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ETUDE DES ESPACES UNIFORMES
A PARTIR DE LA NOTION D’ECART

par Gustave CHOQUET

On sait que toute structure uniforme sur un ensemble £ peut
étre définie par une famille d’écarts sur E. Si 'on met cette
propriété a la base de I’étude des espaces uniformes, on obtient
un exposé trés intuitif, et facilement accessible & qui connait un
peu les espaces métriques.

1. Structure uniforme sur un ensemble. — Rappelons (voir
Boursaxki, Topologie générale, ch. 1I) qu'une structure uniforme
sur un ensemble £ est constituée par la donnée d’un filtre % sur
Iensemble £ X E, qui satisfait aux propriétés suivantes:

U,: Tout ensemble V € % contient la diagonale 4 de £ x E;

U,: Pour tout Ve, si V=1 désigne le symétrique de V, on a
aussi V7't e;

Uy: Pour tout Ve, il existe W e tel que ((z,y) e W et
(y, z) € W) entraine (z, z) € V.

Les éléments de % s’appellent les entourages de la structure
uniforme; toute base du filtre % s’appelle une base d’entourages
de cette structure.

2. Famille filtrante d’écarts sur un ensemble. — Rappelons
qu’un écart d sur un ensemble E est une application de £ X E
dans [0, o] telle que:

E;: d(x,z) = 0 pour tout x € E;
Ey: d(x,y) = d (y, x) pour tous z,y € E;
E;: d(x,2) =d(x,y) + d (y, z) pour tous z, y, z € L.

Pour tout nombre ¢ > 0 on appelle entourage «ouverty
(resp. « fermé ») d’ordre (d, ¢), 'ensemble V, , de E x E défini
par:

Va, e = {(x, )1 d(x,y) <&} (resp.d(x,y) <e)
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Soit alors (d,),; une famille, finie ou infinie, d’écarts sur E,
qui soit filirante en ce sens que si d, d’ appartiennent a la famille,
il existe un d’’ de la famille tel que d =d"" et d" =d".

De la relation:
Var, oo © Va, e Vi, e

lorsque d,d =d" et g ¢ >¢’ résulte que l'ensemble des
entourages V, , constitue une base de filtre sur £ X E; on
vérifie que le filtre associé définit sur £ une structure uniforme
qu’on appelle structure uniforme associée a la famille des écarts d,
(plus généralement, si la famille (d;) donnée n’est pas filtrante,
on lui ajoute les enveloppes supérieures des sous-familles finies,
ce qui fournit une famille filtrante, d’ott une structure uniforme).

On démontre (voir BourBaxi, Topologie générale, ch. X)
qu’inversement toute structure uniforme sur £ est la structure
uniforme associée & une certaine famille filtrante d’écarts sur £
(la plus grande de ces familles étant la famille de tous les écarts
uniformément continus sur E). Nous admettrons ce résultat,
qu'on démontre directement (par une démonstration assez
longue mais élémentaire) & partir des axiomes U, U,, Us; et
nous allons voir maintenant son utilisation dans I’étude des
espaces uniformes.

3. Topologie d’un espace uniforme. — Soit E un espace uni-
forme, défini par une famille filtrante d’écarts (d;);.; sur E.

Pour tout a € E, on appelle boule ouverte de centre a tout
ensemble de la forme

B(a,e,i) = {x:d;(a,x) <e}, ou &>0 et iel

Si I'on appelle ouvert de £ toute réunion de boules overtes,
on vérifie que 'ensemble de ces « ouverts » satisfait aux axiomes
des espaces topologiques; la topologie ainsi définie s’appelle
topologie associée d la famille (d;); il est immédiat qu’elle ne
dépend que de la striicture uniforme de E.

L’inégalité

[ di(x,9) = di(x", ) | > d;(x,x") + d;(y, ")

montre que chacun des écarts d; est continu sur lespace topo-
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logique £ X E. Il en résulte que chacun des entourages « ou-
verts » (resp. « fermés») V,. . est un ouvert (resp. un fermé) de
E X E. Donc tout entourage est un voisinage de la diagonale,
et les entourages fermés constituent une base de la structure
uniforme de E.

4. Espaces séparés. St la topologie de E est séparée, pour tout
(a, b) ¢ 4, 1l existe une boule ouverte B (a, ¢, i) ne contenant
pas b, ce qui entraine d; (a, b) # 0. Inversement, s’il existe un
écart d; tel que d; (a, b) # 0, la fonction continue z — d; (a, )
sépare a, b.

Donc dire que la topologie de E est séparée équivaut a dire
que, pour tout (a, b) ¢ 4, 1l existe un entourage V,. , ne conte-
nant pas (a, b); autrement dit, que l'intersection des V,, . est
identique & 4.

Si la topologie de E n’est pas séparée, introduisons sur E la
relation R ainsi définie:

x~x" si d;j(x,x") =0 pour tout iel.

(’est évidemment une relation d’équivalence; désignons par
E Pensemble quotient E/R, et par ¢ lapplication canonique
x — & de E sur E.

[’inégalité triangulaire montre que st x ~ 2" et ¥y ~ y’, on a
d; (x,y) = d; (z', y') pour tout i; donc on définit une fonction d,
sur £ x E en posant

&G ) = dix, )

on vérifie que cette fonction est un écart sur E.
L’espace uniforme défini sur E par la famille des d; est évi-
demment séparé; on Uappelle espace séparé associé d E.

b. Complétion. — Soit E un espace uniforme défini par une
famille (d;);; d’écarts sur E.

Un filtre & sur E est dit ﬁltre de Cauchy s1 pour tout i e/
et pour tout ¢ > 0, il existe X € & tel que, pour tous z,y € X
on ait d; (z,y) =¢ (ce qui s’exprime encore en disant que le
diameétre de X relativement a d; est = eg).

On dit que E est complet s1 tout filtre de Cauchy sur £ est
convergent.

= TR
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Remarquons que, dire que & est un filtre de Cauchy sur £
équivaut a dire que son image ¢ (& ) dans Iespace séparé £
est un filtre de Cauchy; et dire que & converge vers un point a
de E équivaut a dire que ¢ (&) converge vers ¢ (a).

Donc dans ’étude des espaces complets et de la complétion
des espaces non complets, on peut se borner a considérer des
espaces sépares.

Supposons donc E séparé. Pour tout i e/, soit £; le quo-
tient de E par la relation d’équivalence: z ~ y si d; (z,y) = 0;
soit ¢; I'application canonique de £ sur E;, et soit d; 'écart sur
E; associé a d;.

Admettons maintenant connu ce quest le complété d’un
espace métrique; d; est une distance sur E; (a valeuas éventuelle-
ment 4+ oo, ce qui n’est pas génant); désignons par E; le complété
de E.. N

Soit /' le produit des ensembles £;, muni de la famille des
écarts 6; définis par J; (z, y) = d; (z;, Yy;); et soit ¢ 'application,
de composantes ¢;, de E dans F.

Comme F est séparé, ¢ est une injection, et c’est une iso-
morphie de E sur /g\o(E) en ce sens que, pour tout z, on a

d; = 0; . @. Or les E; étant complets, leur produit /' Iest aussi,

donc aussi le fermé ¢ (E) de F. On a donc bien plongé E (iden-

tifié & ¢ (E)) dans I'espace uniforme séparé complet ¢ (E).
L’unité d’une telle complétion, & une isomorphie prés, se
démontre ensuite de la facon habituelle.

6. Structure uniforme dun espace compact. — Soit E un
espace compact, et soit ¥ (£) 'espace des applications continues
de £ dans R. Nous admettrons ici que & (E) sépare les points
de FE.

Soit alors (f;) une famille d’éléments de 4 (E) qui sépare les
points de £; et posons d; (z,y) = | f; (x) — f; (y

Chaque dl est un écart sur F, donc la famllle (d;) définit
sur £ une structure uniforme %; et celle-ci est séparée puisque
la famille f; sépare les points de F.

Comme chaque d; est évidemment une fonetion continue sur
L X E, la topologie associée & % est moins fine que la topologie
de E; et comme elle est séparée, elle lui est 1dentique.
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Donc il existe bien sur £ au moins une structure uniforme
compatible avec la topologie de F.

L’unicité d’une telle structure se démontre de fagon classique
en remarquant que l’ensemble de ses entourages ferrhés est
nécessairement identique a 'ensemble des voisinages fermés de
4 dans £ X E.

Lorsque la topologie de £ a une base dénombrable d’ouverts,
on peut prendre la famille (f;) dénombrable; la structure uniforme
définie par les d; est alors métrisable.

7. Semi-normes sur un espace vectoriel. — Soit E un espace
vectoriel sur R ou C; rappelons qu’on appelle semi-norme sur E
toute application p de £ dans [0, 4+ oo] telle que, pour tous
x,y € E, et tout scalaire A, on ait:

) p(ix) = [A]p(x)
2) p(x+y)<p(x)+p(y).

A une semi-norme p sur F on associe I’écart d sur £ défini
par d(z,y) = p (z —y).

A toute famille (p;) de semi-normes sur £ est ainsi associée
une famille d’écarts (d;), d’ou une structure uniforme sur %,
d’ou ausst une topologie sur £.

On démontre que la classe des espaces vectoriels topologiques
ainsi obtenus est identique & la classe des espaces vectoriels
localement convexes.

L’utilisation des semi-normes permet de définir et d’étudier,
sans une technique compliquée, des espaces vectoriels topolo-
giques intéressants, par exemple la topologie de la convergence
uniforme sur tout compact, ou les topologies faibles (définies par
des semi-normes |; |, ot [; est une forme linéaire).

L.e 14 mars 1964.

G. Choquet

Institut Henri Poincaré
11, rue Pierre Curie
Paris Ve
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