1, et par suite: p = p'. c.q.f.d.

COMPLEMENT DU THEOREME 6. — D’aprés le théoréme 8, il y
a une infinité de polygones o, inscrits dans €, pour tout eniier
n > 2. On sait qu’tls sont tous circonscrits a une ellipse homofocale

I',. Par conséquent, en vertu du théoréme 6, ils sont isopéri-
metres.

Conclusion. — € étant une ellipse non dégénérée, mais quel-
conque, et » un nombre naturel supérieur a 2, on sait, en vertu
du théoreme 6, que tous les polygones o, de ¥ ont une méme
longueur de périmétre dont on a désigné la mesure par p,. Or
on peut vérifier aisément le théoréeme suivant:

THEOREME 7. — S1, dans Uensemble des polygones convezxes,
de n cotés, inscrits dans Uellipse €, il existe un polygone 2 qui
ait un périmeétre maximum, P est un polygone o, de .

En effet, solent U, V, W, Z, ... les sommets de 2, énoncés
suivant un sens déterminé.

1 E. GOURSAT, Cours d’analyse mathémalique, deuxiéme édition (1910). Tome
I-203. Gauthier-Villars.
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Supposons que £ ne soit pas un polygone o,.

On déduit alors de cette hypothése qu’il y a au moins un des
sommets de 2 qui n’est pas un point d’impact. Soit V un pareil
sommet. S1 V' est 'impact de I'arc UVWW de %, on a, d’apres le
théoréme I:

UV+ VW< UV +V'W.

En désignant par 2’ le polygone obtenu en remplacant, dans
2, le sommet V par V', on tire de 'inégalité précédente:

périmetre de 2 < périmetre de 2,

ce qul ne peut étre puisque £ a un périméetre maximum. Donc
I'hypothese est fausse, et 2 est un polygone o,. c.q.f.d.
On peut, d’autre part, établir la proposition suivante:

THEOREME 8. — Tout polygone convexe de n cétés inscrit dans
% a un périmétre de longueur inférieure ou au plus égale a p,.

La démonstration que nous avons trouvée de cette propo-
sition est longue et laborieuse, et 1l parait préférable d’attendre
qu’on ait eul'idée d’'une démonstration plus simple pour 'exposer.

L’existence des polygones ¢, ayant été bien établie, on voit
qu’on peut déduire des propositions précédentes la conclusion
suivante:

Parmz tous les polygones convexes de n cotés inscrits dans une
ellipse € il y en a une infinité qui admettent un périmeétre maximum.
Ils sont isopérimétres, circonscrits a une ellipse homofocale, et ils
admettent en chaque sommet la normale & € comme bissectrice
intérieure.

Chemin de la Fontanettaz 8
Pully-Rosiaz, Vaud.

(Regu le 24 mai 1965)
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