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§ 4. Application d’un raisonnement analogue aux problémes
aux valeurs propres

Comme exemple-type, je considére le probléeme de la vibra-
tion fondamentale d’une membrane couvrant un domaine G
du plan et fixée sur le contour I': on cherche u, (x,y) et un
nombre A, tels que du, + A, u;, = 0 et u; > 0 dans G, et u;, = 0
sur I'. Le principe de Rayleigh dit:

2, = Mi { D) }
1 = 1nv:O sur I 2 :
v°dA
jj(;

On peut aussi I’énoncer ainsi:

(14) 1, = max k sous la condition: vy D(v)—k jjv d4 = 0.

v=0sur '

Nous posons ici

F(,p. 02000 9) =f2+a2—k[f2+(1—pwg2]

ou u(z,y) est une fonction arbitraire dans G; la condition (6)
est alors satisfaite. Nous avons maintenant, quelle que solt

p(z,y), A, = max k sous la condition{f ; samgqam 13 ” FdA >0.

avec x(s)=
En effet, si 'on restreint f et g par f =g, aloxs on retrouve
pour k la condition (14); ici la classe des k£ admissibles a été
restreinte, donc max k& est devenu plus petit.
Maintenons ﬁXAesAle nombre k et la fonction u (z, y), et cher-
chons les paires {f, g} qui rendent stationnaire I'intégrale: nous
avons les deux équations d’Euler

0= —3[Fl, =fuxtkuf; 0= —%[F],=9,+k(1—-wg.

Supposons (c’est essentiel ici!) ]‘A> 0 et gA> 0 dans G. Eli-
minons u: les fonctions f et g satisfont

(15) — fix — @ = k = const.
S g




(16)
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Re01proquement si nous avons choisi une paire de fonctions
{f,g} satisfaisant (15) avec k > 0, posons pu(z,y) = — (1/k)
]‘xx/f alors 1 — pu = — (1/k) g /g les équations d’Euler rela-

tives & p sont alors satisfaites par f et g. Pour f et g (=0 sur I)
quelconques, nous vérifions

- (‘(‘ [ fox g/\
HF (X, s fr Gsfrxrgy) dA = fi4gr+ =2+ —i’ygzl 1A
vy | f g

J
G

donc A; = k; on a I’égalité en choisissant ]/‘\— g = u, (z,y), dou

Jex 9
(17) /11 = Max f-g>0 dans Gsatlsfalsant <_ A ”%y .

(15) et (13) avec x(s)=

C’est une spécialisation du principe de Maximum plus géné-
ral [7]:
(18) j*1 = Max f>g>0dans G infG <_ fxx - @> 5

fxx €t yy existent f g

mais les paires de fonctions plus particulieres {f, g} sont «les
meilleures ».

§ 5. La transformation de Friedrichs conduit & une autre forme
du méme principe

Considérons de nouveau le principe de Rayleigh sous la
forme (14); remarquons que la fonction propre u, (z,y) n’est
déterminée qu’a un facteur constant pres, il en est donc de méme
de grad uy; tandis que le champ vectoriel grad u,/u; est unique-
ment déterminé. C’est pourquoi, opérant presque comme Frie-
drichs (cf. 1.2), nous remplagons — grad ¢/¢ par 5, ¢’est-a-dire
— grad ¢ par ¢q dans (14). 4, = max £ sous la condition

v J[[vz g2 —kv* —2vp - (grad v +vq)] dA = 0,

v, q o/
v=0surI” G

Py ' s ; ~ 2
= <fx—-]-i’5f>2+(9y—-€§g> ]dA :
JIoL S g .
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