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REMARQUES CONCERNANT UN PROBLÈME
DE REPRÉSENTATION DES VARIÉTÉS

GÉNÉRALISÉES, ET SON RAPPORT AU MOUVEMENT
STATIONNAIRE D'UN FLUIDE *) 2)

par L. C. Young

A la mémoire de mon père,
à Voccasion de son centenaire.

1. Introduction.

Nous avons fait allusion, dans plusieurs travaux, au rôle que
peuvent jouer, dans la mécanique des fluides, certaines questions
de la théorie des variétés généralisées. C'est le cas du problème
de représentation que nous discuterons ici, et qui n'est autre,
en fin de compte, que celui de retrouver la description lagran-
gienne d'un mouvement fluide stationnaire. C'est un problème
qui nous a occupé à plusieurs reprises: il concerne la représen-
tabilité d'une variété généralisée comme mélange de variétés
plus simples, et le cœur du problème consiste, à proprement
parler, à montrer que toute variété généralisée, dont la frontière
est bénigne, aurait également un substratum bénin. Cette espèce
d'énoncés, dont la conclusion est, pour ainsi dire, plus forte que
l'hypothèse, peut être nommée progressive. On en trouve un
peu partout en mathématique, et leur importance a été relevée

par H. Poincaré. Il est vraisemblable qu'il existe, pour les

variétés généralisées ^-dimensionnelles de l'espace à n dimensions,

un tel théorème progressif. C'est ce que nous vérifions ici
pour les cas où k — 0, 1, n — 1, n. Les cas intermédiaires, où
k 2, 3, n — 2, se trouvent encore hors de la portée de nos

1) Sponcered by the Mathematics Research Center, U.S. Army, Madison,
Wisconsin, under Contract No. DA-11-022-ORD-2059, and by the Nat. Sc. Foundation
under Contract NSF-G18909.

2) Conférence faite à Lausanne le 28 octobre 1963.
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méthodes: cela tient, comme nous l'avons indiqué ailleurs
[13, III, V], à notre ignorance de toutes sortes de choses des

plus simples. La valeur k 1 est celle qui se présente dans le

mouvement des fluides; ce cas n'a pas été traité précédemment,
sauf pour n 2 [9]. Le cas où k n — 1 a été traité, un peu
plus tard, pour n 3, avec quelques restrictions supplémentaires

concernant la frontière. Les valeurs k 0 et k n
donnent lieu à deux cas dégénérés, dont le premier est trivial,
tandis que le second se relie à des travaux récents sur les
gradients généralisés [3].

2. Descriptions eulériennes et lagrangiennes.

Dans la suite, on sous-entendra les conventions usuelles de

l'analyse: les ensembles seront boréliens, les fonctions
mesurables dans le même sens, les ensembles de mesure nulle, par
rapport à la mesure dont il s'agit au moment donné, seront
négligés.

Un mouvement fluide stationnaire dans l'espace à n dimensions

se définit, dans la description eulérienne, par une mesure p
et par une fonction, à valeurs vectorielles, v v (x) que nous
nommons la vitesse au point x. Nous supposerons p à valeurs
finies, au moins pour les ensembles compacts. La mesure \i est
celle de la quantité du fluide se trouvant dans un ensemble

quelconque; on l'exprime souvent par l'intégrale de volume
correspondante de la densité p du fluide. Dans le cas le plus
général, p est une distribution de Schwartz; dans un grand
nombre de problèmes classiques p est une constante, mais ici
nous supposerons plutôt que v {x) est un vecteur de grandeur
unité, ce qui ne représente pas une restriction véritable, puisque
la vitesse n'intervient que multipliée par la densité p qu'on aura
modifiée convenablement pour compenser. De toute façon, nous
considérons la mesure p comme un élément fondamental de la

description eulérienne, tout autant que la vitesse unité, définie

par le vecteur v (x).
Dans la mécanique classique des fluides, on passe de la

description eulérienne à celle de Lagrange, en résolvant le
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système d'équations différentielles du premier ordre

(2.1)
'

X* v(x)

Ici x' pourra maintenant désigner une dérivée prise par rapport
à la longueur d'arc s, et les lignes intégrales, ou lignes de courant,
auront la forme x — x (s, a), où a est une étiquette plutôt qu'une
valeur initiale; ce sont là les solutions classiques de (2.1), et deux

d'entre elles peuvent très bien se toucher à plusieurs reprises,
même le long d'arcs entiers.

La description lagrangienne classique consiste moins en la
connaissance des lignes de courant, que dans celle d'une
décomposition de l'espace en sous-ensembles Ea, où chaque Ea appartient

à une ligne de courant correspondante. Comme les Ea seront

disjoints, on ne peut pas en général les identifier avec les lignes
de courant, mais plutôt avec des sous-ensembles convenables.
Le symbole a est encore une étiquette, mais ce n'est naturellement

plus la même que précédemment, et chaque Ea sera supposé
de longueur finie et positive. En outre, Ea étant un sous-ensemble
d'une courbe rectifiable, aura une orientation déterminée. De la
connaissance d'une décomposition de l'espace en de tels sous-
ensembles Ea orientés, on retrouve alors, en passant à la tangente,
la vitesse ç (x) — du moins presque partout sur chaque ligne de

courant.
Par contre, il n'y a pas moyen d'en déduire l'autre élément

fondamental de notre description eulérienne, la mesure /u.

Pour cette raison, nous allons modifier légèrement la
description lagrangienne classique. Le lecteur nous le pardonnera
sans doute, puisqu'elle date encore du bon vieux temps où les

mathématiques entières n'étaient guère qu'un jeu de salon: la
mécanique des fluides a^ait alors le rôle d'un jouet merveilleusement

fascinant, où se reflétaient ensemble, phénomènes naturels

et paradoxes plaisants, sous la forme de charmants exercices
sur les éléments de la représentation conforme, ou autres du
même genre.

Ce qu'il nous faut encore, c'est de savoir comment la masse
fluide se répartit parmi les différentes lignes de courant. Nous
entendrons donc par une description lagrangienne l'expression
d'une mesure ji comme mélange de mesures finies positives ^a,
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où chaque jaa s'annule en dehors d'un ensemble orienté Ea
correspondant, et coïncide sur Ea, avec la longueur des ensembles

rectifiables.
Dans la suite nous nous permettrons encore d'interpréter

(2.1) dans un sens plus général, en admettant pour v (x) des

valeurs qui soient, non plus des vecteurs ordinaires, mais des

multivecteurs d'une dimension donnée k dans l'espace à n dimensions.

Nous supposerons toujours que les valeurs de v (x) sont
des multivecteurs simples de grandeur unité, donc qu'elles se

laissent exprimer comme le produit extérieur de k vecteurs «q,

e2, orthogonaux normés, dépendants du point x considéré.
On aura à interpréter x' comme un jacobien convenable, au lieu
d'une dérivée.

En outre, on peut très bien concevoir des cas où v (x) serait
multiforme. Nous y reviendrons dans les paragraphes suivants.
Par exemple, on peut s'imaginer que le mouvement d'un certain

gaz résulte, par une simple superposition, de deux mouvements
différents auxquels seraient sujets deux gaz raréfiés. On obtiendrait

dans ce cas, à chaque point x, deux valeurs ^(x), v2(x)

pour la vitesse; on aura alors à leur assigner des poids bien
déterminés, qui indiqueront dans quelles proportions la combinaison

des deux gaz se dirigera dans les deux directions ^1(x)J

e2 (x). Plus généralement, on pourra associer, à tout point x, un
ensemble V (x) de vecteurs ainsi qu'une mesure unité sur cet
ensemble: le fluide se dirigera, au point x, simultanément dans
les directions appartenant à V (x), dans des proportions
déterminées par la mesure-unité correspondante.

3. Les variétés de contact générales.

Le problème de l'intégration de (2.1), ou du système analogue
A-dimensionnel dans notre espace à n dimensions, est posé d'une
façon nette, lorsqu'on se borne aux variétés paramétriques
classiques.

Ce même problème prendra un aspect tout autre, si l'on
donne au mot «variété» un sens qui, de nos jours, semble
préférable. En effet, cette notion n'est plus alors l'analogue des

notions géométriques traditionnelles de courbe et de surface.
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Elle correspond plutôt aux notions analytiques fournies par les

opérations d'intégration curviligne, ou superficielle. Nous avons
le droit d'identifier les courbes et les surfaces avec ces

opérations-là, puisque c'est par elles seulement que nous les utilisons

en analyse. Et même, ce n'est pas seulement un droit, c'est

presque un devoir: il faut éliminer de ces notions ce que nous
n'utiliserons pas. Ainsi, une variété moderne sera une fonctionnelle

linéaire sur un espace convenable d'intégrants.
Si l'on choisit pour ces derniers les formes différentielles, à

k dimensions dans l'espace à n dimensions, une fonctionnelle
linéaire T arbitraire sur leur espace, est dite aujourd'hui
courant de de Rham, ou simplement, courant. Dans la suite, c'est
le seul genre de courant que nous introduirons, et il s'agira
surtout des courants bornés, à supports compacts.

Si l'on prend pour intégrants, plus généralement, les fonctions
continues / du point x et de la direction /c-dimensionnelle /, c'est-
à-dire du multivecteur simple &-dimensionnel /, de grandeur
unité, dans l'espace à n dimensions, les fonctionnelles linéaires if,
telles que if (/) ^ 0 pour / non négatif, sont dites variétés
A-dimensionnelles généralisées. La restriction de if aux intégrants
du type / (Xj j) j f(x) sera dite son substratum: nous identifierons

la notion de substratum avec celle d'un courant borné à

support compact; cela veut dire, tout simplement, que nous ne
distinguons pas entre un intégrant du type j f(x) et la forme
différentielle possédant le même coefficient; d'ailleurs nous ne
distinguerons ni l'un ni l'autre, du coefficient f(x) qui les détermine

tous deux, et dont les valeurs sont donc des multivecteurs
composés /c-dimensionnels. Notons réciproquement que tout
courant borné à support compact se laisse exprimer comme le
substratum d'une variété généralisée if, qui ne sera d'ailleurs pas
unique. On pourra toujours ajouter, par exemple, à if une variété
généralisée à substratum nul ou, comme nous l'appellerons, une
variété singulière.

Il serait commode, à certains égards, d'admettre seuls les
intégrants à support compact. Cela conduirait à une notion un
peu plus générale de variété. Elle comprendrait, par exemple,
celle d'un mouvement fluide stationnaire : en effet, la description
eulérienne fournit la fonctionnelle
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(3.1) Se{f) \f[x,v(x)~]dn

laquelle détermine fi de façon unique, et v (x) sauf dans un
ensemble de mesure ji nulle. La notion de variété généralisée

qu'on obtiendrait ainsi serait même essentiellement équivalente
à celle d'un mouvement fluide stationnaire, ou à son analogue
A-dimensionnelle, si l'on se permet de prendre v {x) multiforme,
comme à la fin du paragraphe précédent. La représentation de

F. Riesz de la fonctionnelle if, transformée par une variante du
théorème de Fubini [10], fournit, en effet, une formule analogue
à (3.1), dans laquelle l'expression sous le signe de l'intégrale sera

remplacée par une valeur moyenne de / (x, j) par rapport à une
mesure-unité, portant sur un ensemble V (x) de valeurs de /,
au point x.

Notons que la formule (3.1), ou son analogue plus générale,
serviront à définir l'intersection d'une variété généralisée if avec

un ensemble borélien E quelconque de l'espace des x. Il suffit
de remplacer l'intégrale sur tout cet espace par celle sur
l'ensemble E. Nous désignerons une telle intersection par if n E.
La mesure ji s'obtient en choisissant l'intégrant / 1: nous la

nommerons, pour des valeurs particulières k 1, k 2, ..^lon¬
gueur, aire, et dans le cas général, étendue de if n E.

Lorsque jjl s'annule au-dehors d'un seul point x0, nous disons

que if est une micro-variété, concentrée en ce point. La formule
analogue à (3.1) peut s'écrire

(3.1a) if(/)
où Ji (/) est une micro-variété, concentrée au point x par rapport
auquel nous intégrons. Il xa sans dire que Jt (/), en tant que
fonction de x, aura à remplir des conditions convenables de

mesurabilité.
Une variété généralisée if sera considérée solution du

système (2.1), ou du système analogue A:-dimensionnel, et nous

l'appellerons variété de contact de ce système, si la fonctionnelle
correspondante ne dépend que des valeurs prises par les

intégrants / aux points (x, /) de la forme [x, e (#)], ou, dans le cas

multiforme, aux points (x, j) tels que j e V (x). En outre, on
considérera comme solution un courant 71, borné et à support
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compact, et on le nommera courant de contact, si et seulement

si, T est le substratum d'une variété généralisée if, telle que if
soit une solution.

En utilisant encore la représentation de F. Riesz, on détermine

sans peine toutes les solutions dans ce sens général: si v (x)
est uniforme, on trouve que if sera une solution, si et seulement

si, il existe une mesure /i telle que if soit donné par (3.1). De

même, T sera une solution, si et seulement si,

(3.2) T(/) $v(x)f(x)dju

Dans le cas multiforme, il n'y a qu'à substituer, aux expressions
sous les signes d'intégrales dans (3.1) et (3.2), des moyennes Jl (/)
convenables, de / (x, j) ou de j f(x), prises au point x par rapport
aux valeurs de / dans V (x). On utilise alors la formule (3.1a).

Or cela signifie que la fonctionnelle if ou T fournit une solution

dès qu'elle se laisse déterminer sous la forme (3.1) ou (3.2),

par la description eulérienne d'un mouvement fluide stationnaire
quelconque, ayant la même vitesse v (x), uniforme ou non, que nous
interprétons d'une façon convenable dans le cas A-dimensionnel.

Nous avons donc à identifier tout bonnement les variétés de

contact avec les différents mouvements fluides stationnaires de

vitesse v (x). C'est la solution complète. En sommes-nous plus
avancés

Serait-ce peut-être une espèce de tautologie
En partant d'une description eulérienne, on aboutit à

d'autres descriptions du même genre, et nullement à celle de

Lagrange. De toutes façons, on ne voit guère comment en tirer
les solutions classiques élémentaires.

Il semblerait qu'à force de généraliser la solution, on ait
perdu le problème.

En réalité, celui-ci a changé de forme: on le retrouve en
demandant quelles solutions ont une structure particulière. On
cherchera quelles solutions se réduisent aux solutions classiques
ou encore, ce qui nous intéresse davantage, quelles solutions sont
capables d'une description lagrangienne. Cette dernière question
se rattache donc, d'une façon fondamentale, à la résolution du
système (2.1).
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4. Rôle de la frontière.

Nous avons retrouvé, sous une forme nouvelle, un fait bien
connu: c'est que la solution générale d'un système d'équations
différentielles n'est que le premier pas dans l'étude de ce système.
Un des éléments les plus importants d'une telle étude sera le rôle
de la frontière. Celle-ci ne peut être entièrement prescrite, dans
le cas qui nous occupe, d'un système du premier ordre, mais on
peut lui imposer certaines conditions restrictives, par exemple
des conditions initiales. On peut aussi lui imposer des conditions
qui n'ont rien de numérique, et de telles conditions sont
précisément sous-entendues dans toute l'Analyse classique. Pour
k 1, il était coutume de n'admettre que des frontières se

réduisant à deux extrémités, donc à un seul cycle. L'analogie
avec la situation pour k > 1 en souffrait: car dans celle-ci les

nécessités géométriques avaient bientôt forcé l'admission des

frontières formées d'un nombre fini quelconque de cycles.
Or ces frontières-là sont encore très particulières. Il est

malcommode d'avoir à se borner à elles, car déjà l'intersection d'un
demi-espace avec une variété très simple n'aura pas toujours une
telle frontière. C'est l'intuition géométrique qui servait à faire
définir la notion de frontière, et c'est d'elle que nous viennent
de pareilles restrictions. Elles n'ont plus la même raison d'être
dans une théorie abstraite.

La frontière d'une variété généralisée «£?, ou d'un courant T7,

se laisse définir sans qu'il soit besoin de recourir à des hypothèses
simplificatrices. On la définit comme la restriction de la
fonctionnelle S£ (/), ou T (/), à une sous-classe bien déterminée
d'intégrants, ou de formes différentielles, /: celle dont les membres
sont exacts. On appelle exacte une forme A-dimensionnelle qui
se laisse exprimer comme la différentielle dg d'une forme g de

dimension k — 1. Des formes exactes, on passe d'une manière
évidente aux intégrants exacts, la distinction étant purement
verbale. Si les formes /, g sont sujettes à la relation / dg, on dira
des intégrants /0, g0 correspondants que /0 est la dérivée Dg0 de g0.

Puisque nous possédons, maintenant, une définition de la
frontière tout à fait générale, nous sommes à même de nous
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passer des hypothèses mal commodes, et plus ou moins implicites,
de l'Analyse classique. Néanmoins, parmi les solutions, si générales,

de (2.1) ou de son analogue /c-dimensionnelle, il va falloir
étudier celles qui possèdent une frontière pas trop irrégulière,

que nous nommerons frontière A.
Une frontière A est, par définition, la frontière d'un a-poly-

tope avec poids, c'est-à-dire celle d'une variété généralisée if se

laissant exprimer comme une somme au plus dénombrable

Icv ifv, où les cv sont réels et positifs — ce sont eux que nous

appelons les poids — et où chaque ifv est une fonctionnelle

ifv (/) définie par une intégrale A-dimensionnelle de / sur un
simplex orienté, de même dimension. A la place de <r-polytope
avec poids, nous dirons cr-polytope (tout court), lorsque les cv

sont des entiers; en outre, nous omettrons le préfixe o lorsque
la somme Icv ifv est finie.

Les notions classiques de frontière peuvent être considérées

comme des cas particuliers d'une frontière A. Ce ne sont pas les

seules: chaque espèce de frontière qu'on ait admise jusqu'ici,
dans la théorie des équations différentielles ou dans le calcul des

variations, peut être regardée comme un cas particulier, soit
d'une frontière A, soit, dans certains contextes, d'une classe de

frontières A. En outre, nous avons montré ailleurs [12] que les

frontières A constituent un espace linéaire métrisable complet,
et que les variétés généralisées, à frontière A, constituent la
fermeture, dans une topologie métrique convenable, de la classe
des polytopes avec poids, ou ce qui revient au même, la huile
convexe de la classe des polytopes, ou polyèdres ordinaires.

Dans le même travail, nous avons démontré une propriété
des frontières A qui sera pour nous décisive, puisque nous allons
envisager les solutions lagrangiennes comme des mélanges de
solutions plus simples. D'après ce qui a été dit, ces solutions plus
simples auront sans doute des frontières A, sans quoi leur
simplicité serait illusoire. Or nous avons montré [12 Ap. Ill] que la
propriété de posséder une frontière A se conserve sous l'opération
du mélange. Il s'en suivra que les solutions lagrangiennes
devront posséder une frontière A.

C'est la réciproque que nous voudrions étudier: les solutions
de frontière A sont-elles lagrangiennes
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5. Les variétés de contact intégrales.

Avant d'étudier les solutions lagrangiennes, il faut les définir,
et puisqu'il s'agira de mélanges de solutions plus simples, ce sont
ces dernières dont nous parlerons d'abord. Nous introduirons
des notions se rapprochant davantage des solutions classiques
de (2.1).

Nous appellerons représentation paramétrique lipschitzienne
biunivoque en pointillé, ou simplement représentation en pointillé,

une application biunivoque lipschitzienne x (w) d'un
ensemble compact W0 de l'espace à k dimensions sur un ensemble

X0 de l'espace à n dimensions. Parfois nous supprimerons les

mots « en pointillé », mais seulement dans le cas où W0 est un
ensemble particulièrement simple.

Supposons donnée une représentation en pointillé, et

désignons par J (w) le jacobien de la fonction correspondante x (w),
c'est-à-dire que J (w) sera le produit extérieur des vecteurs qui
constituent les dérivées partielles du vecteur x {w). Soient W
l'ensemble des w e W0 tels que J (w) existe sans s'annuler,
et X l'image de W résultant de l'application x (w). En outre,
soient (i la mesure A-dimensionnelle sur A, et j (x) la valeur du

quotient J (w)/\ J (w) \ au point w eW tel que x (w) x.
On dira, d'une variété généralisée /c-dimensionnelle jSf, qu'elle

possède la représentation en pointillé x {w)1 si la fonctionnelle
$£ (/) est donnée, pour tout intégrant / (x, /), par la formule

(5.1) $xf[x,

et plus généralement, que S£ possède cette représentation m fois,
où m est un entier positif, si

(5.2) Se (f) mjxf[x,

Nous nommerons variété B une variété généralisée se laissant

exprimer comme une somme, dénombrable au plus, de termes «£?,

chacun desquels possède une représentation en pointillé
correspondante x (w). Si cette variété B est une variété de contact du

système (2.1), ou du système analogue à k dimensions, nous la
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nommerons variété de contact intégrale. Pins généralement, nous

nommerons variété généralisée S, une variété généralisée dont
le substratum est celui d'une variété B; si une variété
généralisée B est de contact, nous la nommerons variété de contact
à substratum B.

C'est dans le cas multiforme que de telles variétés se présenteront.

Elles jouent un rôle important dans un bon nombre de

problèmes classiques, qui sans elles seraient insolubles. Les
courbes généralisées du calcul des variations sont un cas particulier

[7, 6]; rappelons leur origine.
Supposons qu'on demande le trajet le plus rapide pour une

barque à voiles, descendant contre le vent le cours d'un fleuve
de P à Q; admettons que le vent soit constant, et directement
opposé à PQ, tandis que la vitesse du fleuve serait constante
seulement sur le segment PQ, et qu'elle y atteindrait son maximum,

sa direction étant alors celle de PQ. On voit tout de suite

que la solution ne peut être une courbe traditionnelle: ce sera
une courbe généralisée. On peut se l'imaginer comme un chemin
qui suit le segment PQ, mais avec des zig-zags infiniment petits.
En chaque point de PQ, la barque se dirigerait, pour un instant,
d'abord dans une certaine direction 0, et ensuite dans la direction
symétrique 0*. La longueur ds sur un tel chemin se distingue
par un facteur constant de la longueur sur PQ. Plus généralement,

l'intégrale d'une fonction / (x, x') prendra la forme

Or c'est la fonctionnelle (5.3) qui sert de définition à notre solution.

Par conséquent cette solution existe.

Nous appellerons schéma de Gauss d'une variété généralisée

if la restriction de la fonctionnelle if (/) aux intégrants / (/)
indépendants de x. Deux variétés généralisées, qui possèdent
le même schéma de Gauss, seront dites parallèles. En particulier,
une variété généralisée est parallèle à une microvariété, concen-
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(5.3)

6. Les microstructures greffables.
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trée en un point donné x0. On la définit en écrivant, pour tout
intégrant / (x, /),

Jf(f) Sf(f0) où

Il est clair que le schéma de Gauss de j£f, et la microvariété
parallèle concentrée en un point donné, se déterminent mutuellement.

Nous appellerons donc cette dernière le schéma de Gauss
de if au point donné.

D'autre part, nous avons associé à la variété généralisée if,
par la formule (3.1a) une autre microvariété Ji (/), concentrée
en un point x0. Nous l'appellerons microstructure de if en ce

point. Rappelons que cette microstructure est d'étendue unité,
et qu'elle est définie presque partout pour la mesure fi qui intervient

dans notre formule.
Ainsi les microvariétés joueront un rôle double : d'une part lerôle

de schémas de Gauss, et d'autre part celui de microstructures.
A côté des restrictions à des classes d'intégrants / particulières,

qui nous ont servi à définir successivement le substratum,
la frontière, et maintenant le schéma de Gauss, on peut considérer

la restriction à leur partie commune. Or cette partie
commune se compose d'intégrants de la forme / (x, /) aj où a

désigne un multivecteur composé quelconque. La restriction
correspondante d'une fonctionnelle linéaire S£ (/) prendra la
forme a/, où J désigne un multivecteur composé, que nous
nommerons le flux de J£f, ou de son substratum, ou de sa

frontière, ou encore de son schéma de Gauss. Les composantes du
flux de Se seront les valeurs prises par S£ (/) pour les intégrants
/ (/), se réduisant aux composantes de /. En particulier le flux
d'une variété généralisée S£ sera dit résultante de S£ s'il se

réduit à un multivecteur simple. Nous parlerons de même de la
résultante de son substratum, de sa frontière, ou de son schéma
de Gauss.

Dans la suite, nous aurons surtout affaire à des schémas de

Gauss de types particuliers.
Nous appellerons micropolytope le schéma de Gauss, en un

point donné, d'un polytope quelconque Un tel micropolytope
aura donc une résultante si 0* en a une, ou, ce qui revient au
même, si la frontière de SP en a une. Ce sera certainement le cas
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s'il existe un entier non négatif m et un simplex A, tels que SP

ait la même frontière que mA : nous dirons alors que SP possède

un orifice simplicial m fois superposé et le schéma de Gauss d'un
tel polytope en un point donné sera dit micropolytope, m fois

greffable, de Klein, par analogie avec la bouteille de Klein bien

connue en topologie élémentaire.
On peut s'imaginer une opération qui consisterait à greffer

sur les simplex infinitésimaux A d'une variété m fois superposée,

des polytopes SP infinitésimaux tels que celui de tout à

l'heure. C'est une opération toute semblable à celle utilisée au

paragraphe précédent pour passer du segment PQ à la courbe

généralisée (5.3).
Plus généralement, une microvariété Ji concentrée au

point x0 sera dite m fois greffable, si bon a

(6.1) ,// lim ,//v

où chaque Jlx est un micropolytope, m fois greffable, de Klein,
concentrée au même point. Nous utilisons ici la limite faible:
c'est-à-dire que Jl (/) lim Jiy (/) pour tout intégrant /, ou
ce qui revient au même dans le cas des microvariétés concentrées

en un même point .r0, pour chaque intégrant / de la forme

/ (/), indépendant de x. Notons que dans le cas m — 0 une micro-
variété 7n fois greffable se réduit à une microvariété singulière,
et vice versa. Cela résulte de théorèmes sur les systèmes de

multivecteurs, que nous avons démontrés ailleurs [13 III]. Dans
le cas général, les microvariétés m fois grefïables rentrent dans
la classe plus large des microvariétés possédant une résultante,
mais on manque encore d'informations sur le rôle qu'elles y jouent.

D'après [13 III], en ajoutant à un micropolytope, qui possède

une résultante, un micropolytope singulier convenable,
d'étendue aussi petite que l'on veut, on peut toujours le
transformer en un micropolytope, m fois greffable, de Klein, pour une
valeur appropriée de m. Par contre, lorsqu'il s'agit d'une micro-
variété possédant une résultante, on ignore en général si l'addition

d'une microvariété singulière convenable, d'étendue
arbitrairement petite, conduira pour une valeur correspondante
de 777, à une microvariété m fois greffable. Ce qu'on peut déduire
du résultat que nous venons de citer, c'est qu'une telle addition
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pourra toujours conduire à une microvariété M possédant la
propriété suivante: Jt se laisse exprimer comme un mélange de

micropolytopes où chaque Jta est m fois greffable, et où
l'entier m et la résultante de Jia sont indépendants de a.

7. Les variétés greffées.

Nous dirons d'une variété généralisée if qu'elle possède une
représentation en pointillé x ((f), greffée m fois, si if a la forme
(3.1)a, où la microstructure Ji est m fois greffable, et si, de plus,
ifale même substratum qu'une variété généralisée, possédant,
au sens du paragraphe 5, m fois la représentation en pointillé
x (w). Remarquons que pour m 0 l'application x (w) ne joue
aucun rôle, et que les variétés généralisées if qui possèdent une
telle représentation greffée m fois, se réduisent alors aux variétés
singulières.

Nous nommerons variété greffée, une variété généralisée if
se laissant exprimer comme une somme, dénombrable au plus,
de termes ifv, chacun desquels possède, pour un mv correspondant,

une représentation en pointillé xv (w) correspondante,
greffée mv fois. Si if est de contact, nous la nommerons variété
de contact greffée.

Dans [12], les variétés greffées sont dites variétés généralisées
admissibles ß. Nous y avons démontré qu'elles constituent la
fermeture, dans un certain sens, des polytopes, et c'est dans ce

même sens que la courbe généralisée (5.3) se laisse approcher par
des zigzags finis. A cet égard, ce sont les variétés greffées, plutôt
que les variétés généralisées ß, qui auront à jouer, vis-à-vis des

variétés ß, le rôle analogue aux courbes généralisées, vis-à-vis
des courbes rectifîables.

Ce qui nuit un peu à cette analogie, c'est qu'elle ne tient pas

compte d'effets très différents que peut produire l'addition d'une
variété singulière 1. Ce n'est là qu'une partie des complications

ty Après une telle addition, les variétés greffées restent variétés greffées, les variétés
généralisées B restent variétés généralisées B, tandis que les courbes généralisées n'ont
pas la propriété analogue. La même opération peut aussi, cas échéant, transformer
en variété greffée, une variété généralisée B, tout comme elle peut changer radicalement
le caractère d'une variété, même très simple, en topologie élémentaire: un tore devient
du type de la sphère, quand on ajoute une paire convenable de disques superposés,
d'orientations opposées.
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qui se présentent, pour 2 ^ k ^ n — 2 surtout: d'ailleurs, pour
k 1, on pourra y chercher F explication mathématique de

phénomènes de turbulence.
Les variétés greffées sont évidemment un cas particulier des

variétés généralisées B. Nous ne possédons, à vrai dire, pas

d'exemple de variété généralisée B non greffée. Un tel exemple
existe probablement: nous avons récemment résolu affirmativement

une question dans le même ordre d'idées [21 Y]. D'autre
part, en utilisant la remarque à la fin du paragraphe précédent,
on peut démontrer qu'en ajoutant, à une variété généralisée S,
une variété singulière d'étendue aussi petite que l'on voudra,
on aboutit à un mélange de variétés greffées.

8. Les variétés de contact lagrangiennes.

Il serait bon que nous précisions la notion de mélange. Nous

nous permettrons donc d'intercaler quelques remarques qui se

rapportent à nos conventions de mesurabilité. Soit A un ensemble
de variétés généralisées ifa; nous conviendrons de considérer les

suffixes a comme des étiquettes pour distinguer les J£?a dans A,
et nous désignerons par doc une mesure dans A, ou, ce qui revient
au même, dans l'espace des étiquettes a. Une variété généralisée
se laissant exprimer sous la forme

(8.1) 5£(f) \ &a if) doc

sera dite mélange des J2?a, ou mélange de A. Or nous avons
convenu de ne considérer que des ensembles boréliens, ce qui
présuppose une topologie.

Expliquons-nous.
Nous allons voir dans un instant qu'on peut se borner aux

variétés généralisées situées dans un cube fixe, c'est-à-dire qui
ont une intersection nulle avec le complément de ce cube L
L'espace de telles variétés généralisées sera doué de la topologie
faible en ce qui concerne la convergence des suites: on dit que
la suite «5fv (v 1, 2, converge si celle des valeurs JS?V (/)
converge pour chaque intégrant /. Cette topologie est équivalente

1) Plus généralement, nous dirons d'une variété généralisée se qu'elle possède un
support borélien E dans l'espace des x, si son intersection avec le complément s'annule.
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à celle d'une métrique particulière, que nous appellerons métrique
de McShane : sa définition se calque sur [6, p. 534]. Nous n'utiliserons
cette métrique ici guère que pour en tirer la notion d'ensemble
borélien et celles de mesurabilité, etc., que nous avons convenu
de sous-entendre : donc, n'en parlons plus.

D'accord avec la topologie faible, la formule (8.1) signifie

pour chaque intégrant /. Puisque if est situé dans un cube fin1

[8 (3.1)], presque chaque ifa sera situé dans ce même cube. On

pourra donc se borner à la partie de A qui comprend des variétés
généralisées situées dans ce cube.

Cela étant, nous dirons d'une variété généralisée if qu'elle
est, par rapport à A, lagrangienne, si elle se laisse exprimer sous
la forme (8.1), c'est-à-dire comme un mélange de A. Dans le cas

où, pour la mesure doc, les membres ifa de A, sauf ceux d'une sous-
classe éventuelle de mesure doc nulle, possèdent des supports
boréliens disjoints, if sera dite, par rapport à A, lagrangienne
par décomposition.

Nous écrirons A (A)3 Ad (A) respectivement, pour les classes

de variétés généralisées, qui sont, par rapport à A, lagrangiennes,
ou lagrangiennes par décomposition. Nous dirons simplement:
variété lagrangienne, variété lagrangienne par décomposition,
lorsque A se réduit à la classe des variétés B. Les classes

correspondantes seront désignées par A, Ad. Dans le cas d'une variété
de contact, nous dirons variété de contact lagrangienne, etc.
Nous dirons aussi variété non lagrangienne, etc., pour une
variété généralisée qui ne possède pas la propriété lagrangienne
correspondante, et variété lagrangienne généralisée, etc., lorsque
A est la classe des variétés généralisées B: dans ce dernier cas,

nous écrirons AGl AGd pour A (A), Ad (A). Nous dirons encore
variété lagrangienne greffée, etc., lorsque A est la classe des

variétés greffées, et nous écrirons dans ce cas, pour les deux
classes obtenues, Agi Agd.

Nous dirons enfin, en abrégeant au besoin comme ci-dessus,

que ££ est, par rapport à A, presque lagrangienne, et nous
remplacerons dans les classes correspondantes A par A +, s'il existe,

pour tout e positif, une variété singulière Se, dont l'étendue est
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inférieure à s, telle que if + Se, soit, par rapport à A, lagran-

gienne.
Désignons, pour une classe quelconque Jf de nos variétés

généralisées, par tJf, ôJf les classes correspondantes de substrata

rif, et de frontières 5 if, de membres if de if. Les expressions
T_1 tJf, ô_1 fJf désigneront les classes de variétés généralisées
chacune desquelles a le même substratum, ou la même frontière,
qu'un membre correspondant de if.

Nous aurons les inclusions suivantes:

(8.2) AaczA œAsŒAgŒA^ C T-'TA+ŒÔ-1 dA

Or, on remarque de suite que

(8.3) t'1 tAq =z~1 tA, d~x OAqÔ _1 dA,

et que, d'après ce qui a été dit à la fin du paragraphe 4, la classe

ô~1 ôA est celle des variétés généralisées qui possèdent une frontière

A, c'est-à-dire les mêmes frontières que des ex-polytopes
avec poids. Quant à la classe t-1 tA, nous dirons pour abréger
que ses membres sont les variétés à substratum lagrangien. Cette
classe n'est pas universelle: elle est comprise dans la classe des

variétés généralisées de frontière A, et l'on remarquera qu'il
existe des variétés généralisées sans frontière A, par exemple la
variété généralisée if définie par la fonctionnelle (/) / (#0, /0,)
où x0, /o désignent un point et un multivecteur fixes. (On supposera

/0 simple et de grandeur unité.) Ainsi il existe certainement
des variétés à substratum non lagrangien: pour le mouvement
des fluides, on constate donc que la description eulérienne est
bien plus générale que celle de Lagrange; nous reviendrons cependant

sur cette question dans le paragraphe suivant.
Remarquons encore, d'après ce qui a été dit à la fin du

paragraphe précédent, que

(8.4) At=AÏ.
Nous pouvons donc récrire (8.2), en lui ajoutant quelques inclusions

évidentes, comme suit:

AjcAcAg]
(8.5) AdcAgd<=Agf<=AgIAgdc= AGd c AG j <=A* ci-11 ici)-1 dA
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On remarquera sans peine que certaines des inclusions (8.5)
sont strictes, mais il est possible que d'autres se réduisent à des

égalités.
Les mêmes inclusions sont encore valables, si l'on désigne par

les symboles Ad, A, Ag, etc., les classes correspondantes de

variétés de contact d'un système donné d'équations différentielles

de la forme (2.1), ou d'un système analogue A-dimensionnel.
Pour bien comprendre un tel système, et pour bien

comprendre la notion de variété, au sens généralisé que nous utilisons
ici, il faudra avant tout, selon la remarque à la fin du
paragraphe 3, étudier la question de savoir quelles inclusions (8.5)
se réduisent peut-être à des égalités. Par exemple, l'égalité
ôg A-1 dA signifierait, pour les variétés de contact, que toute
solution de frontière A de (2.1) se réduit à une variété de contact,
presque lagrangienne, greffée. Ensuite, pour les inclusions strictes,
on cherchera à caractériser chaque fois les membres de la classe

étroite parmi ceux de la classe large.

9. L'équation de continuité des fluides.

C'est d'abord l'inclusion finale de (8.5) qui nous intéresse.
Se réduirait-elle à une égalité

Pour simplifier, bornons-nous aux variétés généralisées closes

faisant partie des classes considérées. Cette réduction n'est
possible, à vrai dire, que pour k < n, nous y reviendrons après
ce paragraphe. Rappelons qu'une variété généralisée est dite
close, lorsque sa frontière s'annule.

La question que nous nous sommes posée devient la suivante:
une variété généralisée close a-t-elle le même substratum qu'une
variété lagrangienne En d'autres termes: un substratum clos

est-il lagrangien Nous allons donner à cette question une autre
forme, qui nous rapproche encore de la mécanique classique des

fluides.
Nous aurons besoin de quelques notations.
Nous utiliserons pour la multiplication extérieure des multi-

vecteurs le signe X. On définit alors la comultiplication ® par
la formule a ® b (a* X &)*, où l'astérisque désigne la
normale. Rappelons que la normale a* d'un A-vecteur a se définit
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comme un (n — /c)-vecteur de même grandeur, tel que Ton ait

a x a* | a |2. (Il serait plus correct d'écrire au côté gauche

(a X a*)*, car on distingue entre une quantité scalaire, appelée

0-vecteur, et un re-vecteur, qu'on nomme également
pseudoscalaire. La normale d'une quantité scalaire sera pseudo-scalaire,

et vice versa.) Pour le rôle de ces opérations dans la théorie des

variétés généralisées, on consultera [11].
Nous écrirons encore d+/dxet pour le vecteur dont les

composantes sont les opérations de dérivation partielle, agissant

sur ce qui suit, ou sur ce qui précède, le vecteur en question.
Nous poserons

rot ^ ^ x<?' div

où Q désigne une fonction Q (x) dont les valeurs sont des multi-
vecteurs composés. On écrit grad au lieu de rot, si Q se réduit à

une fonction scalaire. On notera la formule

(9.1) div (Q®Q') -)r ® rot Q' 4- (div 0 ® 0},
où Q, 0 désignent des fonctions dont les valeurs sont des multi-
vecteurs composés, et où k' désigne la dimension de 0. En
particulier, si Ton prend pour 0 une fonction scalaire p, on
aura

(9.2) div (p 0 Q ® grad p + p div Q

Rappelons encore une conséquence de la formule (9.1) dans

la théorie des distributions et des courants. Nous désignerons à

cet effet par k la dimension de Q et nous poserons k' k — 1.

Nous supposerons en outre que 0 soit infiniment difïérentiable,
et nous l'identifierons, comme nous l'avons convenu plus haut,
avec une (k — l)-forme g. On peut alors prendre pour Q une
distribution dont les valeurs sont des m ultivecteurs, de sorte

que Q devient un courant T de dimension k. Nous supposerons
encore que l'une des quantités 71, g au moms ait un support
compact. En écrivant S div J7, et en tenant compte du fait
que, dans la théorie des distributions, l'intégrale (sur tout
l'espace) d'une divergence à support compacte s'annule, on
trouve

O T(rot g) + 5(g).
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Ici le symbole rot g est à proprement parler inexact, car c'est

pour la fonction Q' plutôt que pour la forme g que nous avons
défini l'opération rot. Dans la théorie des formes différentielles,
on écrit dg et non rot g. La formule devient

(9.3) 0 T(dg) + S(g);

elle sert de définition pour la fonctionnelle S (g), donc pour le

courant A, puisque g y désigne une (A—1)-forme arbitraire.
D'autre part, dg désigne une forme exacte arbitraire, et la
fonctionnelle T (dg) définit la frontière de T. Ainsi: les
courants T clos sont ceux qui vérifient l'équation S 0, c'est-à-dire

(9.4) div T 0.

Supposons, en particulier, que T soit borné et à support
compact, c'est-à-dire que T soit un substratum. La fonctionnelle
T (/) sera alors de la forme analogue à (3.2)

(9.5) T(f)$ Q{x) f{x) dp,

où Q désigne une fonction dont les valeurs sont des A-vecteurs

composés, que nous supposerons de grandeur unité, et où dp
désigne une mesure. La forme / a été remplacée ici, selon notre
coutume, par la fonction correspondante à valeurs A-vectorielles,
définie par ses coefficients. Or on écrit plutôt, dans la théorie des

distributions, pour dpi, l'expression pdx où dx est la mesure
ordinaire dans l'espace des x, et où p est une distribution que nous
nommerons la densité. On écrira alors T pÇ, ce qui signifie
en effet,

(9.6) T (/) j Q (x) p (x) f (x) dx,

selon les conventions de la théorie des distributions.
En interprétant la fonction Q (x) à valeurs A-vectorielles

comme une généralisation de la vitesse d'un fluide stationnaire
de densité p (x), on voit qu'un substratum clos, c'est-à-dire le
substratum d'une variété généralisée close, vérifie la même

équation de continuité que l'on trouve en mécanique des fluides

pour le cas stationnaire:

(9.7) div (pQ) 0
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Il y a cependant une légère différence. Ici Féquation a un sens

global, et les deux facteurs p et Q sont à prendre ensemble: on

ne les sépare pas comme au côté droit de (9.2) parce que la
multiplication des distributions nécessite quelques précautions. Dans

la mécanique classique des fluides p et Q sont analytiques et ces

précautions deviennent superflues. De plus, Féquation (9.7) a

alors un sens local, et se trouve vérifiée à Fintérieur d'un fluide.
Puisque nous renonçons ici aux hypothèses d'analyticité, la

seule différence qui subsistera concernera ce caractère local.
Nous considérerons donc une famille de substrata qui sera plus
générale que celle des substrata clos; ses membres seront donnés

par les quantités p, Q comme plus haut, mais Féquation de continuité

(9.7) sera supposée vérifiée localement.
On dit qu'une distribution S s'annule dans le voisinage du

point s'il existe une fonction h(x), infiniment différentiable
et non négative, telle que l'on ait h (x) 1 dans un voisinage
de #0, et hS 0. Nous dirons que notre courant T pQ vérifie
(9.7) localement, si sa divergence s'annule au voisinage de tout
point d'un ouvert G, tel que G constitue pour T, c'est-à-dire pour
la mesure définie par p, un support borélien.

Remarquons que de Féquation de continuité (9.7), on peut
déduire d'autres du même genre, par l'intermédiaire de (9.1).
En effet, si l'on remplace dans cette dernière, Q par T7, et
si l'on y choisit pour Q' un multivecteur constant, ou plus
généralement un multivecteur Q' (x) dont la rotation s'annule, on
trouvera

(9.8) div (pe) 0

où v Q (g) Q'. En particulier, si la dimension de Q' est (k — 1

où k est celle de Ç, l'expression v sera un vecteur ordinaire, et
(9.8) se réduit à Féquation de continuité d'un fluide stationnaire
ordinaire.

La question du début de ce paragraphe est devenue la
suivante: un courant de la forme T pQ non lagrangien peut-il
vérifier Féquation de continuité (9.7) Peut-il la vérifier, sinon
globalement, au moins localement Peut-il enfin vérifier Féquation

de continuité ordinaire (9.8) pour ç Q ® et pour
chaque choix constant de Q' de dimension (k— 1)
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Nous retrouvons ainsi, sous des formes plus précises, la
question de la mécanique des fluides dont nous étions partis. A
cet effet, on prendra pour T le substratum d'une variété de

contact.

10. Les directions d'amarrement.

Pour bien comprendre l'équation (9.8), à laquelle nous
sommes aboutis, nous aurons besoin d'un lemme assez simple
sur les multivecteurs quelconques, et ce lemme va dépendre
d'une définition que nous allons illustrer par une image nautique.

Un bateau, qui entre dans un port, ne peut s'amarrer que
dans certaines directions « d'amarrement ». L'ensemble des

directions d'amarrement dépendra évidemment de celui des

jetées non parallèles qu'on aura construit dans le port.
Nous définirons de même les directions d'amarrement d'un

multivecteur quelconque /, et l'ensemble de ces directions
dépendra des multivecteurs simples qui sont nécessaires pour
représenter / comme leur somme.

Si j est un multivecteur simple non nul, on l'exprime comme
produit extérieur de vecteurs / cx X e2 X X vk et l'on
nomme direction d'amarrement de / toute direction qui est celle
d'une combinaison linéaire v S ca à coefficients réels cff,
des vecteurs eCT (er 1, 2, k). Une telle combinaison linéaire
sera elle-même dite vecteur d'amarrement.

Dans le cas général, où j est composé, on dira d'un vecteur e,

ou d'une direction e, que c'est un vecteur, ou une direction,
d'amarrement de /, si pour chaque décomposition / I jv de /
comme une somme de multivecteurs simples /v, qu'on aura
exprimés comme produits extérieurs de vecteurs evl, ev2, evfc,

correspondants, il existe une expression de e comme une combinaison

linéaire e IV}(T cva eV(T, des différents vecteurs eVff.

Nous dirons encore que le multivecteur j est situé dans un
espace 77, où 77 désigne un sous-espace linéaire de l'espace des x,
si 77 comprend des vecteurs eV(T tels que / se laisse exprimer
comme une somme Ijv7 où chaque /v est un produit extérieur
des eVCT correspondants. On voit de suite que les directions
d'amarrement de j sont les directions communes à tous les
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espaces II dans lesquels j est situé. La partie commune de ces

espaces 77, qui est aussi l'espace des points définis par les vecteurs
d'amarrement de /, sera dit espace d'amarrement de /.

(10.1) Lemme. — (i) Chaque multivecteur / est situé dans

son espace d'amarrement. (ii) Les directions d'amarrement d'un
/c-vecteur / sont celles de la forme / ® /' où les /' sont des (k — 1)-
vecteurs.

Démonstration. — Pour établir le premier énoncé, il suffira
de vérifier que, si / est situé dans II' et 77", alors / est situé également

dans leur intersection 77. Par une transformation élémentaire

de l'espace des x en lui-même, on peut supposer que II',
77" sont les sous-espaces définis par deux sous-ensembles du

système de coordonnées de x. Mais alors chaque composante
non nulle de / sera située à la fois dans II' et dans 77", donc dans
77. Donc /, comme somme de ses composantes cartésiennes, sera
également situé dans 77. Pour établir le second énoncé, soit 770

l'espace d'amarrement du A-vecteur /, et soit II1 l'espace des

points de la forme j ® ]% où les j' sont des (k— l)-vecteurs.
Evidemment II1 est un sous-espacè de 770. Il nous faut démontrer
qu'il coïncide avec ce dernier. Supposons le contraire. Il existe
alors dans 770 une direction v orthogonale à II1; désignons par 77

l'espace formé des vecteurs de 770 orthogonaux à v. Par définition
de e, l'espace II1 ne peut contenir aucun vecteur de la forme
e + où uell. D'autre part, on peut exprimer j comme la
somme de deux projections orthogonales, d'après l'identité (4.3)
de [11]. On trouve

/ a -h (ex b)

où a (e x /) ® v et b / ® v sont situés dans 77. Ici b n'est
pas nul, sans quoi / serait situé dans 77; on peut donc définir
j' b/\ b |2, u a ® /', d'où il ressort que j ® j' ç -f a,
donc que v + u e T7l7 ce qui contredit ce que nous avons trouvé
plus haut. La démonstration est donc achevée.

Dans le cas d'un multivecteur Q (x) A-dimensionnel, nous
nommerons vecteur d'amarrement local de Q tout vecteur v (x)
de la forme v Q ® Q' où Q' est un (k — l)-vecteur constant.
La direction d'un tel vecteur non nul sera dite direction d'amarrement

locale de Q. L'équation (9.8) signifie que pour le courant
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T — pQ, les vecteurs v d'amarrement locals de Q vérifient l'équation

de continuité des fluides. Remarquons encore que l'opération
de comultiplication par un (k— l)-vecteur constant rappelle
une opération analogue utilisée pour définir les contours d'une
variété généralisée [11].

Permettons-nous, pour terminer ce paragraphe, une
observation, très heuristique et superficielle, sur la signification de

l'équation (9.8). Dans cette équation p prend la place d'une

mesure, tandis que v est une fonction à valeurs vectorielles. Avec
des conventions appropriées, on pourra, d'après (9.2), écrire (9.8)
sous la forme:

(10.2) e® grad p + p div v 0.

Elle nous dit que dans la direction e, le gradient d'une mesure
se comporte d'une façon relativement régulière. On peut
l'interpréter comme exigeant une espèce de continuité absolue dans
la direction ç. Il est assez plausible que la mesure p, si elle est
absolument continue dans les différentes directions d'amarre-
ment locales, se révélera comme une intégrale multiple par
rapport à ces directions, d'où l'on entrevoit que le courant pQ
doit être lagrangien. Serait-ce là un mirage Ou est-ce le germe
d'une démonstration C'est au lecteur à y réfléchir.

11. Principes de réduction.

Deux variétés généralisées seront dites complémentaires, si

leur somme est close, et si elles possèdent deux supports boréliens

disjoints. Une propriété possédée par certaines variétés généralisées

sera dite cx-additive si une variété généralisée s'exprimant
comme une somme dénombrable la possède, dès que chaque
J2?v la possède. Enfin une variété généralisée «5? de dimension k
dans l'espace des x de dimension ra, sera dite inductive si la
relation t-1 tA d_1 dA est valable pour les variétés généralisées
de dimension (k — 1) dans un espace (n— l)-dimensionnel.

(11.1) Principe du a-polytope complémentaire. — Soit une

variété généralisée de frontière A et de dimension k dans

l'espace ft-dimensionnel où o < k < n. Alors il existe un cr-polytope
avec poids, complémentaire à
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Démonstration. — Soit 77* un cr-polytope avec poids, qui
possède la même frontière que if. En changeant son orientation,
on obtient un cr-polytope avec poids il, tel que if + il soit fermé.

On peut mettre i7 sous la forme d'une somme dénombrable

II 1 cv AV1 où les cv sont réels et positifs, et où chaque Av

désigne un simplex. Nous désignons par Cv un cône sur la frontière

élémentaire de AVJ et nous supposerons le sommet xv choisi,

par induction, d'une façon convenable. A cet effet, soit i7v, la

somme des termes de I cv, Cv, pour v' < v, et soit jav la mesure
associée comme dans la formule (3.1a), non à if, mais à if + i7v.

On choisira xv de façon à ce que | Cv | ^ 2 | Av | et que la mesure

jnv d'un support de Cv s'annule. Ceci est possible, puisqu'on peut
donner à xv un ensemble de positions de la puissance du continu,
qui correspondent à des supports disjoints: ces supports n'auront
donc pas tous des mesures positives. Le cr-polytope avec poids,
défini par la somme dénombrable I cv CV1 sera complémentaire
à if, ce qui achève la démonstration.

(11.2) Principe de décomposition. — Soit P une propriété
cr-additive, et soit if une variété généralisée. Alors il existe une
décomposition if if7 + if", où if', if" sont des variétés
généralisées telles que if' ait la propriété P tandis que if" ne

possède aucune sous-variété non nulle qui ait la propriété P.

Démonstration. (Rappelons qu'on dit de deux variétés
généralisées ifx, if2 que if2 est une sous-variété de ifx, si la
différence if-L— if2 est une variété généralisée). — Soit ax le supré-
mum de l'étendue des sous-variétés de if qui possèdent la
propriété V. Nous désignons par ifx une sous-variété la possédant,
dont l'étendue dépasse } a1; une telle sous-variété existe à moins

que ax — 0, et dans ce dernier cas, on pose ifx 0. Généralement,

si les sous-variétés ifl5 if2, ifv_! ont été définies, soit
av le suprémum de l'étendue des sous-variétés de if — ifx —
— ifv-i qui possèdent la propriété P, et soit ifv une telle sous-
variété la possédant, dont l'étendue dépasse | av, si av 0 on
pose ifv 0. On trouve sans peine que les expressions if' - lifv,
if" if — if désignent toutes deux des sous-variétés de if,
et que if possède la propriété P. Il reste à montrer que if" ne
possède aucune sous-variété ^ 0 ayant la propriété P. Mais si a
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est l'étendue d'une telle sous-variété, on aura, par définition de

av, a ^ av pour chaque v. D'autre part, la somme I i av ne peut
dépasser l'étendue de 1 ifv, donc celle de if', et par conséquent
cette somme converge. Il s'en suit que a 0, ce qui achève la
démonstration.

(11.3) Principes de subdivision et de localisation. — (i) Soit

if une variété généralisée inductive de frontière A ; alors il existe
une subdivision de l'espace /2-dimensionnel en cubes Q congruents,
aussi petits que l'on voudra, tels que, si F désigne la frontière
de (7, l'intersection if n F s'annule, et que l'intersection if n Q

possède une frontière A. (ii) De plus, si F désigne un ensemble
borélien quelconque, l'intersection possède une frontière

A.

Démonstration. — En ce qui concerne (i), il suffira, par
itération, d'établir l'affirmation correspondante pour une
subdivision en bandes congruentes, orthogonales à une direction
donnée V. Nous nous servirons des mêmes symboles (7, F pour
désigner une telle bande et sa frontière, et nous désignerons

par 3P un u-polytope avec poids complémentaire à if. Nous

appellerons niveau d'un point x, et nous désignerons par z (x)
la projection dans la direction V du vecteur x. Nous écrirons 77

pour une certaine famille de sous-espaces éq ni distants 2 (x)
— const. On s'arrangera, par une translation dans la direction V
s'il le faut, à ce que cette famille remplisse deux conditions que
nous avons introduites ailleurs [11 (6.3)]. Ce sont les suivantes:
a) l'intersection de if avec chaque membre de 77 s'annule;
b) l'intersection de if + avec le demi-espace au-dessus du
niveau correspondant z (x) const, a pour périmètre ce que
nous avons appelé le « contour » de if + ^ à ce niveau. Rappelons

qu'un tel contour est, par sa définition (loc. cit.), une variété
généralisée close (k — 1) dimensionnelle dans un espace
2 (x) const, de dimension (n — 1), et que, par conséquent,
elle possède un substratum A, d'après notre hypothèse inductive
sur if. Il s'en suit aisément* que II divise l'espace en bandes Q

telles que (if -f ^) n (7 ait une frontière A et que la frontière F
de Q ait une intersection nulle avec if + et par conséquent

i) On remarque que + @) n Q a la meine frontière que le cône cle son périmètre.
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avec if. Or la frontière de if n Q s'obtient en ajoutant à celle

de (if + 3P\ n Q la frontière d'un u-polytope avec poids n Q,

où s'obtient de & en changeant l'orientation. Donc if nQ
a une frontière A, et (i) est démontré.

Passons à (ii). D'après un résultat déjà cité [12, Ap. III],
la propriété de posséder une frontière A est certainement
cr-additive. Il s'ensuit de (i) que if n E aura une frontière A

lorsque E est ouvert. En soustrayant de if, on voit qu'il en est

de même lorsque E est fermé, donc, par addition, lorsque E est

une réunion dénombrable d'ensembles fermés. Il est clair qu'en
répétant ce raisonnement, on trouvera que if n E possède, pour
tout E borélien, une frontière A, ce qui établit (ii).

Ajoutons qu'un raisonnement du genre utilisé ici montre
qu'une variété généralisée inductive if, dont le substratum
T pQ vérifie (9.7) localement, possède une frontiera A. En
désignant par G le même ouvert que dans la définition de cette
vérification locale, on se base alors sur la remarque suivante,
dont la démonstration se calque sur celle de [11 (6.3)]: presque
tout cube Q, assez petit et de centre fixe dans G, aura une frontière

élémentaire F, dont le niveau correspond à un contour C

de if, tel que C soit un périmètre de if n Ç-

Remarquons encore que (11.1) et (11.2) permettent de réduire
la discussion des cas d'égalité dans (8.5) et dans les inclusions
analogues pour les variétés de contact. Par exemple, pour
établir l'égalité AG ô~1 ôA pour les variétés de contact, il
suffira de l'établir pour celles qui sont closes. En effet, supposons
qu'on ait établi ce cas particulier, et soit if une variété de

contact à frontière A. Désignons par un cr-polytope avec poids,
complémentaire à if, et par E un support borélien de if disjoint
d'un support borélien de En modifiant notre système d'équations

différentielles en dehors de E, on s'arrange à ce que if -f ^
soit une variété de contact. Par hypothèse, puisque if -f- 0>

est close, if + sera lagrangienne généralisée. Evidemment
il en sera de même de son intersection avec A, qui est if. Donc

if est une variété de contact lagrangienne généralisée, pour le
système modifié, donc pour le système donné, qui n'a pas changé
dans E.

I/Enseignement malliém., t. XI, l'asc. Z-3.



12. Les dimensions k 0 et k n.

Nous allons entamer l'étude de quelques dimensions k
particulières dans l'espace ft-dimensionnel. Nous commençons ici par
k 0 et k — n. Rappelons les conventions qui s'y rapportent.

Un /c-vecteur se réduit à une quantité scalaire pour k 0,

pseudo-scalaire pour k — n. Dans les deux cas, sa direction se

réduit au signe + ou —. Un intégrant / (x, j) quelconque est donc
donné par une paire de fonctions

(12.1) j+ (x) /(x, +) /_ (x) /(x, -) ;

il sera linéaire en / si /+ —/_. Une variété généralisée sera
donnée par une représentation de la forme

(12.2) S£U) lf+dfi+

où ju+, fi- sont des mesures finies à supports compacts. Remarquons

que si JSf ne possède aucune sous-variété singulière, les

mesures ji+ et fi- auront des supports boréliens disjoints.
Il y a, cependant, des différences importantes entre les deux

cas k 0 et k n. En effet, une quantité pseudo-scalaire se

distingue nettement de la quantité scalaire, à laquelle elle est

normale, par les conventions qui gouvernent la multiplication
extérieure. Il ressort de ces conventions que pour k n, tout
intégrant linéaire est exact, tandis que pour 7c 0 les intégrants
exacts sont les intégrants linéaires constants par rapport à x.

Les dimensions k 0 et k n diffèrent aussi dans la définition

des polytopes, etc. Cela tient à ce que la notion de point,
orienté avec le signe + ou —, est celle de simplex de dimension

0, tandis qu'elle est toute différente de celle de simplex de

dimension n. On notera qu'un a-polytope avec poids, de dimension

k 0, sera défini par une fonctionnelle de la forme

(12.3) se (/) I aj+ (xv) + Ibj_ (xv)

où av 0, bv > 0, 1 {av + bv) < oo, Sup | xv | < oo. C'est le cas

de mesures discrètes dans (12.2). Pour qu'un tel cr-polytope avec
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poids ait la même frontière qu;une variété généralisée donnée

par (12.2), on aura à poser

(12.4) J à (fi+ - jxJ) 1 (ocv - bv)

Ainsi, pour la dimension k — 0, toute variété généralisée possède

une frontière A, puisqu'on peut toujours choisir un u-polytope
avec poids de façon à ce que le côté droit de (12.4) ait une valeur
donnée. D'ailleurs (12.2) montre déjà que, pour la dimension
k 0, toute variété généralisée s'exprime comme un mélange
de la forme Jifa ia, où chaque ifa est un simplex. Dans une
étude complète des cas d'égalité de (8.5), ce résultat, peu intéressant

en lui-même, pourra éventuellement servir de base à une
démonstration inductive d'un théorème général. On conçoit
aussi une induction descendante possible, en partant du résultat
correspondant pour la dimension k n. Nous combinons ces

deux résultats en un seul énoncé:
(12.5) Point de départ: les cas dégénérés k — 0 et k n

dans l'espace w-dimensionnel. Toute variété généralisée de

dimension k 0 appartient aux classes A et Agd, toute variété
généralisée de dimension k n et de frontière A, à la classe

Agd. Chacune d'elles appartiendra à la classe Ad, si elle ne
possède aucune sous-variété singulière non nulle.

Démonstration. — Ce qui se rapporte à la dimension k 0

se ramène aux remarques déjà faites. Reste à traiter la dimension

k n. Soit if une variété généralisée de cette dimension,
et supposons qu'elle possède la même frontière qu'un u-polytope
TI avec poids. En changeant d'orientation, on aura un a- polytope

77* avec poids, tel que if + 77* soit clos. Mais alors if + 77*

sera singulier, donc if et 77 auront le même substratum. On peut
poser, d'après (11.2),

if - if' + if" 77 77' + H"

où if', 77' sont des variétés singulières, et où if", 77" sont des
variétés généralisées, de même substratum, qui ne possèdent
aucune sous-variété singulière non nulle. On en conclut facilement,

en utilisant pour if" et 77" des représentations du type
(12.2), que if" 77", donc que if" e Ad, à condition de faire
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appel à la remarque faite après la formule (12.2), selon laquelle
les mesures /^+, qui y paraîtront lorsqu'il s'agit de représenter

T£\ auront des supports boréliens disjoints. On utilisera
encore cette même formule pour représenter <£', et l'on décomposera

les mesures ju'+, ju'_ qui y paraîtront, chacune en deux
parties, respectivement absolument continue et singulière par
rapport à la mesure ji"+ ou ji'i correspondante. En faisant l'addition,

on trouvera pour j£f — ££' -f jSf" une nouvelle représentation,

d'où il ressort que if g Agd, ce qui complète la démonstration

de notre énoncé.

13. La dimension k n — 1.

Nous poursuivons notre étude, mais en improvisant les

démonstrations, qui déjà seront trop faibles pour nous livrer
l'égalité vraisemblable Agd d-1 ôA. Il nous manque une
méthode générale, il nous manque aussi, même pour k n — 1,

une méthode qui conduirait au résultat le plus précis. Cependant,
comme nous l'avons dit dans notre introduction, le résultat que
nous allons démontrer ici, pour k n — 1, est toujours un
théorème de nature progressive. Sa démonstration se basera sur
celle que nous avons présentée, il y a dix ans, dans les cas n 2

et n 3 avec M. Fleming [9, 5].

(13.1) Théorème. — Soit if une variété généralisée de

dimension n — 1 et de frontière A. Alors if g

Pour démontrer ce théorème, équivalent d'après (8.5) à

l'égalité Ag d~x SA, nous aurons besoin de définitions et de

lemmes auxiliaires.
Un polytope clos 0 sera dit irréductible s'il ne possède aucune

décomposition 0 0' + où i3', 0" sont des polytopes clos

non nuls. Une variété généralisée close if sera dite pure, si pour
toute expression if if' -f- if" de if comme la somme de deux
variétés généralisées closes if, if", il existe dans l'intervalle
0 ^ 6 S 1 une constante 0, telle que if — 0if.

Pour abréger, un polytope clos irréductible de dimension

n— 1, et une variété généralisée close pure de la même dimension,

seront dites, respectivement, polytope typique et variété
typique, lorsqu'elles sont situées dans l'espace 72-dimensionnel.
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La notion de polytope typique nous permettra de faire appel

à un théorème de séparation bien connu, tandis que celle de

variété typique s'exprime très simplement par l'intermédiaire
de celle de point extrême, au sens abstrait, d'un certain ensemble

convexe. (Plus précisément, les variétés typiques if d'étendue
| if | 1 sont les points extrêmes, au sens abstrait, de l'ensemble

des variétés généralisées closes de la même étendue et de la même

dimension.)

(13.2) Lemme de séparation. — Soit 0> un polytope typique
situé dans une boule de diamètre unité, et soit II un hyperplan.
Alors il existe un polytope singulier S1, situé dans 17 et d'étendue

^ 2, tel que l'on ait 0> + S 0*' + 0>", où 0>\ 0" sont des

polytopes clos, situés de part et d'autre de 17.

(13.3) Lemme déapproximation. — Toute variété typique if
s'exprime sous la forme if lim cv 0>y où cv est une constante

positive et 0>v un polytope typique.

(13.4) Lemme de convexité —- Toute variété généralisée close,
de dimension n — 1 dans l'espace ra-dimensionnel, s'exprime
sous la forme d'un mélange j ifa dcc, où chaque ifa est une
variété typique.

Démonstrations des lemmes. — Pour établir (13.2), soit C le

périmètre de la partie de 0 dans un des demi-espaces ouverts
bornés par 77. Il suffira de montrer que C est le périmètre d'un
polytope Q situé dans 77 et d'étendue A 1; car en ajoutant à Q

le polytope d'orientation opposé, on obtiendra un polytope
singulier S avec les propriétés énoncées. Pour obtenir un tel polytope

il suffit de couper par 77 le domaine polytopique V

orienté, lequel est situé dans la boule donnée et possède la frontière

orientée 0>. L'existence et l'unicité de V sont des

conséquences immédiates d'un théorème de séparation, connu des

topologues [1, p. 380], et qui se démontre très simplement en
utilisant l'homotopie, de sorte qu'il est devenu un exercice pour
les étudiants. L'orientation de Q se détermine par la méthode
des contours [11].

Pour établir (13.3), on fera appel à [12, (1.1) ThA]
pour exprimer d'abord if sous la forme if lim ifv où ifv
est un polytope clos avec poids. (Voir les remarques qui suivent
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l'énoncé du théorème cité.) 3 v s'exprime donc, d'après la topo-
logie combinatoire, comme une combinaison linéaire, à coefficients

positifs, de polytopes clos [4 (3.3) lemma] et par
conséquent, comme une telle combinaison linéaire de polytopes
typiques. En s'appuyant sur un résultat facile de la théorie des

points extrêmes [p. ex. 4, Al, p. 482] on en tire que 3j\ 3 |

lim 0>v | pour une suite convenable de polytopes typiques
^v, ce qui conduit immédiatement à l'énoncé (13.3).

Pour établir (13.4), on fera appel de nouveau à la théorie des

points extrêmes [p. ex. 2, (4.2)] pour exprimer la variété généralisée

donnée, qu'on peut supposer d'étendue unité, comme un
mélange, par rapport à une mesure unité, des 3JI &\ I- Notre
énoncé sera une conséquence immédiate.

Des lemmes (13.2), (13.3) nous déduirons:

(13.5) Théorème. — Toute variété typique non singulière
s'exprime sous la forme c3 où c est une constante positive, et
où 3 est une variété greffée close.

Démonstration. —Ainsi que nous l'avons dit au paragraphe 7,
les variétés greffées coïncident avec ce que nous avons appelé
précédemment variétés généralisées admissibles B dans [12], et
en particulier les variétés greffées closes sont les limites des

polytopes clos. Il suffira donc de montrer qu'une variété typique non
singulière aura la forme c lim ^v, où les sont des polytopes
clos. Or c'est une conséquence immédiate du lemme (13.3), dans
le cas où les constantes cv ont une limite c finie et non nulle, pour
une sous-suite de valeurs de v. Il en est de même si les cv tendent
vers l'infini, puisqu'on peut alors les supposer entiers. Il suffira
donc de montrer qu'une variété typique de la forme lim cv

où lim cv 0 et où les sont des polytopes typiques, sera
singulière. Par conséquent il suffira de montrer que son support se

réduit à un seul point. Nous supposons le contraire, et nous
établirons une contradiction. A cet effet, soit 17 un hyperplan
quelconque, et choisissons, d'après (13.2), pour chaque v un polytope

singulier Nv d'étendue ^ 2, tel que l'on ait 3PV -f Sv

où K sonl des polytopes clos, situés de part
et d'autre de II. On trouve, puisque lim cv 0,

lim cv lim cv (3V + Sv) lim cv + cv
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En prenant une sous-suite de v, on trouve donc que notre variété

typique se décompose en deux parties closes, données par les

limites de cv 0>'v et cv et situées de part et d'autre de il. L'une
d'elles sera donc nulle, ce qui n'est possible, il étant arbitraire,

que si notre variété typique a pour support un seul point.
Du résultat ainsi démontré, il s'en suit, d'après (13.4), que:

(13.6) Théorème. — Toute variété généralisée close, de

dimension n— 1 dans l'espace n-dimensionnel, s'exprime sous

la forme d'un mélange d<x où chaque est une variété

greffée close.

A proprement parler, ce qu'on déduit par la voie indiquée,
c'est que la variété en question s'exprime comme la somme d'un
tel mélange et d'une variété singulière. Mais cela revient au

même, puisqu'une variété singulière est elle-même une variété
greffée.

Du théorème (13.6), on passe maintenant au théorème (13.1),

en raisonnant tout comme à la fin du paragraphe 11. Le
théorème (13.1) est donc établi, lui aussi.

14. La dimension k 1.

Nous avons laissé pour la fin le cas, intéressant pour la mécanique

des fluides, où la dimension de nos variétés est k t.
Comme nous l'avons remarqué dans l'introduction, ce cas n'a été

traité précédemment que pour n 2, quand il se réduit à celui

que nous venons de discuter. Or, déjà pour n 3, la voie suivie
ne s'applique plus lorsque k 1. En effet, l'énoncé analogue à

(13.6) est faux, comme il ressort d'un exemple très simple, dû
à M. E. Bishop.

On soumet à une rotation, croissante de 0 à 2n1 un cercle
donné, par rapport à un axe, dans son plan, qui ne le coupe pas.
Les positions successives 6 du cercle engendrent un tore 0, et
nous désignons par e (x) une direction qui, pour x e 0, est
tangente à 0 au point x, et qui y fait un angle constant, irrationnel
à 7i, avec la position du cercle 9 passant par le même point. Nous
définissons

& (/) Je/IXUx)] da
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où da désigne la mesure 2-dimensionnelle. Soit a Taire de <9, et
soit C (t) Tare de longueur t d'une courbe sur (9, qui possède un
point initial fixe donné, et qui vérifie l'équation différentielle
x' v (x). On trouve que

if (/) lim-Jc (t)f[x,v(
f->oo 1

où ds est la longueur d'arc élémentaire sur C (t). On en tire
aisément que if (/) '= 0 pour tout / exact, donc que if est close.

En outre, il est évident que if n'est pas identiquement nulle. Si

l'énoncé analogue à (13.6) était exact, on en conclurait que

if J ifa da, où les ifa seraient des courbes closes rectifiables,
vérifiant comme if l'équation différentielle x' — v (x), et situées

sur <9. Or il n'existe sur 0 aucune courbe close rectifîable,
vérifiant cette équation différentielle.

(14.1) Théorème. — Soit if une variété généralisée de dimension

k 1 et de frontière A dans l'espace ft-dirnensionnel. Alors

if 6 Ar
Nous aurons besoin du lemme suivant:

(14.2) Lemme. — Soit if une variété généralisée close de

dimension k 1, telle que | if | 1. Alors il existe une suite
de polygones clos 0>v(v= 1,2,...), et d'entiers positifs
correspondants Nv qui tendent vers l'infini, telle que Ton ait

if lim 0*V/NV.
V-> oo

Démonstration du lemme (14.2). — On peut supposer, sans
restreindre la généralité, que if est située dans un cube unité, que
nous supposerons fixe dans la suite. Toutes les constructions

que nous allons faire se passeront dans le même cube. En faisant
appel à un résultat indépendant de la dimension /c, et que nous
avons déjà utilisé dans le paragraphe précédent [12, (1.1) Th. A],
on peut écrire if lim ifv, où chaque ifv est une variété
close se réduisant à un polygone avec poids, c'est-à-dire à une
somme finie de segments orientés avec des poids correspondants.

D'après la topologie combinatoire, chaque ifv s'exprime
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encore [4, (3.3) lemma], comme une combinaison linéaire, à

coefficients positifs, de polygones clos ordinaires,
Mv

g? _ y c o7>

v cvp ^ vp •

p= 1

On peut s'arranger, sans changer la limite des JSfv, à ce que
les coefficients de chacune de ces combinaisons linéaires soient

rationnels et de même dénominateur AQ. On peut évidemment

supposer Av aussi grand que Ton voudra: nous supposerons donc

que Nv ^ v 7¥v, où Mv est le nombre des termes de notre combinaison

linéaire.
Quant aux numérateurs des coefficients rationnels cvp de

cette combinaison linéaire, nous les supprimerons en remplaçant
chaque polygone clos dPvp (p 1,2, Mv) par un multiple
correspondant, qui sera encore un polygone clos ordinaire. En
désignant ce dernier par le même symbole, on aura donc

mv

^ I PINV

p=i

Ici on peut s'arranger, sans changer la limite des ifv, à ce

que la somme au côté droit se réduise à un seul terme. Il suffit
de faire des polygones dPvp (p 1, 2, Mv) un seul polygone
clos en ajoutant Mv paires de segments opposés, de longueur
^ 1, qui relient un polygone au suivant. On aura ajouté ainsi
à ifv de cette façon une variété singulière dont l'étendue ne
dépasse pas 27¥V/A7V, ce qui tend vers zéro.

Ainsi if lim ce qui achève la démonstration.

Démonstration du théorème (14.1). — D'après le raisonnement

de la fin du paragraphe 11, on peut se borner, comme pour
la dimension k n — 1, au cas où if est close. On peut supposer
de plus que | if | 1, donc qu'elle vérifie les hypothèses du
lemme (14.2). On a dans ce cas

if - lim d?JNv

et puisqu'il s'en suit que lim | j/AQ | if | 1, on peut
s'arranger à ce que | | Arv. A cet effet, on remplace d'abord
Nv par le plus petit entier supérieur ou égal à | |, et on ajoute
ensuite à une paire de segments opposés s'il le faut.
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En divisant maintenant PPV en iVv parties de même longueur,
qui seront des polygones ordinaires, c'est-à-dire des courbes

polygonales à deux extrémités, de longueur unité, on trouve
ainsi que est limite d'une combinaison convexe de polygones
ordinaires de longueur unité. Ces derniers seront en outre situés
dans un cube fixe.

La limite que nous utilisons ici est la limite faible. Cependant,

en ce qui concerne les suites convergentes, elle est équivalente

à la notion de limite qu'on dérive d'une métrique, nommée

métrique de McShane [6, p. 534]. On peut donc faire appel à un
théorème général sur les ensembles convexes dans les espaces
métriques compacts [14, prop. 7, p. 87]. Tout comme dans une
situation analogue [10, (4.1) (a), p. 6], on trouve que ££

s'exprime comme un mélange J dos, où chaque ££a est limite d'un
polygone ordinaire correspondant Ç, de longueur unité, situé
dans un cube fixe.

Or les limites de tels polygones Ç, nous les connaissons depuis
longtemps: ce sont les courbes généralisées de la même longueur,
dans le cube en question.

A vrai dire, il faut y ajouter les limites concentrées en un seul

point: c'est-à-dire les variétés singulières de longueur unité
concentrées en un point du cube. De toute façon, les limites de

nos polygones Q seront des variétés greffées de dimension k 1.

Ainsi est un mélange de ces dernières, c'est-à-dire g Ag.
Le théorème est démontré.
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