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Re01proquement si nous avons choisi une paire de fonctions
{f,g} satisfaisant (15) avec k > 0, posons pu(z,y) = — (1/k)
]‘xx/f alors 1 — pu = — (1/k) g /g les équations d’Euler rela-

tives & p sont alors satisfaites par f et g. Pour f et g (=0 sur I)
quelconques, nous vérifions
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donc A; = k; on a I’égalité en choisissant ]/‘\— g = u, (z,y), dou

Jex 9
(17) /11 = Max f-g>0 dans Gsatlsfalsant <_ A ”%y .

(15) et (13) avec x(s)=

C’est une spécialisation du principe de Maximum plus géné-
ral [7]:
(18) j*1 = Max f>g>0dans G infG <_ fxx - @> 5

fxx €t yy existent f g

mais les paires de fonctions plus particulieres {f, g} sont «les
meilleures ».

§ 5. La transformation de Friedrichs conduit & une autre forme
du méme principe

Considérons de nouveau le principe de Rayleigh sous la
forme (14); remarquons que la fonction propre u, (z,y) n’est
déterminée qu’a un facteur constant pres, il en est donc de méme
de grad uy; tandis que le champ vectoriel grad u,/u; est unique-
ment déterminé. C’est pourquoi, opérant presque comme Frie-
drichs (cf. 1.2), nous remplagons — grad ¢/¢ par 5, ¢’est-a-dire
— grad ¢ par ¢q dans (14). 4, = max £ sous la condition

v J[[vz g2 —kv* —2vp - (grad v +vq)] dA = 0,
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quel que soit le champ p (« multlphcateur de Lagrange»); en
effet, si I'on restreint la paire { ¢, q} par ¢ = — grad ¢/¢, on
retrouve la condition (14).

Gardons ; fixe et cherchons a minimaliser I'intégrale en
variant ¢ et ¢; nous obtenons les d(iux équations d’Euler sui-
vantes pour un champ «extrémal » ¢:

A A
2——)- 2-9 y —> -—>.
0=0v"q—v"p, dou g=p;
A
_).2

0=vq —kv—2p-qu—p -gradv+ div(wp) =0 -(divg —q —k) ;

donc
(15") divg —q =k ;
¢ quelconque, = 0 sur I A

Sl nous avons construit un tel champ vectoriel q dans G,
¢ et ¢ satisferont les équations d’Euler correspondant au choix
Z — ¢. L’intégrale devient alors, pour ¢ et gquelconques,

y -2 - ﬁ) :;

(16" [fl(a" —2q -q —k)v* —q - grad (v*)]dA

G
— ([[(d—q)+divg —q —k]o?dA =0,
G

A

donc A; = k; on a I’égalité en choisissant 5 = — grad u,/u,,
d’ou

/ ~ 9 . 5 —/;2
A7) ho= Maxg Gt T cons (diva =g 7).

(Vest une spécialisation du principe de Maximum (cf. [12, 1,
14, 15, 10, 7, 9, 4]):
(18") A, = Max7 infg (divg —q°) ;
nous voyons en effet que I'inégalité (16') reste satisfaite pourvu

que dlvq —g * k=0 dans tout G.

Remarques. — (a) Le principe (18") est essentiellement équi-
valent & (18): considérer le champ Z; = (— 1/, —&/8)- N

(b) 111’y a pas lieu d’exiger la contlnulte des champs ¢ ou q
il suffit que ¢, soit continue en z, ¢, continue en y, et que les
dérivées partlelles 71, €Y 05, existent; la mémeremarque s’applique

aux champs p concurrents pour le principe de Thomson.
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