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Réciproquement, si nous avons choisi une paire de fonctions

{f,g}satisfaisant (15) avec k>0, posons (1/&)

(/„//); alors 1 — y— (1 jk) (gjleséquations d'Euler rela-
A A

tives à y sont alors satisfaites par / et g. Pour et 0 sur T)

quelconques, nous vérifions

F (x,y,f,g,fx, gy) dA fl+al+'-^p + ^g2
f 9

A a

dA

dA g; 0,

A A

donc Xx ^ k; on a l'égalité en choisissant d'où
A A

i _ A/r —
^xx

—
®yy

(17) m JVIa.Xj y; g > 0 dans G satisfaisant I a a
|(15) et (13) avec *O)=0 Ç J g

C'est une spécialisation du principe de Maximum plus général

[7]:

(18) 1, Max ,„>oamcinfo (- '-f - ;
t fxx et gyy existent \ J 9 /

mais les paires de fonctions plus particulières {/, g} sont «les

meilleures ».

§ 5. La transformation de Friedrichs conduit à une autre forme
du même principe

Considérons de nouveau le principe de Rayleigh sous la
forme (14); remarquons que la fonction propre ux (x, y) n'est
déterminée qu'à un facteur constant près, il en est donc de même
de grad w3 ; tandis que le champ vectoriel grad k3/% est uniquement

déterminé. C'est pourquoi, opérant presque comme
Friedrichs (cf. 1.2), nous remplaçons — grad vjv par g, c'est-à-dire
— grad e par vq dans (14). ^ max k sous la condition

[v2 q2 —kv2 —2vp - (gradv +tij)] dA ^ 0
V, q

v Q sur r G
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quel que soit le champ p (« multiplicateur de Lagrange ») ; en
effet, si l7on restreint la paire { c, q} par q — grad e/e, on
retrouve la condition (14).

Gardons p fixe et cherchons à minimaliser l'intégrale en
variant v et q\ nous obtenons les deux équations d'Euler sui-

A

vantes pour un champ « extrémal » q:
A A

0 v2 q — v2 p d'où q p ;

4-2 -*• 4 -> 4-42
0 vq — kv — 2p-qv—p- grad v + div (v~p) v • (div q —q — k) ;

donc

(15') div q — q2 k ;

e quelconque, 0 sur T. 4
Si nous avons construit un tel champ vectoriel q dans G,

v et q satisferont les équations d'Euler correspondant au choix

p q. L'intégrale devient alors, pour ç et q quelconques,

(16') JJ[(?2 —2q - q — k)v2 — q • grad (v2)~\dA
G

JJ[(g — qf + div q — q2 —k ~\v2 dA 4 0
G

A

donc on a l'égalité en choisissant q —grad
d'où

(IV) A1 MaXf
; div f-f const (div q-q2)-

C'est une spécialisation du principe de Maximum (cf. [12, 1,

14, 15, 10, 7, 9, 4]):

(18') 2]; Max-J infG(div g— if2) ;

nous voyons en effet que l'inégalité (16') reste satisfaite pourvu
4- 4-2

que div q — q — k ^ 0 dans tout G.

Remarques. — (a) Le principe (18') est essentiellement
équivalent à (18): considérer le champ q (—fjf, —gy/g). A

(b) Il n'y a pas lieu d'exiger la continuité des champs q ou q :

il suffit que q± soit continue en x, q2 continue en y, et que les

dérivées partielles qx et q2 existent ; la même remarque s'applique
—>

x ^
aux champs p concurrents pour le principe de Thomson.
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