Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

**Band:** 11 (1965)

**Heft:** 2-3: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UNE TRANSFORMATION VARIATIONNELLE APPARENTÉE A

CELLE DE FRIEDRICHS, CONDUISANT A LA MÉTHODE DES

PROBLÈMES AUXILIAIRES UNIDIMENSIONNELS

Autor: Hersch, Joseph

**Kapitel:** § 2. La transformation variationnelle proposée

**DOI:** https://doi.org/10.5169/seals-39972

#### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 30.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

$$\Psi(\vec{x}, \vec{p}, \operatorname{div} \vec{p}) = \vec{q} \cdot \vec{p} + v \operatorname{div} \vec{p} - F = \frac{1}{2} \vec{p}^2;$$

d'où le principe dual:

(5) 
$$d = \operatorname{Max}_{\operatorname{div} \overrightarrow{p} = -\rho} \left\{ \oint_{\Gamma} \chi(s) \overrightarrow{p} \cdot \overrightarrow{n} \, ds - \frac{1}{2} \iint_{G} \overrightarrow{p}^{2} \, dA \right\},$$

qui n'est autre que le principe de Thomson (cf. [13]); le champ extrémal est  $\vec{p} = \text{grad } u$ . Les champs vectoriels  $\vec{p}$  concurrents satisfont l'équation différentielle, mais aucune condition aux limites.

Nous considérerons au § 2 une transformation variationnelle analogue (mais non involutive), reposant non plus sur une dissociation de v et grad v, mais bien sur une dissociation de la fonction  $\varphi$  elle-même en deux fonctions f et g (le domaine Gétant à deux dimensions). Au § 3, nous appliquerons cette transformation au problème considéré en 1.3 ci-dessus: elle fait correspondre au principe de Dirichlet un principe très voisin de celui de Thomson, mais restreignant les champs concurrents par des conditions aux limites; ce principe a été obtenu par la « méthode des problèmes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous montrerons comment cette méthode s'applique également aux problèmes aux valeurs propres, et conduit, à partir du principe de Rayleigh, à un principe de Maximum pour  $\lambda_1$  (la première valeur propre) déjà obtenu à l'aide de problèmes auxiliaires unidimensionnels [6, 7], inspirés par Payne-Weinberger [11]. Enfin, nous montrerons au § 5 qu'une forme essentiellement équivalente de ce principe de Maximum (mais plus proche du principe de Thomson), se rattachant à divers travaux dont quelques-uns déjà anciens [12, 1, 14, 15, 10, 7, 9, 4], peut être également obtenue en appliquant une transformation de Friedrichs à peine modifiée.

# § 2. La transformation variationnelle proposée

2.1. Nous partons de nouveau du problème (I) considéré en 1.2:

$$(I) \begin{cases} d = \mathrm{Min}_v J \left[v\right] \text{ sous la condition } v = \chi(s) \text{ sur } \Gamma \ , \\ \mathrm{où} \ J \left[v\right] = \iint_G F\left(x,y,v,v_x,v_y\right) dA \ . \ Nous \ supposons \ F_{v_xv_y} = 0. \\ \end{cases}$$

Dans cette expression, nous remplaçons  $v_x$  par  $f_x$ ,  $v_y$  par  $g_y$ , et arbitrairement v(x,y) tantôt par f(x,y), tantôt par g(x,y); nous obtenors une fonction  $\tilde{F}(x,y,f,g,f_x,g_y)$  telle que

(6) 
$$\widetilde{F}(x, y, v, v, v_x, v_y) \equiv F(x, y, v, v_x, v_y);$$

f(x, y) est supposée continue en x, ainsi que sa dérivée partielle  $f_x$ ; g(x, y) continue en y, ainsi que  $g_y$ ; on suppose l'existence de  $f_{xx}$  et  $g_{yy}$ .

Remarque, importante pour les applications: On n'exigera pas que les fonctions f et g soient continues!

Posons

$$\widetilde{J}[f,g] = \iint_{G} \widetilde{F}(x,y,f,g,f_{x},g_{y}) dA;$$

 $\tilde{J}[\varrho, \varrho] = J[\varrho]$ , nous avons donc:

$$d = \operatorname{Min}_{f, g} \widetilde{J}[f, g]$$

sous les conditions  $f \equiv g$  dans G et  $f = g = \chi$  (s) sur  $\Gamma$ .

2.2. Introduisons un « multiplicateur de Lagrange »  $\lambda$  (x, y); je définis

(7) 
$$d\left[\lambda\right] = \operatorname{Min}_{\left\{f, g \atop f = g = \chi(s) \text{ sur } \Gamma\right\}} \widetilde{J}\left[f, g; \lambda\right],$$
où  $\widetilde{J}\left[f, g; \lambda\right] = \widetilde{J}\left[f, g\right] + \iint_{G} \lambda \cdot (f - g) dA$ 

 $(\operatorname{donc} \widetilde{J}[f,g;0] = \widetilde{J}[f,g])$ , et je fais les deux *hypothèses* suivantes:

- (a) Ce Minimum variationnel existe pour toutes les fonctions  $\lambda(x, y)$  de la classe considérée;
- (b) La paire de fonctions  $\{f,g\}$  (dépendant de  $\lambda$ ) qui réalise ce Minimum, est univoquement déterminée par les conditions d'Euler

(8) 
$$\begin{cases} 0 = [\tilde{F} + \lambda(f - g)]_f = [\tilde{F}]_f + \lambda(x, y) = \tilde{F}_f - \frac{d}{dx}\tilde{F}_{f_x} + \lambda \\ 0 = [\tilde{F} + \lambda(f - g)]_g = [\tilde{F}]_g - \lambda(x, y) = \tilde{F}_g - \frac{d}{dy}\tilde{F}_{g_y} - \lambda \end{cases}$$

et la condition imposée  $f = g = \chi(s)$  sur  $\Gamma$ .

Quelle que soit  $\lambda(x, y)$  (dans la classe considérée), on a

$$(9) d[\lambda] \le d,$$

car

$$d = \operatorname{Min}_{\substack{f, g \\ f = g = \chi(s) \text{ sur } \Gamma}} \widetilde{J}[f, g; \lambda]$$

sous la condition supplémentaire  $f \equiv g$ .

2.3. La solution u(x, y) du problème de variation initial (I) satisfait l'équation d'Euler correspondante

$$0 = [F]_{u} = F_{u} - \frac{d}{dx} F_{u_{x}} - \frac{d}{dy} F_{u_{y}};$$

la paire de fonctions  $\{f, g\} = \{u, u\}$  satisfait donc

$$0 = [\widetilde{F}]_f + [\widetilde{F}]_g ;$$

si donc, dans le problème de variation (7) définissant  $d[\lambda]$ , nous posons

$$\lambda(x,y) = -\left[\widetilde{F}\right]_f\Big|_{f\equiv u},$$

alors la paire de fonctions  $\{u, u\}$  satisfait les deux équations d'Euler (8); par l'unicité que nous avons postulée, elle réalise donc le Minimum

$$d\left[\lambda = -\left[\tilde{F}\right]_f\Big|_{f\equiv u}\right];$$

celui-ci vaut donc J[u] = d. Sous les hypothèses (a) et (b) ci-dessus, nous avons donc par (9):

(10) 
$$d = \operatorname{Max}_{\lambda(x, y)} d \left[ \lambda(x, y) \right].$$

Le raisonnement qui précède est calqué sur celui de Friedrichs, cf. [5] et [2].

2.4. Au lieu de choisir le « multiplicateur de Lagrange »  $\lambda(x, y)$ , on peut également choisir une paire de fonctions  $\{f(x, y), g(x, y)\}$  satisfaisant la condition

(11) 
$$[\tilde{F}]_f + [\tilde{F}]_g \equiv \tilde{F}_f + \tilde{F}_g - \frac{d}{dx} \tilde{F}_{fx} - \frac{d}{dv} \tilde{F}_{gy} = 0 ;$$

on doit alors prendre  $\lambda (x, y) = - [\tilde{F}]_f = + [\tilde{F}]_g$ .

Pour toute paire  $\{f(x,y), g(x,y)\}$  satisfaisant (11), on a  $d\left[-\left[\tilde{F}\right]_f\right] = \tilde{J}\left[f,g; -\left[\tilde{F}\right]_f\right] = \tilde{J}\left[f,g\right] - \iint_G (\left[\tilde{F}\right]_f f + \left[\tilde{F}\right]_g g) dA,$  d'où par (10):

(12) 
$$d = \operatorname{Max}_{f,g} \{ \widetilde{J}[f,g] - \iint_{G} ([\widetilde{F}]_{f} f + [\widetilde{F}]_{g} g) dA \}$$
 sous les conditions (11) et

(13) 
$$\begin{cases} f(x,y) & \text{continue } en \ x \text{, ainsi que } f_x \text{; } f_{xx} \text{ existe;} \\ g(x,y) & \text{continue } en \ y \text{, ainsi que } g_y \text{; } g_{yy} \text{ existe;} \\ f=g=\chi(s) & \text{sur } \Gamma. \end{cases}$$

2.5. Remarque. — Il nous reste une liberté: la manière (arbitraire) dont nous remplaçons v par f ou par g dans F, sous la condition (6). Même si v n'apparaît pas explicitement dans F, nous sommes libres d'ajouter, dans  $\tilde{F}$ , des expressions s'annulant lorsque  $f \equiv g$ . En particulier, si nous remplaçons  $\tilde{F}$  par  $\tilde{F} + v \cdot (f - g)$  avec v(x, y) arbitraire,  $\tilde{J}[f, g]$  devient  $\tilde{J}[f, g] + \int_G v \cdot (f - g) \, dA = \tilde{J}[f, g; v]$ . Cela nous montre que, si nous réservons notre liberté dans la construction de  $\tilde{F}$ , le choix  $\lambda(x, y) \equiv 0$  ne signifie pas une restriction. La condition (11) devient alors

(11\*) 
$$[\widetilde{F}]_f = [\widetilde{F}]_g = 0;$$

donc

(12\*) 
$$d = \operatorname{Max}_{\{ \text{construction de } \widetilde{F} \text{ satisfaisant (6)} \atop \{ \text{choix de } f \text{ et } g \text{ satisfaisant (11*) et (13)} } \widetilde{J} [f, g] .$$

## § 3. Application aux problèmes aux limites

Reprenons le problème considéré en 1.3. Le principe variationnel (I) est celui de Dirichlet (4):  $F(x, y, v, v_x, v_y) = \frac{1}{2}(v_x^2 + v_y^2) - \rho v$ ; je pose *(par exemple!)*  $\tilde{F}(x, y, f, g, f_x, g_y) = \frac{1}{2}(f_x^2 + g_y^2) - \rho f$ ; la condition (6) est satisfaite; la condition (11) est ici:

(11') 
$$f_{xx} + g_{yy} = -\rho(x, y) .$$