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UNE TRANSFORMATION VARIATIONNELLE
APPARENTEE A CELLE DE FRIEDRICHS,
CONDUISANT A LA METHODE DES PROBLEMES
AUXILIAIRES UNIDIMENSIONNELS

par Joseph HERscH

§ 1. Introduction

1.1. K. O. Friepricus ([b]; voir aussi [2], pp. 201-9) a
découvert en 1929 une transformation variationnelle involutive,
faisant passer d’un principe de Minimum caractérisant une
grandeur d & un principe de Maximum «dual», caractérisant
la méme grandeur d. — L’intérét numeérique de cette double
caractérisation est évident: si (comme c’est généralement le cas)
la grandeur d ne peut étre déterminée exactement, le premier
principe permettra de I’évaluer par exces, le second de ’évaluer
par défaut. — L’intérét théorique est considérable: il réside
surtout dans la dualité elle-méme; mais aussi dans le fait que,
appliquée a un probleme aux limites, la transformation de
Friedrichs fait passer du principe de Dirichlet au principe de
Thomson (& propos de ces principes: cf. [13, 3]). — L’idée de
base est trés simple: si, dans un principe de Minimum, on élargit
la classe des fonctions admises & concurrence, le Minimum
diminue (ou reste inchangé).

1.2. Lesraisonnements qui suivent s’appliquent & un nombre
fini quelconque de dimensions; pour fixer les idées, nous consi-
dérons un domaine régulier G du plan, de contour I', et, dans G,
un probléeme de variation initial (I) du type:

d = Min, [[F(x,v, gradv)dA ,
(I) G

| sous la condition: v = y(s) donnée sur I’ :

z désigne le rayon vecteur (z, y), dA = dxdy est ’élément d’aire,
s mesure l’arc sur la courbe T.
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La transformation de Friedrichs consiste a « dissocier » ¢ de
grad ¢ dans l’mtegrale ci-dessus: on y remplace grad ¢ par un
champ vectoriel q (alors on a F (x 0, q)) et ’on traite les condi-
tions auxiliaires ¢ — grad ¢ = 0 dans G et o — x(s) =0 sur I
a 'aide de multlphcateurs de Lagrange p (x ) et 1 (s) respective-
ment; ¢ et ¢ varient désormais indépendamment. On obtient
ainsi un «probléeme libre»; on passe ensuite de celui-ci au
« probleme dual » (D) en imposant a priori les conditions natu-
relles suivantes du probléeme libre:

(1) Fg7 = i (c’est-a-dire: F‘?i = p;), et F, = divp dans G;

(2) p-n = u(s) sur I (n = normale extérieure).

On postule en général que, a P'aide des conditions (1), on
puisse tirer ¢ et ¢ en fonction de x, p et div p. On pose alors
(transformation de L.egendre)

(3) Y(x,p,divp) =q -p+vdivp —F (xX,v,q)
et I'on obtient le probléme dual:

| d:Maxg{—quf(}’,”ﬁ,divz)dA+fﬁx(s)};-h’ds}
(D)

G r

sous la condition divp = F, .

1.3. Considérons un probléme de Dirichlet pour I’équation
de Poisson: du=—p(x )dansG u = y(s)surI' (pet y = fonec-
tions données); posons

ou 1 1
d = é;X(S):?;dS—ED(u) = +§D(u)—prudA,

r G
ot D (u) est Pintégrale de Dirichlet ([ grad®u dA; le principe
G
de Dirichlet nous dit:

. 1
(4) d=M1nv=x(s)surr{ED(v)—JJpvdA}.
On a donc 1c1

- > 1-—> e - .=
F(x,v,q)=5q2—pv; p=F;=q; divp=F,= —p;
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W(,p,divp)=q p+vdivp—F= -p>;

N =

d’ou le principe dual:

- = 1 —
(5) d=Maxdivgz_p{§x(s)p’nds———ijfpsz},
G

r

qui n’est autre que le principe de Thomson (cf. [13]); le champ
extrémal est p = grad u. Les champs vectoriels p concurrents sa-
tisfont’équation différentielle, mais aucune condition aux limites.

1.4. Nous considérerons au § 2 une transformation varia-
tionnelle analogue (mais non involutive), reposant non plus sur
une dissociation de ¢ et grad ¢, mais bien sur une dissociation
de la fonction ¢ elle-méme en deux fonctions f et g (le domaine G
étant & deux dimensions). Au § 3, nous appliquerons cette trans-
formation au probléme considéré en 1.3 ci-dessus: elle fait corres-
pondre au principe de Dirichlet un principe tres voisin de celul
de Thomson, mais restreignant les champs concurrents par des
conditions aux limites; ce principe a été obtenu par la « méthode
des problemes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous
montrerons comment cette méthode s’applique également aux
problémes aux valeurs propres, et conduit, & partir du principe
de Rayleigh, a un principe de Maximum pour 4, (la premiére
valeur propre) déja obtenu & ’aide de problémes auxiliaires uni-
dimensionnels [6, 7], inspirés par Pavy~NeE-WEINBERGER [11].
Enfin, nous montrerons au §5 qu'une forme essentiellement
équivalente de ce principe de Maximum (mais plus proche du
principe de Thomson), se rattachant a divers travaux dont
quelques-uns déja anciens [12, 1, 14, 15, 10, 7, 9, 4], peut étre
également obtenue en appliquant une transformation de Frie-
drichs & peine modifiée.

§ 2. La transformation variationnelle proposée

2.1. Nous partons de nouveau du probléme (I) considéré
en 1.2: ‘

d = Min,J [v] sous la conditionv = y(s) sur I' ,

I
(D l ouJ[v] = [[F(x,y,v,v,,v)dA. Nous supposons Fyw, =0
2 :
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