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SUR LES POLYGONES DE PÉRIMÈTRE MAXIMUM
INSCRITS DANS UNE ELLIPSE

par A. Loeffler

Théorème I. — Sur tout arc UV d'une ellipse ^ il y a un

point X et un seul tel que le contour polygonal UXV soit

maximum.

Démonstration. — Soient UMV et UNV les deux arcs de

^ sous-tendus par la corde UV. 0 désignant le milieu du segment
UV, posons:

UO OV c > 0

Prenons 0 comme origine, et OV comme axe des x d'un système
de coordonnées rectangulaires, X désignant une valeur positive
quelconque, l'équation:

Sk X1 x2 + (X2+c2)y2 — X2(X2+c2) 0

représente l'une des ellipses homofocales qui ont U et V comme
foyers.

Les extrémités i' et i du grand axe de ê k sont sur l'axe
des x, et extérieures à puisque l'on a:

\ÄTÖ\ \OÄ\v^2 + C2 > c

Soient L le point de l'arc UNV situé sur l'axe des y, et OB'
un segment variable de cet axe, de même sens que OL. Posons

\OB'\ — X. Le point B' est une des extrémités du petit axe de

l'ellipse êk.
Supposons qu'on ait:

X \UW\ < \ÔL\.

Le point B' est alors à l'intérieur de A' étant à l'extérieur de
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cette courbe, Fare A' B' de Sk rencontre ^ en un point S situé
entre A' et B'. De même êk rencontre ^ en un point R situé
entre B' et A.

Désignons par s la surface comprise entre Fare RS de S k

et Fare SR de Si Fon a: A2 > °n sait que Fellipse êkl
enveloppe complètement Fellipse homofocale êkv II s'ensuit que,
si A varie en croissant d'une manière continue, la surface s ira
en diminuant. Elle n'existe plus pour des valeurs suffisamment
grandes de A pour lesquelles Sk enveloppe Il y a donc une
valeur A0 de A pour laquelle s se réduit à 0. Ceci n7est possible

que si les deux points S et R sont confondus en un même point X ;

et par suite SkQ est tangente à ^ en I. Il n'y a qu'une seule

ellipse qui jouisse de cette propriété. Pour A < A0, SA coupe s,
et par suite aussi l'arc UNV en deux points R et S distincts.
Pour A > A0l êk enveloppant SkQ enveloppe aussi l'arc UNV et

ne peut ni le couper, ni lui être tangente.
Si 2a est la longueur du grand axe de SkQy on a: UX + XV
2a, puisque X est sur êkQ. Tous les points de l'arc UNV

distincts du point X sont à l'intérieur de êkQ. Donc, si P est un
de ces points, on a: UP + PV < 2a, ou: UX + XV > UP
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+ PV ce qui démontre le théorème I. De la même manière

on établit l'existence sur l'arc UMV d'un point unique Y tel

que la longueur du contour UY + YV soit maximum.

Théorème 2. — Sur tout arc UNV d'une ellipse il y a

toujours un point Z et un seul tel que l'angle UZV admette comme

bissectrice intérieure la normale à ^ en ce point.

En effet, supposons qu'il existe un pareil point Z. Considérons
h ellipse ê dont les foyers sont les points U et V et qui passe par Z.
On sait que la bissectrice intérieure de l'angle UZV est la normale
à # au point Z. Mais, par hypothèse, cette bissectrice est aussi

la normale à ^ en Z. Donc ê et # ont la même tangente au point
commun Z. On a vu, en démontrant le théorème I, que, parmi
les ellipses de foyers U et F, il y en a une et une seule êXo qui
soit tangente à l'arc UNV en un point X. D'après le théorème I,
S se confond donc avec SÀQ et Z avec X. On sait que ce point
existe toujours et qu'il est unique. Le théorème est donc
démontré.

Nous conviendrons de dire, par la suite, que le point X est le

point d'impact sur l'arc UNV. En effet, on déduit du théorème 2

que si # est la bande d'un billard elliptique, X représente le

point où une bille partant de U doit être renvoyée par la bande

pour parvenir en V après avoir touché une fois l'arc UNV.
X est aussi le point où un rayon lumineux issu de U doit

rencontrer # pour atteindre le point F après une seule réflexion
sur l'arc UNV qu'on suppose être la projection orthogonale d'un
miroir cylindrique.

Remarquons que si les points U et V sont permutés, le point
X ne change pas.

Définition. — Etant donnés une ellipse # et un entier n
supérieur à 2, nous dénommerons polygone on de # tout polygone
convexe de n côtés, inscrit dans # et tel que chacun de ses
sommets soit le point d'impact de l'arc limité par les deux sommets
voisins.

Il faut démontrer qu'il existe de pareils polygones quel que
soit n. C'est ce que nous établirons à l'aide des deux théorèmes
suivants.
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Théorème 3. — Etant donnés un entier n, plus grand que 2,
et une ellipse il existe toujours une ellipse homofocale rn et

une seule, telle que Von puisse inscrire dans un polygone convexe
de n côtés circonscrit à rn.

Démonstration. — Soient F et F' les foyers de l'ellipse
et b2 x2 + a2 y2 — a2 b2 0 son équation, où Ton suppose
0 < b < a Pour toute valeur de A comprise entre 0 et è2,

l'équation:

EE (b2-A)x2 + (a2-A)y2 -(a2-A)(b2-A) 0

représente Tune quelconque des ellipses homofocales qui sont
intérieures à Nous supposerons que AA est positif. On sait
alors que Fellipse SX+Ak est intérieure à êx. Ayant choisi
arbitrairement jP, inscrivons dans < les deux lignes polygonales
convexes de n côtés:

POQ S, circonscrite à Sx, et

<£' PO'Q'... S', circonscrite à êÀ+AÀ

On entendra par PO, OQ, RS; PO', Of Q', R' S', les plus
petits des arcs de sous-tendus par la corde correspondante, et
on supposera qu'ils sont tous décrits dans un même sens choisi

comme sens positif. Le point 0' est situé sur le prolongement de

l'arc PO, puisque PO' est tangente à S*X+AX qui est intérieure à $x.
On a donc:

CK? > 0, et PO* > PO.

Menons la corde 0' Q" de ^ tangente à $x, et telle que l'arc 0' Q"
soit positif. Si l'on imagine que la droite OQ roule sur êx jusqu'à
coïncider avec la droite 0' Q", il est évident que l'arc QQ" est

positif puisque l'arc OO' l'est.
D'autre part, 0' Q' étant tangente à SX+AX, donc sécante à

êx, on a: Q" Q' > 0. Donc l'arc POQ est plus petit que l'arc
PCF Q'. En poursuivant ce raisonnement on obtient:

POQ... S <PO' Q'...S'
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Si s (X) désigne la longueur de Tare sous-tendu par if, on a

donc l'inégalité:

s(X) <s(X+AX)

Il s'ensuit que s (A) croît lorsque X croît de 0 à b2.

Soit 0 un quelconque des sommets de if. Si on rapporte #
à la tangente t et à la normale n en 0, son équation est de la forme :

y2 + 2ßxy + yx2 + ôy 0

où l'on doit avoir: ß2 — y < 0, puisque ^ est une ellipse, et par
suite: y > 0. On peut choisir sur t le sens de l'axe Ox de façon que

Ot, OP soit un angle aigu. Sur l'axe des y, on choisira un
sens tel qu'on ait: OG> 0, où G désigne l'extrémité sur # de la
normale n. De l'équation de C on tire: — OG — ô < 0, et, par
la substitution:

X OP COS OCjl

y OP sin ccl
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OP
S sin a 1

sin2 cc1 -f 2ß cos a1 sin a1 -f y cos2 a

positif, quel que soit ml1 et passe par un minimum k1
Ô

Quelle que soit la position de 0 sur on a: ß2 — y f < 0

et \ô\ OG <2a grand axe de # donc kx > —- > 0
2a

1. Si X -» 0, en parcourant une suite de valeurs décroissantes,
on voit, d'après leurs équations, que les ellipses Sx correspondantes,

dont chacune enveloppe la précédente, tendent d'une
façon continue vers Il s'ensuit que a1 -> 0. On voit que, en

négligeant un infiniment petit du troisième ordre par rapport
à oc11 on peut écrire:

PO tend donc vers 0 avec 2, et il en est de même de l'arc PO,

chacun des n arcs sous-tendus par S£r et, comme n est fini, l'arc
POQ ...S tend vers 0 avec 2. On peut donc dire, en particulier,

que, si co est la longueur du périmètre de ona: POQ ...S < co

lorsque X est voisin de 0.

2. Si X -> 62, l'ellipse êx tend vers le segment rectiligne FF',
et on peut dire qu'à la limite toute tangente à # passera par F'
ou F. Pour n 3, la ligne polygonale J£?0 passe par O est

formée des trois segments P0 O, OQ0, Q0 R0, et la figure montre

que l'arc qu'elle soustend s0 P0 O + OQ0 -f Q0Ro est supérieur

à co. Ceci est vrai, a fortiori, pour n > 3.

2a sin a
<
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En résumé, quel que soit l'entier n considéré, la longueur de

l'arc s sous-tendu par la ligne polygonale POQ ...S varie, d'une
valeur inférieure à co, à une autre valeur supérieure à m, en croissant

constamment, lorsque À croît de 0 à b2. L'équation s (2) œ,

admet donc une solution Àn comprise entre 0 et b2, et une seule.

Parmi les ellipses homofocales Sx, il y en a donc une et une seule

SXn qui admette un polygone circonscrit de n côtés inscrit dans
Le théorème est donc démontré. On désignera par Tn l'ellipse

SXn qu'on vient de trouver.

Théorème 4. — Pour qu'un polygone convexe, inscrit dans

une ellipse <6 soit un polygone an, il faut et il suffit quy il soit circonscrit

à une ellipse rn qui a les mêmes foyers que

Démonstration. — 1. La condition est nécessaire. — En effet,
soit L un polygone on de c. Considérons des sommets consécutifs
P, 0, Q, R de L. On sait qu'il existe une conique Tn et une seule

qui a les foyers F et F' et qui est tangente au côté PO. Soit ON
la normale à # en 0. étant une conique, on sait que 6LV bissecte

l'angle FOF'. Il s'ensuit que ON bissecte aussi l'angle des

tangentes à rn issues de 0, comme on le voit en remarquant que
F et F' sont les foyers de r„, et en appliquant un théorème connu.
Or une de ces tangentes est OP. L'autre doit être OQ puisque,
L étant un polygone on, ON bissecte l'angle POQ. On voit de
même que, si r„ est tangente à OQ, elle touche QR etc.
Donc L est bien circonscrit à Tn.

2. La condition est suffisante. — En effet, soit L un polygone
inscrit dans # et circonscrit à une conique homofocale Tn. Si

P, 0 et Q sont trois sommets consécutifs de L, OP et OQ étant
tangents à f„, on sait que les angles POQ et FOF' ont une même
bissectrice intérieure ON. 0 étant sur la bissectrice intérieure
de l'angle FOF' se confond avec la normale à ^ en 0. Comme elle
bissecte l'angle POQ, 0 est le point d'impact de l'arc POQ. L est
donc un polygone on. Le théorème 4 est ainsi démontré.

Théorème 5. —- Etant donnés un entier n > 2, et une ellipse
quelconque il existe une infinité de polygones an de C. Ces

polygones sont tous circonscrits à une ellipse homofocale.
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Démonstration. — On sait d'après le théorème 3 qu'on peut
trouver à l'intérieur de ^ une ellipse homofocale rn1 telle qu'il
existe un polygone convexe de n côtés inscrit dans # et
circonscrit à r„. D'après un théorème de Poncelet, il s'ensuit qu'il
y a alors une infinité de polygones satisfaisant à ces deux conditions.

1

D'après le théorème 4 ce sont tous des polygones on. Il n'y
en a pas d'autres, car si L est un polygone an de #, il doit être
circonscrit à une ellipse homofocale, en vertu du théorème 4,
et d'après le théorème 3 cette ellipse ne peut être que Tn. Le
théorème 5 est donc démontré.

Exemple. — Proposons-nous de déterminer les polygones er4

d'une ellipse qu'on supposera donnée par son équation:
b2 x2 + a2 y2 — a2 b2 0 dans un système d'axes rectangulaires.
Soit AA' 2a le grand axe de et B' B 2b son petit axe.

Le losange A' B' AB est évidemment un des quadrilatères
a4 de ^ puisqu'en chacun de ses sommets la normale à # est

la bissectrice intérieure de l'angle du losange. L'ellipse P4 est

déterminée par ses foyers F' et F et par une de ses tangentes qui
peut être l'un quelconque des côtés du losange. On peut facilement

vérifier que:

^ a4 u2 + h4 v2 — (a2 + b2) w2 0

est l'équation tangentielle de r4. En effet:

1. ]£ 0, si & ± b; v ± a] w — ab Ceci montre

que la conique £ est tangente aux quatre côtés du losange qui
ont comme équations : ± bx ± ay — ab — 0

2. Yj 0, si u ± v — 1; w ± ic Ceci montre que

£ est tangente aux droites isotropes issues de F et de F', et

qu'elle a par suite ces points comme foyers. Donc ]T 0 est bien

l'équation tangentielle de P4.

Soit MNOP un quadrilatère cr4 de <jf. On sait que tous ses

côtés sont tangents à r4, et que ses sommets sont des points de <.
Soient F, W, Y et Z les pôles respectifs de PM1 MN, NO et OP

i Voir J. V. Poncelet Traité des propriétés projectives des figures. Tome 1-565-566.
Gauthier-Villars (1865).
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par rapport à L'équation de la polaire de W (xu y±) est:
b2 x1 x + a2 yx y — a2 b2 0 C'est aussi celle de la droite MN
qui est tangente à r4. Donc l'équation £ 0 doit être vérifiée
si: u b2 xt ; v a2 yx ; w — a2 b2 On a donc:

n 4 64 x2 + b4 a4 y2 — (a2 + b2) a4 b4 0

ou:
v2 + j7! — (n2 + b2} 0

Donc le lieu de W est le cercle orthoptique de # que l'on désignera

par jf. On sait par suite que les tangentes WV et WY menées
de W à # forment un angle droit. De même on voit que Jf est le

lieu de F, Z, et F, et que le quadrilatère VWYZ est un rectangle.
Il ressort aussi de ce qui précède que les courbes Jf et r4 se

correspondent dans une transformation par polaires réciproques,
par rapport à

Fig. 3

On voit qu'il est aisé de construire un quadrilatère cr4

quelconque de par exemple celui dont un des sommets est un point
M choisi arbitrairement sur cette courbe. On mène, pour cela,
la tangente en M kW, puis la tangente qui lui est parallèle et qui
touche # au point 0, symétrique de M par rapport à I. On construit

ensuite les deux tangentes à # qui sont perpendiculaires aux
précédentes et qui les coupent aux points F, W, Y et Z. Ces

L'Enseignement mathém., t. XII, fasc. 1.
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points sont situés sur Jf, puisque de chacun d'eux, on voit
sous un angle droit. Soient N et P les points de contact des deux
dernières tangentes. La figure montre que MN est la polaire de

W par rapport à <6. W étant sur Jf, MN est tangente à r4,
puisque r4 est la transformée de Jf par polaires réciproques,
par rapport à De même on voit que NO, OP et PM sont
tangentes à P4. D'après le théorème 4, le quadrilatère MNOP est
donc un polygone a4 de

On peut aussi déduire de la figure que tous les quadrilatères
g4 de # sont isopérimètres.

Pour le montrer, remarquons d'abord que MO et PN sont
des diamètres de qui ont chacun comme milieu le centre I de

cette conique. Le quadrilatère MNOP est donc un parallélogramme.

V étant le pôle de MP, et Y le pôle de NO, la droite VY est

la polaire du point d'intersection de MP et NO. Ce point étant
à l'infini, V Y passe par I et coupe les segments MP et iVO en leurs
milieux G et H. On en déduit: MN \ \ VY.

Si 2p est le périmètre de MNOP, on a: p MN + MP.
Soit L le point où le prolongement de NM coupe celui de ZV.

MNOP étant un polygone <r4, la tangente VM bissecte l'angle
LMP, et l'on a:

LM MP

Donc: p NM + MP NM + LM LN. D'autre part,
on a: MN \ \ VY, donc LN || VY, et LV || NY.

On en tire: p LN V Y diamètre de jf 2 y/a2 + b2

Donc tous les quadrilatères MNOP ont le même périmètre

2p 4 y/a2 + b2 constante.
La proposition qu'on vient de démontrer sur les polygones

a4 n'est qu'un cas particulier du théorème suivant:

Théorème 6. — Si deux ellipses homofocales sont telles qu'il
existe deux polygones convexes de n côtés inscrits dans l'une et

circonscrits à Vautre, ces polygones sont isopérimètres.

Démonstration. — Soient # et T les ellipses de l'énoncé, r
étant intérieure à On sait que, si, d'un point P de c, on mène

les deux tangentes PA et PB à r, la différence PA + PB — arc
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AB reste constante lorsque le point P parcourt l'ellipse
Cette proposition sur les ellipses homofocales a été démontrée

par le géomètre anglais Graves 1.

Soient 0, P, Q, R, T les sommets d'un des polygones de

l'énoncé; A, B, C, H les points où les côtés OP, PQ, QR, ...,T0
touchent respectivement r. Soient 0\ P\ Q', T' les sommets

du second polygone, et Af, B', C'..., H' ses points de contact.
D'après Graves, on a:

AP + PB - arc AB Ar P' + P' R' - arc A' B'

BQ + QC - arc BC B' Q' + Q' C' - arc B' C

HO + OA — arc HA H' 0' + 0' A' - arc H' A'

Additionnons ces n égalités. Si p, p' et l sont respectivement les

mesures des périmètres des deux polygones et de l'ellipse T, on
voit qu'on obtient :

p — l » p' — l, et par suite: p p' c.q.f.d.

Complément du théorème 6. — D'après le théorème 5, il y
a une infinité de polygones on inscrits dans pour tout entier
n > 2. On sait qu'ils sont tous circonscrits à une ellipse homofocale

rn. Par conséquent, en vertu du théorème 6, ils sont isopérimètres.

Conclusion. — # étant une ellipse non dégénérée, mais
quelconque, et n un nombre naturel supérieur à 2, on sait, en vertu
du théorème 6, que tous les polygones an de # ont une même
longueur de périmètre dont on a désigné la mesure par pn. Or
on peut vérifier aisément le théorème suivant:

Théorème 7. — *SÏ, dans l'ensemble des polygones convexes,
de n côtés, inscrits dans l'ellipse il existe un polygone qui
ait un périmètre maximum, est un polygone an de

En effet, soient C/, F, W, Z, les sommets de énoncés
suivant un sens déterminé.

1 E. GrOUHSAT, Cours d'analyse mathématique, deuxième édition (1910). Tome
1-203. Gauthier-Villars.
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Supposons que 0* ne soit pas un polygone an.
On déduit alors de cette hypothèse qu'il y a au moins un des

sommets de & qui n'est pas un point d'impact. Soit V un pareil
sommet. Si V' est l'impact de l'arc UVW de on a, d'après le
théorème I :

UV+ VW < UV' + V w.

En désignant par le polygone obtenu en remplaçant, dans
le sommet V par V\ on tire de l'inégalité précédente:

périmètre de # < périmètre de

ce qui ne peut être puisque 0 a un périmètre maximum. Donc

l'hypothèse est fausse, et 0 est un polygone on. c.q.f.d.
On peut, d'autre part, établir la proposition suivante:

Théorème 8. — Tout polygone convexe de n côtés inscrit dans

< a un périmètre de longueur inférieure ou au plus égale à pn.

La démonstration que nous avons trouvée de cette proposition

est longue et laborieuse, et il paraît préférable d'attendre
qu'on ait eu l'idée d'une démonstration plus simple pour l'exposer.

L'existence des polygones on ayant été bien établie, on voit
qu'on peut déduire des propositions précédentes la conclusion
suivante :

Parmi tous les polygones convexes de n côtés inscrits dans une

ellipse ^ il y en a une infinité qui admettent un périmètre maximum.

Ils sont isopérimètres, circonscrits à une ellipse homofocale, et ils
admettent en chaque sommet la normale à comme bissectrice

intérieure.

Chemin de la Fontanettaz 8

Pully-Rosiaz, Vaud.

(Reçu le 24 mai 1965)
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