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UNE TRANSFORMATION VARIATIONNELLE
APPARENTÉE A CELLE DE FRIEDRICHS,

CONDUISANT A LA MÉTHODE DES PROBLÈMES
AUXILIAIRES UNIDIMENSIONNELS

par Joseph Hersch

§ 1. Introduction

1.1. K. 0. Friedrichs ([5]; voir aussi [2], pp. 201-9) a

découvert en 1929 une transformation variationnelle involutive,
faisant passer d'un principe de Minimum caractérisant une
grandeur d à un principe de Maximum « dual », caractérisant
la même grandeur d. — L'intérêt numérique de cette double
caractérisation est évident: si (comme c'est généralement le cas)
la grandeur d ne peut être déterminée exactement, le premier
principe permettra de l'évaluer par excès, le second de l'évaluer
par défaut. — L'intérêt théorique est considérable: il réside
surtout dans la dualité elle-même; mais aussi dans le fait que,
appliquée à un problème aux limites, la transformation de

Friedrichs fait passer du principe de Dirichlet au principe de

Thomson (à propos de ces principes: cf. [13, 3]). — L'idée de
base est très simple: si, dans un principe de Minimum, on élargit
la classe des fonctions admises à concurrence, le Minimum
diminue (ou reste inchangé).

1.2. Les raisonnements qui suivent s'appliquent à un nombre
fini quelconque de dimensions; pour fixer les idées, nous
considérons un domaine régulier G du plan, de contour F, et, dans G,
un problème de variation initial (I) du type:

(I)
d Min,, jj F (x, v, grad v) dÂ

G

sous la condition: v x(s) donnée sur F ;

x désigne le rayon vecteur (x, y), dA dxdy est l'élément d'aire,
5 mesure l'arc sur la courbe F.
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La transformation de Friedrichs consiste à « dissocier » v de

grad v dans l'intégrale ci-dessus: on y remplace grad v par un
champ vectoriel q (alors on a F7 (x, v, q)), et l'on traite les conditions

auxiliaires q — grad c 0 dans G et p — % («9) 0 sur r
à l'aide de multiplicateurs de Lagrange p (x) et p. (s) respectivement;

v et q varient désormais indépendamment. On obtient
ainsi un «problème libre»; on passe ensuite de celui-ci au
« problème dual » (D) en imposant à priori les conditions naturelles

suivantes du problème libre:

(1) F~q p (c'est-à-dire: Fq et Fv div p dans G;

(2) p-n p(s) sur F (n normale extérieure).

On postule en général que, à l'aide des conditions (1), on
puisse tirer v et q en fonction de x, p et div p. On pose alors

(transformation de Legendre)

(3) W (x, p, divp) q-p+v divp —F (x9v, q)

et l'on obtient le problème dual:

(D)
d Maxy { — F (x, p, div p) dA + 0/(5) p • n ds

sous la condition div p Fv

1.3. Considérons un problème de Dirichlet pour l'équation
de Poisson: A u — p (x) dans G, u x (s) sur F (p et x
fonctions données); posons

du 1 1

— ds - - D (u) +-£>(«)•
on 2 2

pu dA

où D (u) est l'intégrale de Dirichlet Jj grad2 ^ (M; le principe
G

de Dirichlet nous dit:

d Miny=;f(iS) sur r I - D (v) —(4) pv dA

On a donc ici

F(x,v,q) ^q2-pv; p q ; div p Fv - p ;
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f (3c,p, div p) q -p+vdi-p2 ;

d'où le principe dual:

(5) d Maxdiv-=_p OxO)?'» ds- - p2d^i
r G

qui n'est autre que le principe de Thomson (cf. [13]); le champ
extrémal est p grad u. Les champs vectoriels p concurrents sa-

tisfontl'équation différentielle, mais aucune condition aux limites.

1.4. Nous considérerons au § 2 une transformation varia-
tionnelle analogue (mais non involutive), reposant non plus sur
une dissociation de v et grad e, mais bien sur une dissociation
de la fonction v elle-même en deux fonctions / et g (le domaine G

étant à deux dimensions). Au § 3, nous appliquerons cette
transformation au problème considéré en 1.3 ci-dessus: elle fait
correspondre au principe de Dirichlet un principe très voisin de celui
de Thomson, mais restreignant les champs concurrents par des

conditions aux limites; ce principe a été obtenu par la « méthode
des problèmes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous
montrerons comment cette méthode s'applique également aux
problèmes aux valeurs propres, et conduit, à partir du principe
de Rayleigh, à un principe de Maximum pour (la première
valeur propre) déjà obtenu à l'aide de problèmes auxiliaires
unidimensionnels [6, 7], inspirés par Payne-Weinberger [11].
Enfin, nous montrerons au § 5 qu'une forme essentiellement
équivalente de ce principe de Maximum (mais plus proche du
principe de Thomson), se rattachant à divers travaux dont
quelques-uns déjà anciens [12, 1, 14, 15, 10, 7, 9, 4], peut être
également obtenue en appliquant une transformation de
Friedrichs à peine modifiée.

2.1. Nous partons de nouveau du problème (I) considéré
en 1.2 :

§ 2. La transformation variationnelle proposée
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