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f (3c,p, div p) q -p+vdi-p2 ;

d'où le principe dual:

(5) d Maxdiv-=_p OxO)?'» ds- - p2d^i
r G

qui n'est autre que le principe de Thomson (cf. [13]); le champ
extrémal est p grad u. Les champs vectoriels p concurrents sa-

tisfontl'équation différentielle, mais aucune condition aux limites.

1.4. Nous considérerons au § 2 une transformation varia-
tionnelle analogue (mais non involutive), reposant non plus sur
une dissociation de v et grad e, mais bien sur une dissociation
de la fonction v elle-même en deux fonctions / et g (le domaine G

étant à deux dimensions). Au § 3, nous appliquerons cette
transformation au problème considéré en 1.3 ci-dessus: elle fait
correspondre au principe de Dirichlet un principe très voisin de celui
de Thomson, mais restreignant les champs concurrents par des

conditions aux limites; ce principe a été obtenu par la « méthode
des problèmes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous
montrerons comment cette méthode s'applique également aux
problèmes aux valeurs propres, et conduit, à partir du principe
de Rayleigh, à un principe de Maximum pour (la première
valeur propre) déjà obtenu à l'aide de problèmes auxiliaires
unidimensionnels [6, 7], inspirés par Payne-Weinberger [11].
Enfin, nous montrerons au § 5 qu'une forme essentiellement
équivalente de ce principe de Maximum (mais plus proche du
principe de Thomson), se rattachant à divers travaux dont
quelques-uns déjà anciens [12, 1, 14, 15, 10, 7, 9, 4], peut être
également obtenue en appliquant une transformation de
Friedrichs à peine modifiée.

2.1. Nous partons de nouveau du problème (I) considéré
en 1.2 :

§ 2. La transformation variationnelle proposée
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Dans cette expression, nous remplaçons ç>x par /x, v par gy,
et arbitrairement v (#, y) tantôt par / (x, y), tantôt par g (x, y);

nous obtenons une fonction F (x, y, /, g", fx, gy) telle que

(6) F(x,y,v,v,vx,vy) F (x,y, v, vx9 vy) ;

/ (x, y) est supposée continue en x, ainsi que sa dérivée partielle fx;
g (x, j/) continue ea ?/, ainsi que gy; on suppose l'existence de

et g

Remarque, importante pour les applications: On n'exigera
pas que les fonctions / et g soient continues

Posons

U/,0] lf F(x> yJ, g, fx
G

J [e, c] /[e], nous avons donc:

ù Min/j9 J\_f,g~\

sous les conditions / g dans G et / g x (s) sur F.

2.2. Introduisons un « multiplicateur de Lagrange » A (x, p);
je définis

(7) d[A]Min,/> 9 J[/, A]
t f=9=X(s) sur r

où J [f,g; X]J[f,g\+|j
G

(donc J [/, g; 0] J [/, g]), et je fais les deux hypothèses
suivantes :

(a) Ce Minimum variationnel existe pour toutes les fonctions

A (x, y) de la classe considérée;

(b) La paire de fonctions {/, g} (dépendant de A) qui réalise

ce Minimum, est univoquement déterminée par les conditions
d'Euler

0 [F + X(f-g)-]f [Fy + X=Ff-
w j „ w

0 [F + 2 (f-g)lm, A (x, y) Fgy - X
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et la condition imposée / g% (s)surT.

Quelle que soit A (x,y) (dans la classe considérée), on a

(9) d[À] ^
car

dMim^ g

\f 9=x(s) sur r

sous la condition supplémentaire f g.

2.3. La solution u (x, y) du problème de variation initial (I)
satisfait l'équation d'Euler correspondante

d d
0 [FL =FU Fu Fu ;L J" " dx Ux dy "*

la paire de fonctions {/, g } { w, u} satisfait donc

0=[F]/ + [f]f,;
si donc, dans le problème de variation (7) définissant d [2], nous

posons

A(x,y)~[F]f\/Su
alors la paire de fonctions {u,satisfaitles deux équations
d'Euler (8); par l'unicité que nous avons postulée, elle réalise
donc le Minimum

celui-ci vaut donc J[u] d. Sous les hypothèses (a) et (b)
ci-dessus, nous avons donc par (9):

(10) d MaxA(x>y) d[X(x, y)~]

Le raisonnement qui précède est calqué sur celui de Friedrichs,
cf. [5] et [2].

2.4. Au lieu de choisir le « multiplicateur de Lagrange »

X (x, y), on peut également choisir une paire de fonctions
{ / (x, y), g (#, y) } satisfaisant la condition

<"> ÙHh'i,-fa- o:

on doit alors prendre X (x, y) — [F]f + [F]g.
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Pour toute paire { f(x,y),gy) } satisfaisant (11), on a

dv-\hr\~JU>9-> hf,9-]-\\,
G

d'où par (10):

(12) d Max/; a { J[f,gf]- JJ ([F]//+[F~]g g) dA }
G

sous les conditions (11) et

f(x,y) continue en x ainsi que fx ; fxx existe;

(13) g(x,y) continue en y, ainsi que gy ; gyy existe;

/ g X(s) sur r.
2.5. Remarque. — Il nous reste une liberté: la manière

(arbitraire) dont nous remplaçons ç par / ou par g dans F, sous
la condition (6). Même si c n'apparaît pas explicitement dans F,

nous sommes libres d'ajouter, dans F, des expressions s'annulant

lorsque / s- g. En particulier, si nous remplaçons F par

F + v • (/ — ë) avec v (#7 y) arbitraire, J [/, g] devient J [/, g]

+ JJ v (/— g) dA /[/, g; v]. Cela nous montre que, si nous
g

réservons notre liberté dans la construction de F, le choix
X (#, y) 0 ne signifie pas une restriction. La condition (11)
devient alors

(H*) [F]/=[F], 0;

donc

(12 d MÙX
ç construction de F satisfaisant (6) J \_fi g~\ •

t choix de / et g satisfaisant (11*) et (13)

§ 3. Application aux problèmes aux limites

Reprenons le problème considéré en 1.3. Le principe variation-
nel (I) est celui de Dirichlet (4) : F (#, y, c, vx, çy) \ (e* + vy) — pv\

je pose (parexemple !)F(x,y,/, g, fx, (fl + g]) - pf-
la condition (6) est satisfaite; la condition (11) est ici:

(11') fxx+dyy ~P(x,y)
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