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5. Les variétés de contact intégrales.

Avant d'étudier les solutions lagrangiennes, il faut les définir,
et puisqu'il s'agira de mélanges de solutions plus simples, ce sont
ces dernières dont nous parlerons d'abord. Nous introduirons
des notions se rapprochant davantage des solutions classiques
de (2.1).

Nous appellerons représentation paramétrique lipschitzienne
biunivoque en pointillé, ou simplement représentation en pointillé,

une application biunivoque lipschitzienne x (w) d'un
ensemble compact W0 de l'espace à k dimensions sur un ensemble

X0 de l'espace à n dimensions. Parfois nous supprimerons les

mots « en pointillé », mais seulement dans le cas où W0 est un
ensemble particulièrement simple.

Supposons donnée une représentation en pointillé, et

désignons par J (w) le jacobien de la fonction correspondante x (w),
c'est-à-dire que J (w) sera le produit extérieur des vecteurs qui
constituent les dérivées partielles du vecteur x {w). Soient W
l'ensemble des w e W0 tels que J (w) existe sans s'annuler,
et X l'image de W résultant de l'application x (w). En outre,
soient (i la mesure A-dimensionnelle sur A, et j (x) la valeur du

quotient J (w)/\ J (w) \ au point w eW tel que x (w) x.
On dira, d'une variété généralisée /c-dimensionnelle jSf, qu'elle

possède la représentation en pointillé x {w)1 si la fonctionnelle
$£ (/) est donnée, pour tout intégrant / (x, /), par la formule

(5.1) $xf[x,

et plus généralement, que S£ possède cette représentation m fois,
où m est un entier positif, si

(5.2) Se (f) mjxf[x,

Nous nommerons variété B une variété généralisée se laissant

exprimer comme une somme, dénombrable au plus, de termes «£?,

chacun desquels possède une représentation en pointillé
correspondante x (w). Si cette variété B est une variété de contact du

système (2.1), ou du système analogue à k dimensions, nous la
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nommerons variété de contact intégrale. Pins généralement, nous

nommerons variété généralisée S, une variété généralisée dont
le substratum est celui d'une variété B; si une variété
généralisée B est de contact, nous la nommerons variété de contact
à substratum B.

C'est dans le cas multiforme que de telles variétés se présenteront.

Elles jouent un rôle important dans un bon nombre de

problèmes classiques, qui sans elles seraient insolubles. Les
courbes généralisées du calcul des variations sont un cas particulier

[7, 6]; rappelons leur origine.
Supposons qu'on demande le trajet le plus rapide pour une

barque à voiles, descendant contre le vent le cours d'un fleuve
de P à Q; admettons que le vent soit constant, et directement
opposé à PQ, tandis que la vitesse du fleuve serait constante
seulement sur le segment PQ, et qu'elle y atteindrait son maximum,

sa direction étant alors celle de PQ. On voit tout de suite

que la solution ne peut être une courbe traditionnelle: ce sera
une courbe généralisée. On peut se l'imaginer comme un chemin
qui suit le segment PQ, mais avec des zig-zags infiniment petits.
En chaque point de PQ, la barque se dirigerait, pour un instant,
d'abord dans une certaine direction 0, et ensuite dans la direction
symétrique 0*. La longueur ds sur un tel chemin se distingue
par un facteur constant de la longueur sur PQ. Plus généralement,

l'intégrale d'une fonction / (x, x') prendra la forme

Or c'est la fonctionnelle (5.3) qui sert de définition à notre solution.

Par conséquent cette solution existe.

Nous appellerons schéma de Gauss d'une variété généralisée

if la restriction de la fonctionnelle if (/) aux intégrants / (/)
indépendants de x. Deux variétés généralisées, qui possèdent
le même schéma de Gauss, seront dites parallèles. En particulier,
une variété généralisée est parallèle à une microvariété, concen-

L'Enseignement mathéin., t. XI, fasc. 2-3. 14

(5.3)

6. Les microstructures greffables.
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