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qui n’est autre que le principe de Thomson (cf. [13]); le champ
extrémal est p = grad u. Les champs vectoriels p concurrents sa-
tisfont’équation différentielle, mais aucune condition aux limites.

1.4. Nous considérerons au § 2 une transformation varia-
tionnelle analogue (mais non involutive), reposant non plus sur
une dissociation de ¢ et grad ¢, mais bien sur une dissociation
de la fonction ¢ elle-méme en deux fonctions f et g (le domaine G
étant & deux dimensions). Au § 3, nous appliquerons cette trans-
formation au probléme considéré en 1.3 ci-dessus: elle fait corres-
pondre au principe de Dirichlet un principe tres voisin de celul
de Thomson, mais restreignant les champs concurrents par des
conditions aux limites; ce principe a été obtenu par la « méthode
des problemes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous
montrerons comment cette méthode s’applique également aux
problémes aux valeurs propres, et conduit, & partir du principe
de Rayleigh, a un principe de Maximum pour 4, (la premiére
valeur propre) déja obtenu & ’aide de problémes auxiliaires uni-
dimensionnels [6, 7], inspirés par Pavy~NeE-WEINBERGER [11].
Enfin, nous montrerons au §5 qu'une forme essentiellement
équivalente de ce principe de Maximum (mais plus proche du
principe de Thomson), se rattachant a divers travaux dont
quelques-uns déja anciens [12, 1, 14, 15, 10, 7, 9, 4], peut étre
également obtenue en appliquant une transformation de Frie-
drichs & peine modifiée.

§ 2. La transformation variationnelle proposée

2.1. Nous partons de nouveau du probléme (I) considéré
en 1.2: ‘

d = Min,J [v] sous la conditionv = y(s) sur I' ,

I
(D l ouJ[v] = [[F(x,y,v,v,,v)dA. Nous supposons Fyw, =0
2 :
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Dans cette expression, nous remplagons ¢ par f, ¢, par g,
et arbitrairement ¢ (z, y) tantot par f (z, y), tantot par g (z,y);

nous obtenons une fonction F (, 9,1, 8 I, g,) telle que

(6) F(X,,V,U v, x> )—F(X y9va X9 y)

f (z, y) est supposée continue en x, ainsi que sa dérivée partielle f_;
g (x, y) continue en y, ainsi que g ; on suppose 'existence de f
et 8oy

Remarque, importante pour les applications: On n’exigera
pas que les fonctions f et g soient continues !

Posons

JLf9] = I F(x,p.1,9.f:9,)dA;
G
j[(), v] = J[v], nous avons donc:

sous les conditions f = g dans G et f = g = y (s) sur I.

2.2. Introduisons un « multiplicateur de Lagrange » 1 (z, y);
je définis
(7) d[4] = Min_, , J[f,9: 4],
S=g=x(s)sur I

ou J [£.g; 1] =5[f,g]+fii'(f—g)dz4

(donc 7 [f, ;0] = 7 [f, g]), et je fais les deux hypothéses sui-
vantes:

(a) Ce Minimum variationnel existe pour toutes les fone-
tions A (x,y) de la classe considérée;

(b) La paire de fonctions { f, g } (dépendant de 1) qui réalise
ce Minimum, est univoquement déterminée par les conditions
d’Euler

~ ~ ~ d =
0=[F+A(f—9)], =[F],+A(x,y) =F,— d—;fo—Fl
(8) '

~ ~ ~ d ~
0=[F+i(f—-9)], =[F],-A(x,y) = F, — d—ng-/l
| y
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et la condition imposée f = g = y (s) sur I.
Quelle que soit 1 (z, y) (dans la classe considérée), on a

9) d[7] =d,

car | N
d =Min_, , JUf,g;2]

f=g9=x(s)sur I
sous la condition supplémentaire { = g.

2.3. La solution u (x, y) du probléme de variation initial (I)
satisfait 'équation d’Euler correspondante

0=[F],=F dp _4p .
- u — *u dx Uy dy Uy >

la paire de fonctions {/, g} = { u, u } satisfait donc

0 = [F], +[F], ;

si donc, dans le probléme de variation (7) définissant d [1], nous
posons '

}‘V(xay‘) = _[‘I;:If‘fzu ?

alors la paire de fonctions { u, u } satisfait les deux équations
d’Euler (8); par l'unicité que nous avons postulée, elle réalise
donc le Minimum

d[i = —[F1],..]:

celui-ci vaut donc J[u] = d. Sous les hypothéses (a) et (b)
ci-dessus, nous avons donc par (9):

(10) d = Max, . ,, d[A(x, )] .

Le raisonnement qui précede est calqué sur celui de Friedrichs,
cf. [5] et [2].

2.4, Au lieu de choisir le « multiplicateur de Lagrange »
A(z,y), on peut également choisir une paire de fonctions
{/(z,v), g (x,y) } satisfaisant la condition

1 Fl,+F), = F, +F,~ L F, — L5

~

on doit alors prendre A (x,y) = —[F], = + [Z?']g.
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Pour toute paire {f(x,9), g(x,y)} satisfaisant (11), on a

d[=[F1 1= 71105 =[F1;]1 = T 1101 =[] ((F1,/ +TF], 9)dA.
d’ou par (10):
(12 d=Max; , {J[[.6]=[[((F1,/+[F],9)dA}
sous les conditions (11) et
f(x,y) continue en x, ainsi que f,; f., existe;
(13) g (x,y) continue en y, ainsi que g, ; g,, existe;
Ifzgzx(s) sur I.

2.5. Remarque. — Il nous reste une liberté: la maniére
(arbitraire) dont nous remplacons ¢ par f ou par g dans £, sous
la condition (6). Méme si ¢ n’apparait pas explicitement dans £,

nous sommes libres d’ajouter, dans ﬁ’, des expressions §’annu-
lant lorsque f = g. En particulier, si nous remplacons F par
Fiv. (f—g) avec v (z,y) arbitraire, f[f, g] devient f[f, z]
+ j_(f;v (f—g)dA = j[]‘, g; v]. Cela nous montre que, si nous

~

réservons notre liberté dans la construction de F, le choix
A (z,y) = 0 ne signifie pas une restriction. La condition (11)
devient alors

(11%) [F1; = [F], = 0;
done

(12*) d = MaX{construction de F satisfaisant (6) J [f? g] .

choix de f et g satisfaisant (11*) et (13)

§ 3. Application aux problémes aux limites

Reprenons le probléme considéré en 1.3. Le principe variation-
nel (I) est celui de Dirichlet (4): F (x, v, ¢, 0x, 0,) = % (V24 03) — pv;

je pose (par exemple !) F (2,9, [, 8 [+ ) = 3 (fr + &) — pf;
la condition (6) est satisfaite; la condition (11) est ici:

(11,) fxx+gyy = _p(xay) g
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