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ERAT AT A

SUR QUELQUES POLYEDRES EN GEOMETRIE
DES NOMBRES

par E. EHRHART,

Dans un article paru dans L’Enseignement mathématique,
tome X (1964), pp. 138-146, nous avons formulé une conjecture
relative & un corps convexe fermé: Ses hauteurs a, b, ¢ dans les
directions des axes orthonormés, son volume V, sa surface S et
le nombre j de ses points entiers vérifient la relation

S
(1) j§V+5+a+b+c+1;

Iégalité n’est atteinte que pour les parallélépipedes entiers, dont
les arétes sont paralleles aux axes.

Nous allons démontrer cette relation pour trois classes de
polyedres convexes. .

Rappelons qu'un polygone ou un polyédre sont dits entiers,
s1 les coordonnées de leurs sommets sont des nombres entiers.
Le périmétre réticulaire d’un polygone entier s’obtient en prenant
comme unité de longueur sur chaque coté la maille du réseau
rectiligne de ses points entiers. De méme Vaire réticulaire d’un
polyédre s’obtient en prenant comme unité d’aire dans chaque
face la maille du réseau plan de ses points entiers.

I. Prisme entier

Soit (P) un prisme convexe entier fermé, j le nombre de ses
points entiers, p le nombre de points entiers de sa surface, V son
volume, § son aire et S’, I', ' respectivement les mesures réticu-
laires de sa surface, d’une aréte latérale et du périmétre de sa base.

On sait que |
. P . B
j=5= V+1 + 5 )

1) Comples rendus de I’ Acad. des sc., 243, 1956, p. 349 (formule 3).
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ou, comme p = S'4+21),

. s L F
(2) ]-—V+‘2—+Z+—5+1.

Si a, b, ¢ sont les dimensions du parallélépipéde () circons-
crit & (P) parallélement aux plans de coordonnées, I’ < ¢ et
B =B =2 (a+b), ou B est le périmetre réticulaire de la pro-
jection d’une base de (P) sur le plan XOY. D’autre part, §* < S§.
Donc (2) entraine (1), ou ’égalité n’est atteinte que si (P) et (2)
coincident.

1I. Tronc de prisme entier, dont une base a un cenire
de symétrie

Soit w le centre de symétrie d’une base convexe fermée (B’),
7’ le nombre de ses points entiers, p’ le nombre de points entiers
de son contour, s’ son aire, s’’ son aire réticulaire et a’, b’, ¢’ ses
hauteurs dans les directions des axes de coordonnées. Le symé-
trique (P,) du tronc de prisme (P,) par rapport & w compléte (P;)
a un prisme, qui vérifie (1). Comme les caractéristiques de (P,)
sont les mémes que celles de P; (dotées de 'indice 1),

j=2ji—j, S =28, -2, V=2V,

a=2a,—a’, b =2b,—-b", c =2c,—c'.

Par ces substitutions, (1) devient

S 1
3) 1=+ 71 +a;+by+c;+1+ 5(]'/"—8'—61'«—[)'—6'—1).

’

Or j" =s"+ PZ_ -+ 1 (corollaire du théoréme 1 de P'article cité

au début). Mais s < s" et p’ < p”’' = 2(a’'+0'), ou p”’ désigne
le nombre de points entiers de la projection du contour de (B’)
sur le plan XOY. (Ceci suppose que le plan de (B’) ne soit pas
perpendiculaire & XOY, en quel cas on projetterait sur XOZ ou
sur YOZ.) Dans (3) l’expression entre parentheéses est donc
négative ou nulle. |

1) Comples rendus, 242, 1956, p. 2217 (formule 1).
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III. Une famille de pyramides

Soit (P) une pyramide dont le pied de la hauteur entiere ¢ se
trouve dans la base fermée convexe, qui est située dans le plan
des axes OX, OY et a pour hauteurs dans la direction de ces
axes a et b. On suppose 12¢ = b = a.

Coupons (P) par le plan Z = ¢ — n. Soient j, le nombre de
points entiers de la section fermée et s, [, sa surface et son péri-
metre. On sait (voir I'article mentionné au début) que

[
< s, 4+ -—4+1.
/ 2
Par suite
n=c c 1 C
(4) j=1+ Zjn<Zs,,+§Zl,,+c+1.
1 1 1
2 Sc
Comme s, = n° —,
C
€ c(c+1)(2c+1) s, S S S
5, = — = —=(2c*+3c+1) =V 4+ S+ 2,
; 6 ¢? 60( ‘ ¢+ * 2 +6c

n
D’autre part, [, = —1[. donne
c

el I, l.
—+ =<8+ =
2;‘ 2 2 T2
ou 8’ désigne la surface latérale de la pyramide. De (4) on déduit
alors

S | s [
J<V+ - +at+btc+l+(->+ 5 —a—-b).
2 <6c+4 ¢ b)

Il reste & montrer que Pexpression entre parenthéses est
négative ou nulle. Comme

[IA

Se

ab
? el lcéz(a_‘"b)a
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il suffit que

ab a-+b
= )
12¢ = 2

qui est vérifiee car 12¢ = b et a+b = 2a.

Remarque. — L’tnégalité (1) est donc en particulier vérifiée
par tout téiraédre entier O (o, 0, 0) A (a, 0, 0) B (o, b, 0) C (o, 0, ¢).

(recu le 30 jangier 1964)
E. Ehrhart

11, rue de Bruges
Strasbourg
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