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THE STONE SPACE OF A BOOLEAN RING

by Alexander ABian *1)

This 1s an expository paper reproducing some of the basic
results in [1] and [2].

DEeriNITION 1. — A ring B is called Boolearn, if

x* = x, for every xeB. (1)

In what follows B shall represent a given Boolean ring.
The following are well known immediate consequences of
Definition 1.

x+x =0, (2)
Xy = yx, (3)
xy(x+y) =0, (4)

for every two elements x and y of B.

NoraTiON. — In what follows, for every non-zero element x of B,
p (z) shall represent a prime ideal of B not containing x, i.c.,
r¢p ()
and

P () shall represent the set of all prime ideals p (x), for a given x.

LeMma 1. — Let I be an wdeal of B and x ar element of B such
that x¢l. Then there exists a prime ideal p (x) such that
I < p(x).

Proor. — By Zorn’s Lemma, in view of (1) and (3), there
exists a largest ideal M of B such that / <« M and x¢ M. It can
be easily verified that the ideal M 1s prime [3].

1)* Formerly, Smbat Abian.
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Let us cbserve that since 0 is an element of every ideal of B,
hence, in view of Lemma 1,
P(x) =¢ if and only if x = 0. (5)
Now, we prove that for every two elements 2 and y of B,
P (xy) = P(x) N P (y) (6)

To prove (6), let us observe that since p (xy) 1s an ideal
not containing zy, hence, xép (xy) and yé¢p (vy). Thus,
P (xy) = (P (x) N P(y)). Conversely, since p (x) 1s a prime
ideal not containing z, hence, if yé¢p (x) then zyép (x). Thus,
(P (2) N P(y) = P (a).

From (6) it follows that for every two elements x and y of B,

xy =x umplies P(x) < P (y) (7)

Since p (z-+y) is an ideal not containing x+y, hence xep (r+y)
implies yép (x+y). Therefore, for every two elements x and y
of B,

P(x+y) = (P(x) UP() (8)
Furthere, in view of (4), () and (6),
P(xy) N P(x+y) = ¢
so that, in view of (8), for every two elements 2 and y of B,
Px+y) = (P(x) @ P(y), 9)

where @ 1s the usual set-theoretical symmetric difference operator.
Also, let us observe that since p (z) is an ideal not containing
hence, -if p (z) ¢ P (y) then p (x)e P (x+y). Similarly, if
p (y) ¢ P(x) then p (y)e P (x+y). Thus,

P(x) ®P(y) = P(x+y)
so that in view of (9), for every two elements x and y of B,
Px+y) =P(x) &P(©). (10)
Let us observe that since

PO —P(x) =EFO &P®) n P>y,
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hence, in view of (10), (6) and (1), for every two elements z and y
of B,

P(y) — P(x) = P(y+xy). (11)

Also, in view of (8), for every positive natural number r,

n

2 implies P (x) = U P (c) (12)

i=1
where ¢; is an element of B. Moreover, in view of (1) and (7),
P (ca) = P (a), (13)

where ¢ and a are any two elements of B.
Now, let 2 represent the set of all proper prime ideals of B.
Tueorem 1. — The Boolear. ring B is isomorphic to a subring
of the algebra of all subsets of 2.

Proor. — In view of (b), (6) and (10), the mapping f
from B into the power set of £, given by

J(x) = P (x)

establishes the desired isomorphism.
Next, in view of (6), we introduce a topolooy J in 2 such
that, for every xeB the subset P () of £ is a basis element of I

DeriNiTION 2. — The topological space (P, T) is called the
Stone space of B.

LLEmma 2. — In the space (2, ), every basis element is closed.

Proor. — Let P (x) be a basis element and let p (y) ¢ P (x).
Clearly, p (y) € (P (y) — P (z)) and hence in view of (11),

p(y) e P(y+xy).

Thus, an element p (¥), in the complement # —P (x) of P (x),
is contained in a basis element P (y+xy) which is disjoint
. from P (x). Hence P (x) is closed.

Lemma 3. — The space (2, T) 1s totally disconnected.

Proor. — Let p (x) and p (y) be two distinct elements of 2.
Thus, there exists zeB such that, say, zep () and zép (y). But
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then P (yz) is a basis element containing p (y) and not con-
taining p (z). Consequently, in view of Lemma 2, every two
distinct elements p () and p (y) of # are contained in two
mutually disjoint closed sets of (£, ) whose union is 2.
Thus, (£, 7) is totally disconnected (and in particular, Haus-
dortf).

Leymya 4. — The space (2, T) is locally compact.

Proor. — It is sufficient to prove that every basis element
P (z) of (2, 7) is compact. Now, let A <« B and U P (y)

yed
be a covering of P (z), 1.e.,

P(x) = U P(y (14)

veA

Let (4) denote the ideal generated by the elements of A. Claim
that xe(A4). Assume the contrary that z¢(4). But then, in
view of Lemma 1, there exists a prime ideal p (z) such that
(4) = p (2), and therefore, p (z) ¢ U P (y), contradicting (14).

yeA
Hence, our assumption is false and indeed, x&(A). Conse-

quently, there exists a natural number » such that

n

x = > (m+b) a
i=1

where m; 1s an integer, b;e B and ;e A. But then, in view of (12)
and (13),

P(x) = U P((’77i+bi) ai) < U P(y)
j=1

yeA
asserting that, in view of (14), U P ((m;+0b,) ¢;) is a finite sub-
i=1

cover of an arbitrary cover U P (y) of P (x). Thus, indeed,
yeA

P (x) 1s compact and (2, 77) is locally compact.
Finally, in view of Lemmas 3 and 4, and Theorem 1, we have,

TueorREM 2. — Every Boolean ring is isomorphic to a subring
of the algebra of all subsets of its Stone space which is totally
disconnected and locally compact.
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