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R S T T R R S S e e

R MUY

REMARQUES CONCERNANT UN PROBLEME
DE REPRESENTATION DES VARIETES
GENERALISEES, ET SON RAPPORT AU MOUVEMENT
STATIONNAIRE D’UN FLUIDE?!) ?)

par L. C. Youna

A la mémotire de mon peére,
a Uoccasion de son centenaire.

1. INTRODUCTION.

Nous avons fait allusion, dans plusieurs travaux, au role que
peuvent jouer, dans la mécanique des fluides, certaines questions
de la théorie des variétés généralisées. C’est le cas du probléme
de représentation que nous discuterons ici, et qui n’est autre,
en fin de compte, que celul de retrouver la description lagran-
gienne d’un mouvement fluide stationnaire. G’est un probleme
qui nous a occupé a plusieurs reprises: il concerne la représen-
tabilité d’une variété généralisée comme mélange de variétés
plus simples, et le coeur du probléme consiste, & proprement
parler, & montrer que toute variété généralisée, dont la frontiere
est bénigne, aurait également un substratum bénin. Cette espéce
d’énoncés, dont la conclusion est, pour ainsi dire, plus forte que
Ihypothése, peut étre nommée progressive. On en trouve un
peu partout en mathématique, et leur importance a été relevée
par H. Poincaré. Il est vraisemblable qu’il existe, pour les
variétés généralisées k-dimensionnelles de l'espace & n dimen-
sions, un tel théoréme progressif. C’est ce que nous vérifions ici
pour les cas ou k£ = 0,1, n—1, n. Les cas intermédiaires, ou
k=2,3,...,n—2, se trouvent encore hors de la portée de nos
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méthodes: cela tient, comme nous l’avons indiqué ailleurs
[13, III, V], & notre ignorance de toutes sortes de choses des
plus simples. La valeur &£ = 1 est celle qui se présente dans le
mouvement des fluides; ce cas n’a pas été traité précédemment,
sauf pour n = 2 [9]. Le cas ou &k = n— 1 a été traité, un peu
plus tard, pour n = 3, avec quelques restrictions supplémen-
taires concernant la frontiére. Les valeurs £ =0 et k=n
donnent lieu a deux cas dégénérés, dont le premier est trivial,
tandis que le second se relie a des travaux récents sur les gra-
dients généralisés [3].

2. DESCRIPTIONS EULERIENNES ET LAGRANGIENNES.

Dans la suite, on sous-entendra les conventions usuelles de
I’analyse: les ensembles seront boréliens, les fonctions mesu-
rables dans le méme sens, les ensembles de mesure nulle, par
rapport a la mesure dont il s’agit au moment donné, seront
négligés.

Un mouvement fluide stationnaire dans l’espace a n dimen-
sions se définit, dans la description eulérienne, par une mesure y
et par une fonction, & valeurs vectorielles, ¢ = ¢ () que nous
nommons la vitesse au point z. Nous supposerons u & valeurs
finies, au moins pour les ensembles compacts. La mesure u est
celle de la quantité du fluide se trouvant dans un ensemble
quelconque; on Pexprime souvent par lintégrale de volume
correspondante de la densité p du fluide. Dans le cas le plus
général, p est une distribution de Schwartz; dans un grand
nombre de problémes classiques p est une constante, mais ici
nous supposerons plutdt que ¢ () est un vecteur de grandeur
unité, ce qui ne représente pas une restriction véritable, puisque
la vitesse n’intervient que multipliée par la densité p qu’on aura
modifiée convenablement pour compenser. De toute facon, nous
considérons la mesure u comme un élément fondamental de la
description eulérienne, tout autant que la vitesse unité, définie
par le vecteur ¢ (x).

Dans la mécanique classique des fluides, on passe de la
description eulérienne a celle de Lagrange, en résolvant le
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systéme d’équations différentielles du premier ordre
(2.1) ' x' = v(x).

Ici o' pourra maintenant désigner une dérivée prise par rapport
a la longueur d’arc s, et les lignes intégrales, ou lignes de courant,
auront la forme x = 2 (s, «), ol « est une étiquette plutot qu'une
valeur initiale; ce sont 1a les solutions classiques de (2.1), et deux
d’entre elles peuvent trés bien se toucher a plusieurs reprises,
méme le long d’arcs entiers.

La description lagrangienne classique consiste moins en la
connaissance des lignes de courant, que dans celle d’une décom-
position de Iespace en sous-ensembles £,, ou chaque £, appar-
tient & une ligne de courant correspondante. Gomme les £, seront
disjoints, on ne peut pas en général les identifier avec les lignes
de courant, mais plutdt avec des sous-ensembles convenables.
Le symbole « est encore une étiquette, mais ce n’est naturelle-
' ment plus la méme que précédemment, et chaque £, sera supposé
 de longueur finie et positive. En outre, £, étant un sous-ensemble

d’une courbe rectifiable, aura une orientation déterminée. De la

connaissance d’une décomposition de I'espace en de tels sous-
. ensembles E, orientés, on retrouve alors, en passant a la tangente,
- la vitesse ¢ (x) — du moins presque partout sur chaque ligne de
' courant.
Par contre, 1l n’y a pas moyen d’en déduire I'autre élément
. fondamental de notre description eulérienne, la mesure pu.
| Pour cette raison, nous allons modifier légerement la des-
~cription lagrangienne classique. Le lecteur nous le pardonnera
sans doute, puisqu’elle date encore du bon vieux temps ou les
. mathématiques entiéres n’étaient guére qu'un jeu de salon: la
mécanique des fluides avait alors le role d’'un jouet merveilleu-
sement fascinant, ou se reflétaient ensemble, phénomeénes natu-
| rels et paradoxes plaisants, sous la forme de charmants exercices
sur les éléments de la représentation conforme, ou autres du
méme genre.

Ce qu’il nous faut encore, c’est de savoir comment la masse
fluide se répartit parmi les différentes lignes de courant. Nous
entendrons donc par une description lagrangienne ’expression
d’une mesure u comme mélange de mesures finies positives u,,

3
3
d
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ou chaque u, s’annule en dehors d’un ensemble orienté £, corres-
pondant, et coincide sur £, avec la longueur des ensembles
rectifiables.

Dans la suite nous nous permettrons encore d’interpréter
(2.1) dans un sens plus général, en admettant pour ¢ (z) des
valeurs qui soient, non plus des vecteurs ordinaires, mais des
multivecteurs d’une dimension donnée %k dans I’espace a n dimen-
sions. Nous supposerons toujours que les valeurs de ¢ (x) sont
des multivecteurs simples de grandeur unité, donc qu’elles se
laissent exprimer comme le produit extérieur de k vecteurs ¢y,
09y +.vy ¢ Orthogonaux normés, dépendants du point z considéré.
On aura a interpréter ' comme un jacobien convenable, au lieu
d’une dérivée.

En outre, on peut trés bien concevoir des cas ou ¢ (x) serait
multiforme. Nous y reviendrons dans les paragraphes suivants.
Par exemple, on peut s’imaginer que le mouvement d’un certain
gaz résulte, par une simple superposition, de deux mouvements
différents auxquels seraient sujets deux gaz raréfiés. On obtien-
drait dans ce cas, & chaque point z, deux valeurs ¢; (z), ¢, (2)
pour la vitesse; on aura alors a leur assigner des poids bien
déterminés, qui indiqueront dans quelles proportions la combi-
naison des deux gaz se dirigera dans les deux directions ¢, (),
¢y (x). Plus généralement, on pourra associer, a tout point z, un
ensemble V (z) de vecteurs ainsi qu'une mesure unité sur cet
ensemble: le fluide se dirigera, au point z, simultanément dans
les directions appartenant a V (z), dans des proportions déter-
minées par la mesure-unité correspondante.

3. LES VARIETES DE CONTACT GENERALES.

Le probleme de I'intégration de (2.1), ou du systeme analogue
k-dimensionnel dans notre espace & n dimensions, est posé d’une
facon nette, lorsqu’on se borne aux variétés paramétriques
classiques.

Ce méme probleme prendra un aspect tout autre, si l'on
donne au mot « variété » un sens qui, de nos jours, semble pré-
férable. En effet, cette notion n’est plus alors 1’analogue des
notions géométriques traditionnelles de courbe et de surface.
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Elle correspond plutét aux notions analytiques fournies par les
opérations d’intégration curviligne, ou superficielle. Nous avons
le droit d’identifier les courbes et les surfaces avec ces opéra-
tions-1a, puisque c’est par elles seulement que nous les utilisons
en analyse. Et méme, ce n’est pas seulement un droit, c’est
presque un devoir: il faut éliminer de ces notions ce que nous
n’utiliserons pas. Ainsi, une variété moderne sera une fonction-
nelle linéaire sur un espace convenable d’intégrants.

Si 'on choisit pour ces derniers les formes différentielles, &
k dimensions dans espace 4 n dimensions, une fonctionnelle
linéaire T arbitraire sur leur espace, est dite aujourd’hui cou-
rant de de Rham, ou simplement, courant. Dans la suite, ¢’est
le seul genre de courant que nous introduirons, et il s’agira
surtout des courants bornés, & supports compacts.

Sil’on prend pour intégrants, plus généralement, les fonctions
continues f du point x et de la direction £-dimensionnelle j, ¢’est-
a-dire du multivecteur simple k-dimensionnel j, de grandeur
unité, dans 'espace a n dimensions, les fonctionnelles linéaires %,
telles que Z (f) = 0 pour f non négatif, sont dites variétés
k-dimensionnelles généralisées. La restriction de £ auxintégrants
du type f (z, ) = j f(z) sera dite son substratum: nous identifie-
rons la notion de substratum avec celle d’un courant borné a
support compact; cela veut dire, tout simplement, que nous ne
distinguons pas entre un intégrant du type jf(z) et la forme
différentielle possédant le méme coefficient; d’ailleurs nous ne
distinguerons ni 'un ni I'autre, du coefficient f(x) qui les déter-
mine tous deux, et dont les valeurs sont donc des multivecteurs
composés k-dimensionnels. Notons réciproquement que tout
courant borné & support compact se laisse exprimer comme le
substratum d’une variété généralisée £, quine sera d’ailleurs pas
unique. On pourra toujours ajouter, par exemple, & % une variété
généralisée & substratum nul ou, comme nous 'appellerons, une
variété singuliere. '

Il serait commode, & certains égards, d’admettre seuls les
intégrants a support compact. Cela conduirait & une notion un
peu plus générale de variété. Elle comprendrait, par exemple,
celle d’'un mouvement fluide stationnaire: en effet, la description
eulérienne fournit la fonctionnelle
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(3.1) Z(f) = [fIx.,v(x)]du,

laquelle détermine u de facon unique, et ¢ () sauf dans un
ensemble de mesure u nulle. La notion de variété généralisée
qu’on obtiendrait ainsi serait méme essentiellement équivalente
a celle d’un mouvement fluide stationnaire, ou a son analogue
k-dimensionnelle, si ’on se permet de prendre ¢ (x) multiforme,
comme & la fin du paragraphe précédent. La représentation de
F. Riesz de la fonctionnelle #, transformée par une variante du
théoréme de Fubini [10], fournit, en effet, une formule analogue
a (3.1), dans laquelle ’expression sous le signe de 'intégrale sera
remplacée par une valeur moyenne de f (z, j) par rapport & une
mesure-unité, portant sur un ensemble V (z) de valeurs de j,
au point z.

Notons que la formule (3.1), ou son analogue plus générale,
serviront & définir I'intersection d’une variété généralisée & avec
un ensemble borélien E quelconque de Iespace des z. Il suffit
de remplacer I'intégrale sur tout cet espace par celle sur I'en-
semble E. Nous désignerons une telle intersection par & n L.
La mesure u s’obtient en choisissant I'intégrant f = 1: nous la
nommerons, pour des valeurs particulieres £ =1, k=2, ..., lon-
gueur, aire, ..., et dans le cas général, étendue de £ n E.

Lorsque p s’annule au-dehors d’un seul point z,, nous disons
que & est une micro-variété, concentrée en ce point. La formule
analogue a (3.1) peut s’écrire

(3.1a) L(f) = [ (f)du

ou A (f) est une micro-variété, concentrée au point z par rapport
auquel nous intégrons. Il va sans dire que . (f), en tant que
fonction de x, aura a remplir des conditions convenables de
mesurabilité.

Une variété généralisée & sera considérée solution du sys-
téme (2.1), ou du systéme analogue k-dimensionnel, et nous
I'appellerons variété de contact de ce systeme, si la fonctionnelle
correspondante ne dépend que des valeurs prises par les inté-
grants f aux points (z, j) de la forme [z, ¢ (2)], ou, dans le cas
multiforme, aux points (z, j) tels que j e V (z). En outre, on
considérera comme solution un courant 7', borné et a support
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compact, et on le nommera courant de contact, si et seulement
si, T est le substratum d’une variété généralisée %, telle que &
soit une solution.

En utilisant encore la représentation de F. Riesz, on déter-
mine sans peine toutes les solutions dans ce sens général: si ¢ ()
est uniforme, on trouve que % sera une solution, si et seulement
si, il existe une mesure u telle que & soit donné par (3.1). De
méme, T sera une solution, si et seulement si,

(3.2) T(f) = Jo(x) f(x)du .

Dans le cas multiforme, il n’y a qu’a substituer, aux expressions
sous les signes d’intégrales dans (3.1) et (3.2), des moyennes . (f)
convenables, de f (z, j) ou de j f(x), prises au point x par rapport
aux valeurs de j dans V (z). On utilise alors la formule (3.1q).

Or cela signifie que la fonctionnelle ¥ ou 7' fournit une solu-
tion deés qu’elle se laisse déterminer sous la forme (3.1) ou (3.2),
par la description eulérienne d’'un mouvement fluide stationnaire
quelconque, ayant la méme vitesse ¢ (2), uniforme ounon, que nous
interprétons d’une facon convenable dans le cas k-dimensionnel.

Nous avons donc a identifier tout bonnement les variétés de
contact avec les différents mouvements fluides stationnaires de
vitesse ¢ (x). C’est la solution complete. En sommes-nous plus
avanceés ?

Serait-ce peut-étre une espeéce de tautologie ?

En partant d'une description eulérienne, on aboutit &
d’autres descriptions du méme genre, et nullement a celle de
Lagrange. De toutes facons, on ne voit guére comment en tirer
les solutions classiques élémentaires.

Il semblerait qu’a force de généraliser la solution, on ait
perdu le probleme.

En réalité, celui-ci a changé de forme: on le retrouve en
demandant quelles solutions ont une structure particuliére. On
cherchera quelles solutions se réduisent aux solutions classiques
ou encore, ce qul nous intéresse davantage, quelles solutions sont
capables d’une description lagrangienne. Cette derniére question
se rattache donc, d’une facon fondamentale, & la résolution du
systeme (2.1).
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4. ROLE DE LA FRONTIERE.

Nous avons retrouvé, sous une forme nouvelle, un fait bien
connu: c¢’est que la solution générale d’un systéme d’équations
différentielles n’est que le premier pas dans I’étude de ce systeme.
Un des éléments les plus importants d’une telle étude sera le role
de la frontiere. Celle-ci ne peut étre entiérement prescrite, dans
le cas qui nous occupe, d’'un systéme du premier ordre, mais on
peut lul imposer certaines conditions restrictives, par exemple
des conditions initiales. On peut aussi lui imposer des conditions
qui n’ont rien de numeérique, et de telles conditions sont préci-
séement sous-entendues dans toute 1’Analyse classique. Pour
k=1, 11 était coutume de n’admettre que des frontiéres se
réduisant a deux extrémités, donc & un seul cycle. I’analogie
avec la situation pour & > 1 en souffrait: car dans celle-ci les
nécessités géométriques avaient bientdt forcé 'admission des
frontieres formées d’un nombre fini quelconque de cycles.

Or ces frontiéres-la sont encore trés particulieres. Il est mal-
commode d’avoir & se borner a elles, car déja Pintersection d’un
demi-espace avec une variété tres simple n’aura pas toujours une
telle frontiére. C’est l'intuition géométrique qui servait & faire
définir la notion de frontiére, et c¢’est d’elle que nous viennent
de pareilles restrictions. Elles n’ont plus la méme raison d’étre
dans une théorie abstraite.

La frontiére d’une variété généralisée ¥, ou d’un courant T,
se laisse définir sans qu’il soit besoin de recourir a des hypothéses
simplificatrices. On la définit comme la restriction de la fonc-
tionnelle & (f), ou T (f), & une sous-classe bien déterminée d’in-
tégrants, ou de formes différentielles, f: celle dont les membres
sont exacts. On appelle exacte une forme k-dimensionnelle qui
se laisse exprimer comme la différentielle dg d’une forme g de
dimension & — 1. Des formes exactes, on passe d’une maniere
évidente aux intégrants exacts, la distinction étant purement ver-
bale. Si les formes f, g sont sujettes & la relation f = dg, on dira
des intégrants f,, g, correspondants que f, est la dérivée Dg,de g,.

Puisque nous possédons, maintenant, une définition de la
frontiere tout a fait générale, nous sommes a méme de nous
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passer des hypothéses mal commodes, et plus ou moins implicites,
de ' Analyse classique. Néanmoins, parmi les solutions, s1 géné-
rales, de (2.1) ou de son analogue k-dimensionnelle, il va falloir
étudier celles qui possédent une frontiére pas trop irréguliére,
que nous nommerons frontiére A4.

Une frontiére A est, par définition, la frontiére d’un o-poly-
tope avec poids, ¢’est-a-dire celle d’une variété généralisée & se
laissant exprimer comme une somme au plus dénombrable
Ye, &, ou les ¢, sont réels et positifs — ce sont eux que nous
appelons les poids — et ou chaque &, est une fonctionnelle
Z,(f) définie par une intégrale k-dimensionnelle de f sur un
simplex orienté, de méme dimension. A la place de g-polytope
avec poids, nous dirons o-polytope (tout court), lorsque les c,
sont des entiers; en outre, nous omettrons le préfixe ¢ lorsque
la somme Zc¢, &, est finie.

Les notions classiques de frontiére peuvent étre considérées
comme des cas particuliers d’une frontiere A. Ce ne sont pas les
seules: chaque espéce de frontiére qu'on ait admise jusqu’ici,
dans la théorie des équations différentielles ou dans le calcul des
variations, peut étre regardée comme un cas particulier, soit
d’une frontiére A, soit, dans certains contextes, d’une classe de
frontieres A. En outre, nous avons montré ailleurs [12] que les
frontiéres A constituent un espace linéaire métrisable complet,
et que les variétés généralisées, a frontiere A, constituent la
fermeture, dans une topologie métrique convenable, de la classe
des polytopes avec poids, ou ce qui revient au méme, la hulle
convexe de la classe des polytopes, ou polyédres ordinaires.

Dans le méme travail, nous avons démontré une propriété
des frontieres 4 qui sera pour nous décisive, puisque nous allons
envisager les solutions lagrangiennes comme des mélanges de
solutions plus simples. D’apres ce qui a été dit, ces solutions plus
simples auront sans doute des frontieres 4, sans quoi leur sim-
plicité serait illusoire. Or nous avons montré [12 Ap. I11] que la
propriété de posséder une frontiére A se conserve sous ’opération
du meélange. Il s’en suivra que les solutions lagrangiennes
devront posséder une frontiére A.

(’est la réciproque que nous voudrions étudier: les solutions
de frontiere A sont-elles lagrangiennes ?
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5. LES VARIETES DE CONTAGT INTEGRALES.

Avant d’étudier les solutions lagrangiennes, il faut les définir,
et puisqu’il s’agira de mélanges de solutions plus simples, ce sont
ces derniéres dont nous parlerons d’abord. Nous introduirons
des notions se rapprochant davantage des solutions classiques
de (2.1).

Nous appellerons représentation paramétrique lipschitzienne
biunivoque en pointillé, ou simplement représentation en poin-
tillé, une application biunivoque lipschitzienne z (w) d'un
ensemble compact W de ’espace & k£ dimensions sur un ensemble
X, de I'espace a n dimensions. Parfois nous supprimerons les
mots « en pointillé », mais seulement dans le cas ou W est un
ensemble particuliérement simple.

Supposons donnée une représentation en pointillé, et dési-
gnons par J (w) le jacobien de la fonction correspondante x (w),
¢’est-a-dire que J (w) sera le produit extérieur des vecteurs qui
constituent les dérivées partielles du vecteur z (w). Soient W
I’ensemble des we W, tels que J (w) existe sans s’annuler,
et X I'image de W résultant de P'application z (w). En outre,
soient u la mesure k-dimensionnelle sur X, et j (x) la valeur du
quotient J (w)/| J (w) | au point w e W tel que z (w) = x.

On dira, d’'une variété généralisée k-dimensionnelle &, qu’elle
possede la représentation en pointillé x (w), si la fonctionnelle
Z (f) est donnée, pour tout intégrant f (x, j), par la formule

(5.1) ZL(f) = Jxf[x.j()]dp;

et plus généralement, que & posséde cette représentation m fois,
ou m est un entier positif, si

(5.2) L(f) = m [y f[x.) ()] dp .

Nous nommerons variété B une variété généralisée se laissant
exprimer comme une somme, dénombrable au plus, de termes &,
chacun desquels posseéde une représentation en pointillé corres-
pondante x (w). Si cette variété B est une variéteé de contact du
systéme (2.1), ou du systéme analogue & £ dimensions, nous la
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nommerons variété de contact intégrale. Plus généralement, nous
nommerons variété généralisée B, une variété généralisée dont
le substratum est celui d’une variété B; si une variété géné-
ralisée B est de contact, nous la nommerons variété de contact
a substratum B.

C’est dans le cas multiforme que de telles variétés se présen-
teront. Elles jouent un réle important dans un bon nombre de
problémes classiques, qui sans elles seraient insolubles. Les
courbes généralisées du calcul des variations sont un cas parti-
culier [7, 6]; rappelons leur origine.

Supposons qu’on demande le trajet le plus rapide pour une
barque a voiles, descendant contre le vent le cours d’un fleuve
de P & Q; admettons que le vent soit constant, et directement
opposé a PQ, tandis que la vitesse du fleuve serait constante
seulement sur le segment PQ, et qu’elle y atteindrait son maxi-
mum, sa direction étant alors celle de PQ. On voit tout de suite
que la solution ne peut étre une courbe traditionnelle: ce sera
une courbe généralisée. On peut se 'imaginer comme un chemin
qui suit le segment PQ, mais avec des zig-zags infiniment petits.
En chaque point de PQ, la barque se dirigerait, pour un instant,
d’abord dans une certaine direction 0, et ensuite dans la direction
symétrique 0*. La longueur ds sur un tel chemin se distingue
par un facteur constant de la longueur sur PQ. Plus générale-
ment, I'intégrale d’une fonction f (z, ') prendra la forme

| 1
(5.3) L(f) = J{Ef(x,0)+2f(x,9*)}ds.

Or c’est la fonctionnelle (5.3) qui sert de définition & notre solu-
tion. Par conséquent cette solution existe.

6. LES MICROSTRUCTURES GREFFABLES.

Nous appellerons schéma de Gauss d’une variété générali-
sée £ la restriction de la fonctionnelle % (f) aux intégrants f (j)
indépendants de x. Deux variétés généralisées, qui possédent
le méme schéma de Gauss, seront dites paralléles. En particulier,
une variété généralisée est paralléle & une microvariété, concen-

L’Enseignement mathém., t. XI, Tasc. 2-3. 14




— 214 —

trée en un point donné z,. On la définit en écrivant, pour tout
intégrant f (z, j),

M) = ZL(fy) ou  fo(x,)) = f(xe,J)) -

Il est clair que le schéma de Gauss de %, et la microvariété
paralléle concentrée en un point donné, se déterminent mutuelle-
ment. Nous appellerons donc cette derniére le schéma de Gauss
de £ au point donné. '

D’autre part, nous avons associé a la variété généralisée &,
par la formule (3.1a) une autre microvariété .# (f), concentrée
en un point z,. Nous l'appellerons microstructure de £ en ce
point. Rappelons que cette microstructure est d’étendue unité,
et qu’elle est définie presque partout pour la mesure u qui inter-
vient dans notre formule.

Ainsilesmicrovariétés joueront unroledouble: d’unepartlerole
de schémas de Gauss, et d’autre part celui de microstructures.

A coté des restrictions a des classes d’intégrants f particu-
lieres, qui nous ont servi a définir successivement le substratum,
la frontiere, et maintenant le schéma de Gauss, on peut consi-
dérer la restriction a leur partie commune. Or cette partie com-
mune se compose d’intégrants de la forme f(x,j) = aj ou «a
désigne un multivecteur composé quelconque. La restriction
correspondante d’une fonctionnelle linéaire % (f) prendra la
forme aJ, ou J désigne un multivecteur composé, que nous
nommerons le flux de &, ou de son substratum, ou de sa fron-
tiere, ou encore de son schéma de Gauss. Les composantes du
flux de % seront les valeurs prises par & (f) pour les intégrants
f(j), se réduisant aux composantes de j. En particulier le flux
d’une variété généralisée &£ sera dit résultante de &£ §’il se
réduit & un multivecteur simple. Nous parlerons de méme de la
résultante de son substratum, de sa frontiére, ou de son schéma
de Gauss. A

Dans la suite, nous aurons surtout affaire & des schémas de
Gauss de types particuliers.

Nous appellerons micropolytope le schéma de Gauss, en un
point donné, d’un polytope quelconque £. Un tel micropolytope
aura donc une résultante si 2 en a une, ou, ce qui revient au
méme, sila frontiere de £ en a une. Ce sera certainement le cas

WG s
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¢'il existe un entier non négatif m et un simplex 4, tels que 2
ait la méme frontiére que m4: nous dirons alors que Z possede
un orifice simplicial m fois superposé et le schéma de Gauss d'un
tel polytope en un point donné sera dit micropolytope, m fois
greffable, de Klein, par analogie avec la bouteille de Klein bien
connue en topologie élémentaire.

On peut s’imaginer une opération qui consisterait & greffer
sur les simplex infinitésimaux 4 d’une variété m fois super-
posée, des polvtopes 2 infinitésimaux tels que celui de tout a
I'heure. C’est une opération toute semblable a celle utilisée au
paragraphe précédent pour passer du segment PQ & la courbe
généralisée (5.3).

Plus généralement, une microvariété ./# concentrée au
point x, sera dite m fois greffable, si l'on a

(6.1) o= 1lim .4, ,

ou chaque ./, est un micropolytope, m fois greffable, de Klein,
concentrée au meéme point. Nous utilisons ici la limite faible:
¢’est-a-dire que . (f) = lim ./, (f) pour tout intégrant f, ou
ce qui revient au méme dans le cas des microvariétés concen-
trées en un méme point xy, pour chaque intégrant f de la forme
f (j), indépendant de x. Notons que dans le cas m = 0 une micro-
variété m fois greffable se réduit a une microvariété singuliére,
et vice versa. Cela résulte de théoremes sur les systemes de
multivecteurs, que nous avons démontrés ailleurs [13 III]. Dans
le cas général, les microvariétés m fois greffables rentrent dans
la classe plus large des microvariétés possédant une résultante,
mais on mangque encore d'informations sur le role qu’elles y jouent.

D apres [13 I1I], en ajoutant & un micropolytope, qui pos-
sede une résultante, un micropolytope singulier convenable,
d’étendue aussi petite que 'on veut, on peut toujours le trans-
former en un micropolytope, m fois greffable, de Klein, pour une
valeur appropriée de m. Par contre, lorsqu’il s’agit d’une micro-
variété possédant une résultante, on ignore en général si ’addi-
tion d’une microvariété singuliere convenable, d’étendue arbi-
trairement petite, conduira pour une valeur correspondante
de m, & une microvariété m fois greffable. Ce qu'on peut déduire
du résultat que nous venons de citer, ¢’est qu'une telle addition
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pourra toujours conduire & une microvariété .# possédant la
propriété suivante: .# se laisse exprimer comme un mélange de
micropolytopes .#,, ou chaque .#, est m fois greffable, et ou
Ientier m et la résultante de .#, sont indépendants de o.

7. LLES VARIETES GREFFEES.

J4 4

Nous dirons d’une variété généralisée ¥ qu’elle possede une
représentation en pointillé x (w), greffée m fois, si ¥ a la forme
(3.1)a, ou la microstructure .# est m fois greffable, et si, de plus,
Z ale méme substratum qu’une variété généralisée, possédant,
au sens du paragraphe 5, m fois la représentation en pointillé
x (w). Remarquons que pour m = 0 l'application z (w) ne joue
aucun role, et que les variétés généralisées £ qui possédent une
telle représentation greffée m fois, se réduisent alors aux variétés
singulieres.

Nous nommerons variété greffée, une variété généralisée &
se laissant exprimer comme une somme, dénombrable au plus,
de termes Z,, chacun desquels posséde, pour un m, correspon-
dant, une représentation en pointillé x, (w) correspondante,
greffée m, fois. Si & est de contact, nous la nommerons variété
de contact greffée.

Dans [12], les variétés greffées sont dites variétés généralisées
admissibles B. Nous y avons démontré qu’elles constituent la
fermeture, dans un certain sens, des polytopes, et c’est dans ce
méme sens que la courbe généralisée (5.3) se laisse approcher par
des zigzags finis. A cet égard, ce sont les variétés greffées, plutot
que les variétés généralisées B, qui auront a jouer, vis-a-vis des
variétés B, le role analogue aux courbes généralisées, vis-a-vis
des courbes rectifiables. ,

Ce qui nuit un peu a cette analogie, c’est qu’elle ne tient pas
compte d’effets trés différents que peut produire I'addition d’une
variété singuliere 1. Ce n’est la qu'une partie des complications

1) Apres une telle addition, les variétés greffées restent variétés greffées, les variétes
généralisées B restent variétés généralisées B, tandis que les courbes géncéralisées n’ont
pas la propriété analogue. La méme opération peut aussi, cas échéant, transformer
en variété greflfée, une variété généralisée B, tout comme clle peut changer radicalement
le caractére d’une variété, méme trés simple, en topologie élémentaire: un tore devient
du type de la sphere, quand on ajoule une paire convenable de disques superposés,
d’orientations opposées.
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qui se présentent, pour 2 < £ < n— 2 surtout: d’ailleurs, pour
k = 1, on pourra y chercher 'explication mathématique de phé-
nomenes de turbulence.

Les variétés greffées sont évidemment un cas particulier des
variétés généralisées B. Nous ne possédons, & vrai dire, pas
d’exemple de variété généralisée B non greffée. Un tel exemple
existe probablement: nous avons récemment résolu affirmative-
ment une question dans le méme ordre d’idées [21 V]. D’autre
part, en utilisant la remarque & la fin du paragraphe précédent,
on peut démontrer qu'en ajoutant, & une variété généralisée B,
une variété singuliére d’étendue aussi petite que l'on voudra,
on aboutit a un mélange de variétés greffées.

8. LLES VARIETES DE CONTACT LAGRANGIENNES.

I1 serait bon que nous précisions la notion de mélange. Nous
nous permettrons donc d’intercaler quelques remarques qui se
rapportent & nos conventions de mesurabilité. Soit 4 un ensemble
de variétés généralisées Z,; nous conviendrons de considérer les
suffixes o comme des étiquettes pour distinguer les £, dans A,
et nous désignerons par da une mesure dans A, ou, ce quirevient
au méme, dans 'espace des étiquettes o. Une variété généralisée
se laissant exprimer sous la forme

(8.1) L (f) =]Z.(f)de,

sera dite mélange des %,, ou mélange de A. Or nous avons
convenu de ne considérer que des ensembles boréliens, ce qui
présuppose une topologie.

Expliquons-nous.

Nous allons voir dans un instant qu’on peut se borner aux
variétés généralisées situées dans un cube fixe, ¢’est-a-dire qui
ont une intersection nulle avec le complément de ce cube!.
L’espace de telles variétés généralisées sera doué de la topologie
faible en ce qui concerne la convergence des suites: on dit que
la suite &, (v=1,2,...) converge si celle des valeurs &, (f)
converge pour chaque intégrant f. Cette topologie est équivalente

1) Plus généralement, nous dirons d’'une variété généralisée £ qu’elle possede un
supporl borélien E dans I’espace des x, si son intersection avec le complément s’annule.
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a celle d’une métrique particuliére, que nous appellerons métrique
de McShane:sa définitionse calquesur[6, p. 534]. Nous n’utiliserons
cette métrique ici guére que pour en tirer la notion d’ensemble
borélien et celles de mesurabilité, etc., que nous avons convenu
de sous-entendre: done, n’en parlons plus.

D’accord avec la topologie faible, la formule (8.1) signifie

2(1)=[Z. (1) do,

pour chaque intégrant f. Puisque & est situé dans un cube fin'
[8 (3.1)], presque chaque %, sera situé dans ce méme cube. On
pourra donc se borner a la partie de A4 qui comprend des variétés
généralisées situées dans ce cube.

Cela étant, nous dirons d’une variété généralisée & qu’elle
est, par rapport & A, lagrangienne, si elle se laisse exprimer sous
la forme (8.1), ¢’est-a-dire comme un mélange de A. Dans le cas
ou, pour la mesure da, les membres £, de A4, sauf ceux d’une sous-
classe éventuelle de mesure da nulle, possedent des supports
boréliens disjoints, ¥ sera dite, par rapport a A, lagrangienne
par décomposition.

Nous écrirons A (A), A, (A) respectivement, pour les classes
de variétés généralisées, qui sont, par rapport a A, lagrangiennes,
ou lagrangiennes par décomposition. Nous dirons simplement:
variété lagrangienne, variété lagrangienne par décomposition,
lorsque A se réduit a la classe des variétés B. Les classes corres-
pondantes seront désignées par A, A, Dans le cas d’une variété
de contact, nous dirons variété de contact lagrangienne, etc.
Nous dirons aussi variété non lagrangienne, etc., pour une
variété généralisée qui ne posséde pas la propriété lagrangienne
correspondante, et variété lagrangienne généralisée, ete., lorsque
A est la classe des variétés généralisées B: dans ce dernier cas,
nous écrirons Ag, Ags pour A (A), A, (A). Nous dirons encore
variété lagrangienne greffée, etc., lorsque A est la classe des
variétés greffées, et nous écrirons dans ce cas, pour les deux
classes obtenues, 4,, 4. |

Nous dirons enfin, en abrégeant au besoin comme ci-dessus,
que & est, par rapport & A, presque lagrangienne, et nous rem-
placerons dans les classes correspondantes A par A", §'il existe,
pour tout ¢ positif, une variété singuliére §,, dont I'étendue est
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inférieure a ¢, telle que % -+ S,, soit, par rapport a A4, lagran-
gienne.

Désignons, pour une classe quelconque 4 de nos variélés
généralisées, par 14", 0 les classes correspondantes de substrata
%, et de frontiéres 0%, de membres ¥ de A . Les expressions
=t 2, 01 0 désigneront les classes de variétés généralisées
chacune desquelles a le méme substratum, ou la méme frontiere,
qu'un membre correspondant de .

Nous aurons les inclusions suivantes:

(8.2) A,cA CAgCAGCA(J;CT—l‘EA;Ca—l@AZ.

Or, on remarque de suite que
(8.3) 1114l =1-114, 0-10Afd=-104,

et que, d’apres ce qui a été dit a la fin du paragraphe 4, la classe
0~' 0A est celle des variétés généralisées qui possédent une fron-
tiere A, c’est-a-dire les mémes frontieres que des o-polytopes
avec poids. Quant a la classe 7' 74, nous dirons pour abréger
que ses membres sont les variétés a substratum lagrangien. Cette
classe n’est pas universelle: elle est comprise dans la classe des
variétés généralisées de frontiere A, et 'on remarquera qu’il
existe des variétés généralisées sans frontiére A, par exemple la
variété généralisée £ définie par la fonctionnelle & (f) = f (xy, jo,)
ou x,, j, désignent un point et un multivecteur fixes. (On suppo-
sera j, simple et de grandeur unité.) Ainsi il existe certainement
des variétés & substratum non lagrangien: pour le mouvement
des fluides, on constate donc que la description eulérienne est
bien plus générale que celle de Lagrange; nous reviendrons cepen-
dant sur cette question dans le paragraphe suivant.

Remarquons encore, d’apres ce qui a été dit & la fin du para-
graphe précédent, que

(8.4) As=4].

Nous pouvons done récrire (8.2), en lui ajoutant quelques inclu-
sions évidentes, comme suit:

A,cA cAg]
(85)  A,cAucd,| A
ApcAgicAg| cAy et ttdco-1 04
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On remarquera sans peine que certaines des inclusions (8.5)
sont strictes, mais 1l est possible que d’autres se réduisent & des
égalités.

Les mémes inclusions sont encore valables, si ’on désigne par
les symboles A4,, A, A, etc., les classes correspondantes de
variétés de contact d’un systeme donné d’équations différen-
tielles de la forme (2.1), ou d’un systéeme analogue k-dimensionnel.

Pour bien comprendre un tel systeme, et pour bien com-
prendre la notion de variété, au sens généralisé que nous utilisons
icl, 1l faudra avant tout, selon la remarque & la fin du para-
graphe 3, étudier la question de savoir quelles inclusions (8.5)
se réduisent peut-étre a des égalités. Par exemple, l'égalité
0, = A~' 0A signifierait, pour les variétés de contact, que toute
solution de frontiére A de (2.1) se réduit a une variété de contact,
presque lagrangienne, greffée. Ensuite, pour les inclusions strictes,
on cherchera a caractériser chaque fois les membres de la classe
étroite parmi ceux de la classe large.

9. IEQUATION DE CONTINUITE DES FLUIDES.

(est d’abord l'inclusion finale de (8.5) qui nous intéresse.
Se réduirait-elle a une égalité ?

Pour simplifier, bornons-nous aux variétés généralisées closes
faisant partie des classes considérées. Cette réduction n’est
possible, a vrai dire, que pour £ < n, nous y reviendrons apres
ce paragraphe. Rappelons qu'une variété généralisée est dite
close, lorsque sa frontiere s’annule.

La question que nous nous sommes posée devient la suivante:
une variété généralisée close a-t-elle le méme substratum qu’une
variété lagrangienne ? En d’autres termes: un substratum clos
est-il lagrangien ? Nous allons donner a cette question une autre
forme, qui nous rapproche encore de la mécanique classique des
fluides.

Nous aurons besoin de quelques notations.

Nous utiliserons pour la multiplication extérieure des multi-
vecteurs le signe X. On définit alors la comultiplication @ par
la formule ¢ ® b = (a* X b)*, ou l'astérisque désigne la nor-
male. Rappelons que la normale a* d'un k-vecteur a se définit
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comme un (n — k)-vecteur de méme grandeur, tel que I'on ait
a X a* = |a |2 (Il serait plus correct d’écrire au cOté gauche
(@ X a*)*, car on distingue entre une quantité scalaire, appelée
O-vecteur, et un n-vecteur, qu'on nomme également pseudo-
scalaire. La normale d’une quantité scalaire sera pseudo-scalaire,
et vice versa.) Pour le role de ces opérations dans la théorie des
variétés généralisées, on consultera [11].

Nous écrirons encore d+/dx et d~/0x pour le vecteur dont les
composantes sont les opérations de dérivation partielle, agissant
sur ce qui suit, ou sur ce qui précede, le vecteur en question.

Nous poserons
o+ ' 0
rot 0:5; x(Q, div QzQ@ax,

ot Q désigne une fonction Q () dont les valeurs sont des multi-
vecteurs composés. On écrit grad au lieu de rot, si Q se réduit &
une fonction scalaire. On notera la formule

(9.1) div(Q® Q) =(~)" {Q®rot Q"+ (div ) ® ¢'},

ou Q, Q' désignent des fonctions dont les valeurs sont des multi-
vecteurs composés, et ot £’ désigne la dimension de Q'. En
particulier, si-’'on prend pour @’ une fonction scalaire p, on
aura

(9.2) div (pQ) =0 ® gradp + pdiv(Q

Rappelons encore une conséquence de la formule (9.1) dans

“la théorie des distributions et des courants. Nous désignerons a

cet effet par £ la dimension de Q et nous poserons k" = k — 1.
Nous supposerons en outre que Q' soit infiniment différentiable,
et nous l'identifierons, comme nous ’avons convenu plus haut,
avec une (k— 1)-forme g. On peut alors prendre pour Q une
distribution dont les valeurs sont des multivecteurs, de sorte
que @ devient un courant 7" de dimension k. Nous supposerons
encore que l'une des quantités 7', ¢ au moins ait un support
compact. En éerivant § = div 7', et en tenant compte du fait
que, dans la théorie des distributions, l'intégrale (sur tout
Iespace) d’une divergence & support compacte s’annule, on
trouve

O =T (rotg) + S(g).
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Iei le symbole rot g est a proprement parler inexact, car c’est
pour la fonction Q" plutot que pour la forme g que nous avons
défini I’opération rot. Dans la théorie des formes différentielles,
on écrit dg et non rot g. La formule devient

(9.3) O = T(dg) + S(g);

elle sert de définition pour la fonctionnelle S (g), donc pour le
courant §, puisque g y désigne une (k— 1)-forme arbitraire.
D’autre part, dg désigne une forme exacte arbitraire, et la
fonctionnelle 7' (dg) définit la frontiére de 7. Ainsi: les cou-
rants T clos sont ceux qui vérifient I’équation § = 0, ¢’est-a-dire

(9.4) - div T = 0.

Supposons, en particulier, que 7 soit borné et a support
compact, ¢’est-a-dire que 7" soit un substratum. La fonctionnelle
T (f) sera alors de la forme analogue a (3.2)

(9.5) T(f) = [ Qz) f(x) dp,

ou Q désigne une fonction dont les valeurs sont des k-vecteurs
composés, que nous supposerons de grandeur unité, et ou du
désigne une mesure. L.a forme f a été remplacée ici, selon notre
coutume, par la fonction correspondante & valeurs k-vectorielles,
définie par ses coefficients. Or on écrit plutot, dans la théorie des
distributions, pour du, I'expression pdx ou dx est la mesure ordi-
naire dans ’espace des z, et ou p est une distribution que nous
nommerons la densité. On écrira alors 7' = p(Q, ce qui signifie
en effet,

(9.6) T(f) =[]0 x)p(2)](x)dx,

selon les conventions de la théorie des distributions.

En interprétant la fonction Q () & valeurs Fk-vectorielles
comme une généralisation de la vitesse d’un fluide stationnaire
de densité p (z), on voit qu'un substratum clos, ¢’est-a-dire le
substratum d’une variété généralisée close, vérifie la méme
équation de continuité que I'on trouve en mécanique des fluides
pour le cas stationnaire:

(9.7) div (pQ) =0
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I1 y a cependant une légere différence. Ici ’équation a un sens
global, et les deux facteurs p et Q sont a prendre ensemble: on
ne les sépare pas comme au coté droit de (9.2) parce que la mul-
tiplication des distributions nécessite quelques précautions. Dans
la mécanique classique des fluides p et Q sont analytiques et ces
précautions deviennent superflues. De plus, I'équation (9.7) a
alors un sens local, et se trouve vérifiée & I'intérieur d’un fluide.

Puisque nous renoncons ici aux hypothéses d’analyticité, la
seule différence qui subsistera concernera ce caractére local.
Nous considérerons donc une famille de substrata qui sera plus
générale que celle des substrata clos; ses membres seront donnés
par les quantités p, Q comme plus haut, mais I’équation de conti-
nuité (9.7) sera supposée vérifiée localement.

On dit qu'une distribution § s’annule dans le voisinage du
point z,, s’1l existe une fonction A (), infiniment différentiable
et non négative, telle que 1'on ait & () = 1 dans un voisinage
de zy, et hS = 0. Nous dirons que notre courant 7' = p(Q vérifie
(9.7) localement, si sa divergence s’annule au voisinage de tout
point d’un ouvert G, tel que G constitue pour 7, ¢’est-a-dire pour
la mesure définie par p, un support borélien.

Remarquons que de I'équation de continuité (9.7), on peut
déduire d’autres du méme genre, par l'intermédiaire de (9.1).
En effet, si I'on remplace dans cette derniére, Q par T, et
st on y choisit pour Q" un multivecteur constant, ou plus géné-
ralement un multivecteur Q' () dont la rotation s’annule, on
trouvera

(9.8) div (pe) = 0

ou ¢ = (¢ ® Q'. En particulier, si la dimension de Q" est (k— 1),
ou & est celle de @, 'expression ¢ sera un vecteur ordinaire, et
(9.8) se réduit a I’équation de continuité d’un fluide stationnaire
ordinaire.

La question du début de ce paragraphe est devenue la sui-
vante: un courant de la forme 7' = pQ non lagrangien peut-il
vérifier équation de continuité (9.7) ? Peut-il la vérifier, sinon
globalement, au moins localement ? Peut-il enfin vérifier I'équa-
tion de continuité ordinaire (9.8) pour ¢ = Q ® @', et pour
chaque choix constant de Q' de dimension (k— 1) ?
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Nous retrouvons ainsi, sous des formes plus précises, la
question de la mécanique des fluides dont nous étions partis. A
cet effet, on prendra pour 7' le substratum d’une variété de
contact.

10. LLES DIRECTIONS D’AMARREMENT.

Pour bien comprendre l'équation (9.8), a laquelle nous
sommes aboutis, nous aurons besoin d’un lemme assez simple
sur les multivecteurs quelconques, et ce lemme va dépendre
d’une définition que nous allons illustrer par une image nautique.

Un bateau, qui entre dans un port, ne peut s’amarrer que
dans certaines directions «d’amarrement». I ensemble des
directions d’amarrement dépendra évidemment de celur des
jetées non paralleles qu’on aura construit dans le port.

Nous définirons de méme les directions d’amarrement d’un
multivecteur quelconque j, et l'ensemble de ces directions
dépendra des multivecteurs simples qui sont nécessaires pour
représenter j comme leur somme.

Si j est un multivecteur simple non nul, on 'exprime comme
produit extérieur de vecteurs j = ¢; X ¢y X ... X ¢, et l'on
nomme direction d’amarrement de j toute direction qui est celle
d’une combinaison linéaire ¢ = X ¢, ¢,, a coeflicients réels c,,
des vecteurs ¢, (0 = 1, 2, ..., k). Une telle combinaison linéaire
sera elle-méme dite vecteur d’amarrement.

Dans le cas général, ou j est composé, on dira d’un vecteur ¢,
ou d’une direction ¢, que c’est un vecteur, ou une direction,
d’amarrement de j, st pour chaque décomposition j = 2j, de j
comme une somme de multivecteurs simples j,, qu’on aura
exprimés comme produits extérieurs de vecteurs ¢4, ¢y9, ..vy Oy,
correspondants, 1l existe une expression de ¢ comme une combi-
naison linéaire ¢ = X2, _¢c,, ¢,,, des différents vecteurs ¢,.

Nous dirons encore que le multivecteur j est situé dans un
espace I1, ou IT désigne un sous-espace linéaire de I'espace des z,
si II comprend des vecteurs ¢,, tels que j se laisse exprimer
comme une somme X2j,, ou chaque j, est un produit extérieur
des ¢,, correspondants. On voit de suite que les directions
d’amarrement de ; sont les directions communes & tous les
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espaces IT dans lesquels j est situé. La partie commune de ces
espaces I1, qui est aussi 'espace des points définis par les vecteurs
d’amarrement de j, sera dit espace d’amarrement de ;.

(10.1) Lemme. — (i) Chaque multivecteur j est situé dans
son espace d’amarrement. (ii) Les directions d’amarrement d’un
k-vecteur j sont celles de la forme j ® ;" ot les ;' sont des (£ — 1)-
vecteurs.

Démonstration. — Pour établir le premier énoncé, il suffira
de vérifier que, si j est situé dans IT" et I1”, alors j est situé égale-
ment dans leur intersection IT1. Par une transformation élémen-
taire de I’espace des x en lui-méme, on peut supposer que II',
II" sont les sous-espaces définis par deux sous-ensembles du
systéme de coordonnées de x. Mais alors chaque composante
non nulle de j sera située a la fois dans IT" et dans 1", donc dans
II. Donc j, comme somme de ses composantes cartésiennes, sera
également situé dans IT. Pour établir le second énoncé, soit 11,
I'espace d’amarrement du k-vecteur j, et soit II; l'espace des
points de la forme ; ® j’, ou les j* sont des (k— 1)-vecteurs.
Evidemment IT, est un sous-espace de I7,. Il nous faut démontrer
qu’il coincide avec ce dernier. Supposons le contraire. Il existe
alors dans II; une direction ¢ orthogonale & IT;; désignons par IT
I'espace formé des vecteurs de IT, orthogonaux & ¢. Par définition
de ¢, I'espace II; ne peut contenir aucun vecteur de la forme
¢ -+ u, ou uell. Dautre part, on peut exprimer ; comme la
somme de deux projections orthogonales, d’apres I'identité (4.3)
de [11]. On trouve

j=a+ (v xb)

oua= (v XJ) ®vethb=; ] ® ¢ sontsitués dans IT. Ici b n’est
pas nul, sans quoi j serait situé dans IT; on peut donc définir
J'=0/b]? u=a®], dou il ressort que j ®j = ¢ + u,
donc que ¢ + u € IT;, ce qui contredit ce que nous avons trouvé
plus haut. La démonstration est donc achevée.

Dans le cas d’un multivecteur Q (z) k-dimensionnel, nous
nommerons vecteur d’amarrement local de Q tout vecteur ¢ (z)
de la forme ¢ = Q ® Q' ou Q' est un (k — 1)-vecteur constant.
La direction d’un tel vecteur non nul sera dite direction d’amarre-
ment locale de Q. L’équation (9.8) signifie que pour le courant
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T' = pQ, les vecteurs ¢ d’amarrement locals de Q vérifient I’équa-
tion de continuité des fluides. Remarquons encore que I’opération
de comultiplication par un (k— 1)-vecteur constant rappelle
une opération analogue utilisée pour définir les contours d’une
variété généralisée [11].

Permettons-hous, pour terminer ce paragraphe, une obser-
vation, tres heuristique et superficielle, sur la signification de
Iéquation (9.8). Dans cette équation p prend la place d’une
mesure, tandis que ¢ est une fonction a valeurs vectorielles. Avec
des conventions appropriées, on pourra, d’apres (9.2), écrire (9.8)
sous la forme:

(10.2) ¢® grad p+p div ¢ =0.

Elle nous dit que dans la direction ¢, le gradient d’une mesure
se comporte d'une facon relativement réguliere. On peut l'in-
terpréter comme exigeant une espece de continuité absolue dans
la direction ¢. Il est assez plausible que la mesure p, si elle est
absolument continue dans les différentes directions d’amarre-
ment locales, se révélera comme une intégrale multiple par
rapport a ces directions, d’ou 1’on entrevoit que le courant pQ
doit étre lagrangien. Serait-ce la un mirage ? Ou est-ce le germe
d’une démonstration ? C’est au lecteur a y réfléchir.

11. PRINCIPES DE REDUCTION.

Deux variétés généralisées seront dites complémentaires, si
leur somme est close, et si elles possédent deux supports boréliens
disjoints. Une propriété possédée par certaines variétés généra-
lisées sera dite g-additive si une variété généralisée s’exprimant
comme une somme dénombrable X.Z la possede, des que chaque
#, la possede. Enfin une variété généralisée & de dimension %
dans 'espace des x de dimension n, sera dite inductive si la
relation 1= 14 = 0! 04 est valable pourles variétés généralisées
de dimension (£ — 1) dans un espace (n — 1)-dimensionnel.

(11.1)  Principe du o-polytope complémentaire. — Soit & une
variété généralisée de frontiere A et de dimension %k dans Ies-
pace n-dimensionnel ot 0 < k& < n. Alors 1l existe un o-polytope
avec poids, complémentaire a Z.
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Démonstration. — Soit IT* un o-polytope avec poids, qui
posséde la méme frontiére que #. En changeant son orientation,
on obtient un ¢-polytope avec poids IT, tel que & - IT soit fermé.
On peut mettre IT sous la forme d’une somme dénombrable
I=2Xc, 4, ou les ¢, sont réels et positifs, et ou chaque 4,
désigne un simplex. Nous désignons par C, un cone sur la fron-
tiére élémentaire de 4,, et nous supposerons le sommet x, choisi,
par induction, d’une fagon convenable. A cet effet, soit I1,, la
somme des termes de X ¢,, C,, pour v/ <v, et soit u, la mesure
associée comme dans la formule (3.1a), non a &, mais a & + 11,.
On choisira z, de facon a ce que | C, | < 2 | 4, | et que la mesure
i, d’un support de C, ’annule. Ceci est possible, puisqu’on peut
donner & z, un ensemble de positions de la puissance du continu,
qui correspondent & des supports disjoints: ces supports n’auront
donc pas tous des mesures positives. Le o-polytope avec poids,
défini par la somme dénombrable X ¢, €, sera complémentaire
a &, ce qui achéve la démonstration.

(11.2)  Principe de décomposition. — Soit P une propriété
o-additive, et soit £ une variété généralisée. Alors il existe une
décomposition ¥ = ¥’ + £, ou &', ¥ sont des variétés
généralisées telles que &£’ ait la propriété P tandis que £ ne
possede aucune sous-variété non nulle qui ait la propriété P.

Démonstration. (Rappelons qu’on dit de deux variétés géné-
ralisées ¥;, ¥, que ¥, est une sous-variété de &, si la diffé-
rence ¥; — &, est une variété généralisée). — Soit a, le supré-
mum de 'étendue des sous-variétés de & qui possedent la pro-
priété V. Nous désignons par .#; une sous-variété la possédant,
dont 'étendue dépasse 5 a;; une telle sous-variété existe & moins
que a; = 0, et dans ce dernier cas, on pose #; = 0. Générale-
ment, si les sous-variétés ¥, L, ..., £L,_; ont été définies, soit
a, le suprémum de I'étendue des sous-variétés de ¥ — £, — ...
— & ,_1 qui possédent la propriété P, et soit .Z, une telle sous-
variété la possédant, dont I'étendue dépasse % a,, si ¢, = 0 on
pose £, = 0. On trouve sans peine que les expressions &' =3 %,
L' = ¥ — &' désignent toutes deux des sous-variétés de &,
et que &’ possede la propriété P. Il reste & montrer que £” ne
possede aucune sous-variété == 0 ayant la propriété P. Mais si a
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est I’étendue d’une telle sous-variété, on aura, par définition de
a,, @ < a, pour chaque v. D’autre part, la somme X % a, ne peut
dépasser I'étendue de ¥ &, donc celle de &', et par conséquent
cette somme converge. 1l s’en suit que a = 0, ce qui acheve la
démonstration.

(11.3)  Principes de subdivision et de localisation. — (1) Soit
& une variété généralisée inductive de frontiére A ; alors il existe
une subdivision de I’espace n-dimensionnel en cubes Q) congruents,
aussl petits que 'on voudra, tels que, si F' désigne la frontiére
de @, I'intersection ¥ n F s’annule, et que I'intersection & n Q
possede une frontiere A. (i1) De plus, si £ désigne un ensemble
borélien quelconque, l'intersection ¥ n E posséde une fron-
tiere A.

Démonstration. — En ce qui concerne (1), il suffira, par ité-
ration, d’établir Paffirmation correspondante pour une sub-
division en bandes congruentes, orthogonales & une direction
donnée V. Nous nous servirons des mémes symboles Q, F pour
désigner une telle bande et sa frontiére, et nous désignerons
par 2 un o-polytope avec poids complémentaire & . Nous
appellerons niveau d’un point x, et nous désignerons par z (z)
la projection dans la direction V du vecteur z. Nous écrirons IT
pour une certaine famille de sous-espaces équidistants z (x)
= const. On s’arrangera, par une translation dans la direction V
'il le faut, a ce que cette famille remplisse deux conditions que
nous avons introduites ailleurs {11 (6.3)]. Ce sont les suivantes:
a) lintersection de £ avec chaque membre de IT s’annule;
b) lintersection de ¥ + 2 avec le demi-espace au-dessus du
niveau correspondant z (x) = const. a pour périmetre ce que
nous avons appelé le « contour » de £ + £ a ce niveau. Rappe-
lons qu’un tel contour est, par sa définition (loc. cit.), une variété
généralisée close (& — 1) dimensionnelle dans un espace
z (z) = const. de dimension (n — 1), et que, par conséquent,
elle posseéde un substratum A, d’apres notre hypothése inductive
sur &. Il s’en suit aisément® que II divise ’espace en bandes Q
telles que (£ + 2) n Q ait une frontiere A et que la frontiere F
de Q ait une intersection nulle avec & 4 2, et par conséquent

1) On remarque que (£ + 2) n Q ala méme frontiére que le cone de son périmetre.
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avec #. Or la frontiere de £ n Q s’obtient en ajoutant & celle
de (¥ + 2) n Qla frontiére d'un o-polytope avec poids 2* n ¢,
ol #* g'obtient de 2 en changeant Uorientation. Donec & n ¢
a une frontiére A, et (1) est démontré.

Passons & (ii). D’aprés un résultat déja cité [12, Ap. III],
la propriété de posséder une frontiere A est certainement
o-additive. 11 s’ensuit de (i) que £ n E aura une frontiere A
lorsque E est ouvert. En soustrayant de %, on voit qu’il en est
de méme lorsque £ est fermé, done, par addition, lorsque £ est
une réunion dénombrable d’ensembles fermés. Il est clair qu’en
répétant ce raisonnement, on trouvera que £ n k£ posséde, pour
tout E borélien, une frontiere A, ce qui établit (i1).

Ajoutons qu’'un raisonnement du genre utilisé ici montre
qu'une variété généralisée inductive &, dont le substratum
T = pQ vérifie (9.7) localement, posséde une frontiera A. En
désignant par G le méme ouvert que dans la définition de cette
vérification locale, on se base alors sur la remarque sulvante,
dont la démonstration se calque sur celle de [11 (6.3)]: presque
tout cube Q, assez petit et de centre fixe dans G, aura une fron-
tiere élémentaire F, dont le niveau correspond & un contour C
de &, tel que C soit un périmeétre de & n Q.

Remarquons encore que (11.1) et (11.2) permettent de réduire

- la discussion des cas d’égalité dans (8.5) et dans les inclusions

analogues pour les variétés de contact. Par exemple, pour
établir Iégalité Ag; = 0-' 04 pour les variétés de contact, il
suffira de I’établir pour celles qui sont closes. En effet, supposons
quon ait établi ce cas particulier, et soit &% une variété de
contact & frontiere A. Désignons par 2 un o-polytope avec poids,
complémentaire & £, et par £ un support borélien de £ disjoint
d’un support borélien de #. En modifiant notre systéme d’équa-
tions différentielles en dehors de £, on §’arrange a ce que ¥ + 2
soit une variété de contact. Par hypotheése, puisque & + 2
est close, & + 2 sera lagrangienne généralisée. Evidemment
il en sera de méme de son intersection avec K, qui est %. Donc
< est une variété de contact lagrangienne généralisée, pour le

systéme modifié, donc pour le systéme donné, qui n’a pas changé
dans E.

IEnscignement mathém., t. NI, fasc. 2-3. 15
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12. LEs pIMENSIONS k=0 ET £ = n.

Nous allons entamer I’étude de quelques dimensions £ parti-
culieres dans I’espace n-dimensionnel. Nous commencons ici par
k=0 et k = n. Rappelons les conventions qui s’y rapportent.

Un k-vecteur se réduit & une quantité scalaire pour k£ = 0,
pseudo-scalaire pour £ = n. Dans les deux cas, sa direction se
réduit au signe + ou —. Un intégrant f (z, j) quelconque est donc
donné par une paire de fonctions

(12.1) Jo (X)) =flx, +),  fo(x) =S(x —);

il sera linéaire en j si f+ = —f_. Une variété généralisée & sera
donnée par une représentation de la forme

(12.2) L(f) = [feduy + [/-dp_,

ou u,, pu— sont des mesures finies a supports compacts. Remar-
quons que si & ne posséde aucune sous-variété singuliere, les
mesures py et u_ auront des supports boréliens disjoints.

Il y a, cependant, des différences importantes entre les deux
cas k =0 et £ = n. En effet, une quantité pseudo-scalaire se
distingue nettement de la quantité scalaire, & laquelle elle est
normale, par les conventions qui gouvernent la multiplication
extérieure. Il ressort de ces conventions que pour k£ = n, tout
intégrant linéaire est exact, tandis que pour k& = 0 les intégrants
exacts sont les intégrants linéaires constants par rapport & .

Les dimensions k = 0 et & = n difféerent aussi dans la défini-
tion des polytopes, etc. Cela tient & ce que la notion de point,
orienté avec le signe + ou —, est celle de simplex de dimen-
sion 0, tandis qu’elle est toute différente de celle de simplex de
dimension n. On notera qu'un o-polytope avec poids, de dimen-
sion £ = 0, sera défini par une fonctionnelle de la forme

(12.3) Z(f) = Za,fr(x) + 2b,f-(x),

ouna, =20,b, 20,2 (a,+ b)) < oo, Sup |z, | < . Cest le cas
de mesures discrétes dans (12.2). Pour qu'un tel o-polytope avec
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poids ait la méme frontiére qu'une variété généralisée donnée
par (12.2), on aura & poser

(12.4) Jd(u, —p) = E(2, — by) .

Ainsi, pour la dimension k& = 0, toute variété généralisée possede
une frontiére A, puisqu’on peut toujours choisir un o-polytope
avec poids de facon a ce que le c6té droit de (12.4) ait une valeur
donnée. D’ailleurs (12.2) montre déja que, pour la dimension
k = 0, toute variété généralisée s’exprime comme un mélange
de la forme [%#,da, ou chaque %, est un simplex. Dans une
étude compléte des cas d’égalité de (8.5), ce résultat, peu intéres-
sant en lui-méme, pourra éventuellement servir de base & une
démonstration inductive d’un théoréme général. On concoit
aussi une induction descendante possible, en partant du résultat
correspondant pour la dimension £ = n. Nous combinons ces
deux résultats en un seul énoncé:

(12.5) Point de départ: les cas dégénérés k=0 et k=n
dans l’espace n-dimensionnel. Toute variété généralisée de
dimension £ = 0 appartient aux classes A et 4, toute variété
généralisée de dimension k = n et de frontiére A, & la classe
A . Chacune d’elles appartiendra & la classe 4, si elle ne pos-
sede aucune sous-variété singuliéere non nulle.

Démonstration. — Ce qui se rapporte a la dimension k& = 0
se rameéne aux remarques déja faites. Reste & traiter la dimen-
sion £ = n. Soit & une variété généralisée de cette dimension,
et supposons qu’elle possede la méme frontiére qu'un o-polytope
IT avec poids. En changeant d’orientation, on aura un o- poly-
tope IT* avec poids, tel que ¥ + IT* soit clos. Mais alors & ++ IT*
sera singulier, donc & et IT auront le méme substratum. On peut
poser, d’aprés (11.2),

L =2 +2", I =1I+1",

ou Z’, II' sont des variétés singuliéres, et ou £, IT” sont des
variétés généralisées, de méme substratum, qui ne possédent
aucune sous-variété singuliéere non nulle. On en conclut facile-
ment, en utilisant pour £” et II” des représentations du type
(12.2), que £" = 1II", donc que #" € A;, a condition de faire




— 232 —

appel a la remarque faite apres la formule (12.2), selon laquelle
les mesures p’, p_, qui y paraitront lorsqu’il s’agit de représen-
ter &£”, auront des supports boréliens disjoints. On utilisera
encore cette méme formule pour représenter #’, et I'on décom-
posera les mesures p,, u_ qui y paraitront, chacune en deux
parties, respectivement absolument continue et singuliére par
rapport & la mesure u, ou u_ correspondante. En faisant I’addi-
tion, on trouvera pour ¥ = ¥’ 4+ #” une nouvelle représenta-
tion, d’ou il ressort que £ € A, ce qui complete la démons-
tration de notre énoncé.

13. LA pimENsioN k£ = n — 1.

Nous poursuivons notre étude, mais en improvisant les
démonstrations, qui déja seront trop faibles pour nous livrer
I'égalité vraisemblable A, = 0-' 4. Il nous manque une
méthode générale, 1l nous manque aussi, méme pour k£ = n — 1,
une méthode qui conduirait au résultat le plus précis. Cependant,
comme nous "avons dit dans notre introduction, le résultat que
nous allons démontrer ici, pour k= n-—1, est toujours un
théoréme de nature progressive. Sa démonstration se basera sur
celle que nous avons présentée, 1l y a dix ans, dans les cas n = 2
et n = 3 avec M. FLEmiNG [9, b].

(13.1) Théoréme. — Soit £ une variété généralisée de
dimension n —1 et de frontiere A. Alors £ € A4,.

Pour démontrer ce théoréme, équivalent d’apres (8.5) a
Iégalité A, = 0~ 0A, nous aurons besoin de définitions et de
lemmes auxiliaires.

Un polytope clos 2 sera dit irréductible s’1l ne possede aucune
décomposition # = 2’ + 2", ou 2, #” sont des polytopes clos
non nuls. Une variété généralisée close & sera dite pure, si pour
toute expression ¥ = £’ + £" de & comme la somme de deux
variétés généralisées closes ¥', £”, il existe dans I'intervalle
0 < 0 £ 1 une constante 6, telle que ¥ = 0Z.

Pour abréger, un polytope clos irréductible de dimension
n— 1, et une variété généralisée close pure de la méme dimen-
sion, seront dites, respectivement, polytope typique et variété
typique, lorsqu’elles sont situées dans l'espace n-dimensionnel.
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La notion de polytope typique nous permettra de faire appel
4 un théoréme de séparation bien connu, tandis que celle de
variété typique s’exprime trés simplement par lintermeédiaire
de celle de point extréme, au sens abstrait, d’un certain ensemble
convexe. (Plus précisément, les variétés typiques & d’étendue
| % | = 1 sont les points extrémes, au sens abstrait, de 'ensemble
des variétés généralisées closes de la méme étendue et de la méme
dimension.)

(13.2) Lemme de séparation. — Soit 2 un polytope typique
situé dans une boule de diamétre unité, et soit IT un hyperplan.
Alors il existe un polytope singulier S, situé dans IT et d’éten-
due < 2, tel que 'on ait Z + S = 2" + 2", ou 2, 2" sont des
polytopes clos, situés de part et d’autre de II.

(13.3) Lemme d’approximation. — Toute variété typique £
s'exprime sous la forme &% = lim ¢, Z, ou ¢, est une constante
positive et 2, un polytope typique.

(13.4) Lemme de convexité — Toute variété généralisée close,
de dimension n — 1 dans l'espace n-dimensionnel, s’exprime
sous la forme d’un mélange [&, do, ou chaque &, est une
variété typique.

Démonstrations des lemmes. — Pour établir (13.2), soit C le
périmetre de la partie de 2 dans un des demi-espaces ouverts
bornés par II. Il suffira de montrer que C est le périmetre d’un
polytope Q situé dans IT et d’étendue =< 1; car en ajoutant a Q
le polytope d’orientation opposé, on obtiendra un polytope sin-
gulier § avec les propriétés énoncées. Pour obtenir un tel poly-
tope @, il suffit de couper par IT le domaine polytopique V
orienté, lequel est situé dans la boule donnée et possede la fron-
tiere orientée 2. L’existence et I'unicité de V sont des consé-
quences immédiates d’un théoreme de séparation, connu des
topologues [1, p. 380], et qui se démontre trés simplement en
utilisant 'homotopie, de sorte qu’il est devenu un exercice pour
les étudiants. L’orientation de Q se détermine par la méthode
des contours [11].

Pour établir (13.3), on fera appel & [12, (1.1) ThA]
pour exprimer d’abord & sous la forme ¥ =Im %, ou Z,
est un polytope clos avec poids. (Voir les remarques qui suivent
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I'énoncé du théoreme cité.) £, s’exprime done, d’aprés la topo-
logie combinatoire, comme une combinaison linéaire, a coeffi-
clents positifs, de polytopes clos [4 (3.3) lemma] et par consé-
quent, comme une telle combinaison linéaire de polytopes
typiques. En s’appuyant sur un résultat facile de la théorie des
points extrémes [p. ex. 4, Al, p. 482] on en tire que %/| Z |
= lim 2,/| 2, | pour une suite convenable de polytopes typiques
2., ce qui conduit immédiatement & 1’énoncé (13.3).

Pour établir (13.4), on fera appel de nouveau a la théorie des
points extrémes [p. ex. 2, (4.2)] pour exprimer la variété généra-
lisée donnée, qu'on peut supposer d’étendue unité, comme un
mélange, par rapport & une mesure unité, des £, /| &, | Notre
énonceé sera une conséquence immeédiate.

Des lemmes (13.2), (13.3) nous déduirons:

(13.5) Théoréme. — Toute variété typique non singuliére
s’exprime sous la forme ¢% ou ¢ est une constante positive, et
ou £ est une variété greffée close.

Démonstration. — Ainsi que nous 'avons dit au paragraphe 7,
les variétés greffées coincident avec ce que nous avons appelé
précédemment variétés généralisées admissibles B dans[12], et
en particulier les variétés greffées closes sont les limites des poly-
topes clos. Il suffira donc de montrer qu’une variété typique non
singuliere aura la forme ¢ lim £, ou les 2, sont des polytopes
clos. Or ¢’est une conséquence immeédiate du lemme (13.3), dans
le cas ou les constantes ¢, ont une limite ¢ finie et non nulle, pour
une sous-suite de valeurs de v. Il en est de méme si les ¢, tendent
vers l'infini, puisqu’on peut alors les supposer entiers. Il suffira
donc de montrer qu'une variété typique de la forme lim ¢, 2,
ou lim ¢, = 0 et ou les £, sont des polytopes typiques, sera sin-
guliere. Par conséquent 1l suffira de montrer que son support se
réduit a un seul point. Nous supposons le contraire, et nous
établirons une contradiction. A cet effet, soit IT un hyperplan
quelconque, et choisissons, d’apres (13.2), pour chaque v un poly-
tope singulier §, d’étendue = 2, tel que l'on ait 2,4 S,
= P, + P, ou P,, P, sont des polytopes clos, situés de part
et d’autre de I1. On trouve, puisque lim ¢, = 0,

lime, 2, =limc, (2?2, + S,) =lime, Z, + ¢, 2, .
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En prenant une sous-suite de v, on trouve donc que notre varieté
typique se décompose en deux parties closes, données par les
limites de ¢, 2, et ¢, 2,, et situées de part et d’autre de II. I’une
d’elles sera donc nulle, ce qui n’est possible, IT étant arbitraire,
que si notre variété typique a pour support un seul point.

Du résultat ainsi démontré, il s’en suit, d’apres (13.4), que:

(13.6) Théoréme. — Toute variété généralisée close, de
dimension n — 1 dans V'espace n-dimensionnel, s’exprime sous
la forme d’un mélange (¥, da ot chaque %, est une variété
greffée close.

A proprement parler, ce quon déduit par la voie indiquée,
¢’est que la variété en question s’exprime comme la somme d’un
tel mélange et d’une variété singuliere. Mais cela revient au
méme, puisqu'une variété singuliére est elle-méme une variété
grefiée.

Du théoréme (13.6), on passe maintenant au théoreme (13.1),
en raisonnant tout comme a la fin du paragraphe 11. Le
théoréme (13.1) est donc établi, lul aussi.

14. LA DIMENSION k = 1.

Nous avons laissé pour la fin le cas, intéressant pour la méca-
nique des fluides, ou la dimension de nos variétés est kb = 1.
Comme nous 'avons remarqué dans introduction, ce cas n’a été
traité précédemment que pour n = 2, quand il se réduit a celui
que nous venons de discuter. Or, déja pour n = 3, la voie suivie
ne s’applique plus lorsque £ = 1. En effet, 'énoncé analogue a
(13.6) est faux, comme il ressort d’un exemple tres simple, du
a M. E. Bishop.

On soumet & une rotation, croissante de 0 & 27, un cercle
donné, par rapport & un axe, dans son plan, qui ne le coupe pas.
Les positions successives 0 du cercle engendrent un tore O, et
nous désignons par ¢ (z) une direction qui, pour x € @, est tan-
gente & O au point z, et qui y fait un angle constant, irrationnel
a m, avec la position du cercle 6 passant par le méme point. Nous
définissons

Z(f) = Jof[x,v(x)]da,
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ou da désigne la mesure 2-dimensionnelle. Soit ¢ I'aire de O, et
soit C (¢) 'arc de longueur ¢ d’une courbe sur @, qui posséde un
point initial fixe donné, et qui vérifie 'équation différentielle
z' = ¢ (z). On trouve que

Z(f) =1im™ e /.0 ()] ds .

t— oo

ol ds est la longueur d’arc élémentaire sur C (¢). On en tire aisé-
ment que & (f)’= 0 pour tout f exact, donc que Z est close.
En outre, il est évident que % n’est pas identiquement nulle. Si
I’énoncé analogue a (13.6) était exact, on en conclurait que
¥ = [%,d, oules &, seraient des courbes closes rectifiables,
vérifiant comme & I'équation différentielle 2" = ¢ (z), et situées
sur @. Or 1l n’existe sur @ aucune courbe close rectifiable, véri-
flant cette équation différentielle.

(14.1)  Théoréme. — Soit & une variété généralisée de dimen-
sion £ = 1 et de frontiéere A dans l’espace n-dimensionnel. Alors
L e, |

Nous aurons besoin du lemme suivant:

(14.2) Lemme. — Soit &% une variété généralisée close de
dimension k& =1, telle que | ¥ | = 1. Alors il existe une suite
de polygones clos 2, (v=1, 2, ...), et d’entiers positifs corres-
pondants /V, qui tendent vers l'infini, telle que I'on ait

¥ =lim 2 N,.

V= oo

Démonstration du lemme (14.2). — On peut supposer, sans
restreindre la généralité, que £ estsituée dans un cube unité, que
nous supposerons fixe dans la suite. Toutes les constructions
que nous allons faire se passeront dans le méme cube. En faisant
appel & un résultat indépendant de la dimension %, et que nous
avons déja utilisé dans le paragraphe précédent[12, (1.1) Th. A],
on peut écrire ¥ = lim %,, ou chaque %, est une variété
close se réduisant a un polygone avec poids, c¢’est-a-dire a une
somme finie de segments orientés avec des poids correspon-
dants. D’apreés la topologie combinatoire, chaque %, s’exprime
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encore [4, (3.3) lemma], comme une combinaison lineaire, a
coefficients positifs, de polygones clos ordinaires,

My

— &,
L= ¢, Py,
p=1

On peut s’arranger, sans changer la limite des &£, a ce que
les coefficients de chacune de ces combinaisons linéaires soient
rationnels et de méme dénominateur N,. On peut évidemment
supposer [V, aussi grand que ’on voudra: nous supposerons donc
que N, =v M,, ou M, est le nombre des termes de notre combi-
naison linéaire.

Quant aux numérateurs des coefficients rationnels c¢,, de
cette combinaison linéaire, nous les supprimerons en remplacant
chaque polygone clos 2,,(p =1,2,..., M,) par un multiple
correspondant, qui sera encore un polygone clos ordinaire. En
désignant ce dernier par le méme symbole, on aura donc

M,y

¢, = Y 2,IN, .

7.
p=1

[ci on peut s’arranger, sans changer la limite des &, a ce
que la somme au coté droit se réduise a un seul terme. [I suffit
de faire des polygones 2,,(p =1, 2, ..., M) un seul polygone
clos 2,, en ajoutant M, paires de segments opposés, de longueur
=< 1, qui relient un polygone au suivant. On aura ajouté ainsi
a &, de cette facon une variété singuliere dont I’étendue ne
dépasse pas 2M ,/N,, ce qui tend vers zéro.

Ainsi ¥ = lim 2,/NV,, ce qui acheve la démonstration.

Démonstration du théoréme (14.1). — D’aprés le raisonne-
ment de la fin du paragraphe 11, on peut se borner, comme pour
la dimension £ = n — 1, au cas ou & est close. On peut supposer
de plus que | Z | =1, donc qu’elle vérifie les hypothéses du
lemme (14.2). On a dans ce cas

# = lim 2N, ,

et puisqu’il s’en suit que lim | 2, |/[N, = | £ | =1, on peut
s’arranger a ce que | 2, | = N,. A cet effet, on remplace d’abord
N, par le plus petit entier supérieur ou égal a | 2, |, et on ajoute
ensuite & 2, une paire de segments opposés s'il le faut.
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En divisant maintenant 2, en IV, parties de méme longueur,
qui seront des polygones ordinaires, c’est-a-dire des courbes
polygonales & deux extrémités, de longueur unité, on trouve
ainsl que & est limite d’une combinaison convexe de polygones
ordinaires de longueur unité. Ces derniers seront en outre situés
dans un cube fixe.

La limite que nous utilisons ici est la limite faible. Cepen-
dant, en ce qui concerne les suites convergentes, elle est équiva-
lente & la notion de limite qu’on dérive d’une métrique, nommsée
métrique de McShane [6, p. 534]. On peut donc faire appel & un
théoreme général sur les ensembles convexes dans les espaces
métriques compacts [14, prop. 7, p. 87]. Tout comme dans une
situation analogue [10, (4.1) (a), p. 6], on trouve que £ s’ex-
prime comme un mélange | %, da, ou chaque &, est limite d’un
polygone ordinaire correspondant @, de longueur unité, situé
dans un cube fixe.

Or les limites de tels polygones @, nous les connaissons depuis
longtemps: ce sont les courbes généralisées de la méme longueur,
dans le cube en question.

A wvrai dire, il faut y ajouter les limites concentrées en un seul
point: c’est-a-dire les variétés singulieres de longueur unité
concentrées en un point du cube. De toute facon, les limites de
nos polygones Q seront des variétés greffées de dimension £ = 1.

Ainsi % est un mélange de ces dernieres, ¢’est-a-dire &£ € 4.
Le théoreme est démontré.
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