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UNE TRANSFORMATION VARIATIONNELLE
APPARENTEE A CELLE DE FRIEDRICHS,
CONDUISANT A LA METHODE DES PROBLEMES
AUXILIAIRES UNIDIMENSIONNELS

par Joseph HERscH

§ 1. Introduction

1.1. K. O. Friepricus ([b]; voir aussi [2], pp. 201-9) a
découvert en 1929 une transformation variationnelle involutive,
faisant passer d’un principe de Minimum caractérisant une
grandeur d & un principe de Maximum «dual», caractérisant
la méme grandeur d. — L’intérét numeérique de cette double
caractérisation est évident: si (comme c’est généralement le cas)
la grandeur d ne peut étre déterminée exactement, le premier
principe permettra de I’évaluer par exces, le second de ’évaluer
par défaut. — L’intérét théorique est considérable: il réside
surtout dans la dualité elle-méme; mais aussi dans le fait que,
appliquée a un probleme aux limites, la transformation de
Friedrichs fait passer du principe de Dirichlet au principe de
Thomson (& propos de ces principes: cf. [13, 3]). — L’idée de
base est trés simple: si, dans un principe de Minimum, on élargit
la classe des fonctions admises & concurrence, le Minimum
diminue (ou reste inchangé).

1.2. Lesraisonnements qui suivent s’appliquent & un nombre
fini quelconque de dimensions; pour fixer les idées, nous consi-
dérons un domaine régulier G du plan, de contour I', et, dans G,
un probléeme de variation initial (I) du type:

d = Min, [[F(x,v, gradv)dA ,
(I) G

| sous la condition: v = y(s) donnée sur I’ :

z désigne le rayon vecteur (z, y), dA = dxdy est ’élément d’aire,
s mesure l’arc sur la courbe T.
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La transformation de Friedrichs consiste a « dissocier » ¢ de
grad ¢ dans l’mtegrale ci-dessus: on y remplace grad ¢ par un
champ vectoriel q (alors on a F (x 0, q)) et ’on traite les condi-
tions auxiliaires ¢ — grad ¢ = 0 dans G et o — x(s) =0 sur I
a 'aide de multlphcateurs de Lagrange p (x ) et 1 (s) respective-
ment; ¢ et ¢ varient désormais indépendamment. On obtient
ainsi un «probléeme libre»; on passe ensuite de celui-ci au
« probleme dual » (D) en imposant a priori les conditions natu-
relles suivantes du probléeme libre:

(1) Fg7 = i (c’est-a-dire: F‘?i = p;), et F, = divp dans G;

(2) p-n = u(s) sur I (n = normale extérieure).

On postule en général que, a P'aide des conditions (1), on
puisse tirer ¢ et ¢ en fonction de x, p et div p. On pose alors
(transformation de L.egendre)

(3) Y(x,p,divp) =q -p+vdivp —F (xX,v,q)
et I'on obtient le probléme dual:

| d:Maxg{—quf(}’,”ﬁ,divz)dA+fﬁx(s)};-h’ds}
(D)

G r

sous la condition divp = F, .

1.3. Considérons un probléme de Dirichlet pour I’équation
de Poisson: du=—p(x )dansG u = y(s)surI' (pet y = fonec-
tions données); posons

ou 1 1
d = é;X(S):?;dS—ED(u) = +§D(u)—prudA,

r G
ot D (u) est Pintégrale de Dirichlet ([ grad®u dA; le principe
G
de Dirichlet nous dit:

. 1
(4) d=M1nv=x(s)surr{ED(v)—JJpvdA}.
On a donc 1c1

- > 1-—> e - .=
F(x,v,q)=5q2—pv; p=F;=q; divp=F,= —p;
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W(,p,divp)=q p+vdivp—F= -p>;

N =

d’ou le principe dual:

- = 1 —
(5) d=Maxdivgz_p{§x(s)p’nds———ijfpsz},
G

r

qui n’est autre que le principe de Thomson (cf. [13]); le champ
extrémal est p = grad u. Les champs vectoriels p concurrents sa-
tisfont’équation différentielle, mais aucune condition aux limites.

1.4. Nous considérerons au § 2 une transformation varia-
tionnelle analogue (mais non involutive), reposant non plus sur
une dissociation de ¢ et grad ¢, mais bien sur une dissociation
de la fonction ¢ elle-méme en deux fonctions f et g (le domaine G
étant & deux dimensions). Au § 3, nous appliquerons cette trans-
formation au probléme considéré en 1.3 ci-dessus: elle fait corres-
pondre au principe de Dirichlet un principe tres voisin de celul
de Thomson, mais restreignant les champs concurrents par des
conditions aux limites; ce principe a été obtenu par la « méthode
des problemes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous
montrerons comment cette méthode s’applique également aux
problémes aux valeurs propres, et conduit, & partir du principe
de Rayleigh, a un principe de Maximum pour 4, (la premiére
valeur propre) déja obtenu & ’aide de problémes auxiliaires uni-
dimensionnels [6, 7], inspirés par Pavy~NeE-WEINBERGER [11].
Enfin, nous montrerons au §5 qu'une forme essentiellement
équivalente de ce principe de Maximum (mais plus proche du
principe de Thomson), se rattachant a divers travaux dont
quelques-uns déja anciens [12, 1, 14, 15, 10, 7, 9, 4], peut étre
également obtenue en appliquant une transformation de Frie-
drichs & peine modifiée.

§ 2. La transformation variationnelle proposée

2.1. Nous partons de nouveau du probléme (I) considéré
en 1.2: ‘

d = Min,J [v] sous la conditionv = y(s) sur I' ,

I
(D l ouJ[v] = [[F(x,y,v,v,,v)dA. Nous supposons Fyw, =0
2 :
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Dans cette expression, nous remplagons ¢ par f, ¢, par g,
et arbitrairement ¢ (z, y) tantot par f (z, y), tantot par g (z,y);

nous obtenons une fonction F (, 9,1, 8 I, g,) telle que

(6) F(X,,V,U v, x> )—F(X y9va X9 y)

f (z, y) est supposée continue en x, ainsi que sa dérivée partielle f_;
g (x, y) continue en y, ainsi que g ; on suppose 'existence de f
et 8oy

Remarque, importante pour les applications: On n’exigera
pas que les fonctions f et g soient continues !

Posons

JLf9] = I F(x,p.1,9.f:9,)dA;
G
j[(), v] = J[v], nous avons donc:

sous les conditions f = g dans G et f = g = y (s) sur I.

2.2. Introduisons un « multiplicateur de Lagrange » 1 (z, y);
je définis
(7) d[4] = Min_, , J[f,9: 4],
S=g=x(s)sur I

ou J [£.g; 1] =5[f,g]+fii'(f—g)dz4

(donc 7 [f, ;0] = 7 [f, g]), et je fais les deux hypothéses sui-
vantes:

(a) Ce Minimum variationnel existe pour toutes les fone-
tions A (x,y) de la classe considérée;

(b) La paire de fonctions { f, g } (dépendant de 1) qui réalise
ce Minimum, est univoquement déterminée par les conditions
d’Euler

~ ~ ~ d =
0=[F+A(f—9)], =[F],+A(x,y) =F,— d—;fo—Fl
(8) '

~ ~ ~ d ~
0=[F+i(f—-9)], =[F],-A(x,y) = F, — d—ng-/l
| y
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et la condition imposée f = g = y (s) sur I.
Quelle que soit 1 (z, y) (dans la classe considérée), on a

9) d[7] =d,

car | N
d =Min_, , JUf,g;2]

f=g9=x(s)sur I
sous la condition supplémentaire { = g.

2.3. La solution u (x, y) du probléme de variation initial (I)
satisfait 'équation d’Euler correspondante

0=[F],=F dp _4p .
- u — *u dx Uy dy Uy >

la paire de fonctions {/, g} = { u, u } satisfait donc

0 = [F], +[F], ;

si donc, dans le probléme de variation (7) définissant d [1], nous
posons '

}‘V(xay‘) = _[‘I;:If‘fzu ?

alors la paire de fonctions { u, u } satisfait les deux équations
d’Euler (8); par l'unicité que nous avons postulée, elle réalise
donc le Minimum

d[i = —[F1],..]:

celui-ci vaut donc J[u] = d. Sous les hypothéses (a) et (b)
ci-dessus, nous avons donc par (9):

(10) d = Max, . ,, d[A(x, )] .

Le raisonnement qui précede est calqué sur celui de Friedrichs,
cf. [5] et [2].

2.4, Au lieu de choisir le « multiplicateur de Lagrange »
A(z,y), on peut également choisir une paire de fonctions
{/(z,v), g (x,y) } satisfaisant la condition

1 Fl,+F), = F, +F,~ L F, — L5

~

on doit alors prendre A (x,y) = —[F], = + [Z?']g.
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Pour toute paire {f(x,9), g(x,y)} satisfaisant (11), on a

d[=[F1 1= 71105 =[F1;]1 = T 1101 =[] ((F1,/ +TF], 9)dA.
d’ou par (10):
(12 d=Max; , {J[[.6]=[[((F1,/+[F],9)dA}
sous les conditions (11) et
f(x,y) continue en x, ainsi que f,; f., existe;
(13) g (x,y) continue en y, ainsi que g, ; g,, existe;
Ifzgzx(s) sur I.

2.5. Remarque. — Il nous reste une liberté: la maniére
(arbitraire) dont nous remplacons ¢ par f ou par g dans £, sous
la condition (6). Méme si ¢ n’apparait pas explicitement dans £,

nous sommes libres d’ajouter, dans ﬁ’, des expressions §’annu-
lant lorsque f = g. En particulier, si nous remplacons F par
Fiv. (f—g) avec v (z,y) arbitraire, f[f, g] devient f[f, z]
+ j_(f;v (f—g)dA = j[]‘, g; v]. Cela nous montre que, si nous

~

réservons notre liberté dans la construction de F, le choix
A (z,y) = 0 ne signifie pas une restriction. La condition (11)
devient alors

(11%) [F1; = [F], = 0;
done

(12*) d = MaX{construction de F satisfaisant (6) J [f? g] .

choix de f et g satisfaisant (11*) et (13)

§ 3. Application aux problémes aux limites

Reprenons le probléme considéré en 1.3. Le principe variation-
nel (I) est celui de Dirichlet (4): F (x, v, ¢, 0x, 0,) = % (V24 03) — pv;

je pose (par exemple !) F (2,9, [, 8 [+ ) = 3 (fr + &) — pf;
la condition (6) est satisfaite; la condition (11) est ici:

(11,) fxx+gyy = _p(xay) g
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Nos hypothéses (a) et (b) sont satisfaites: 4 (z,y) étant
choisie, f est déterminée par f__ = A— p dans G et [ = x(s)
sur I'; g est déterminée par g, = — 4 dans Getg= y(s)sur I':
ce sont les « problémes auxiliaires unidimensionnels». — Nous
avons alors

Tifal- J f ((F1,/+[F1, 9)dA

1
= U [5 (f2+95) —pf +of + s +ggw] dA

o
G

0x
3g (S)(f +9, 5 >d9—-—ﬂ(fng ydAa;
d’olt par (12): '

oy 0x dy 1 5 .
12) d = Max S » g satisfaisant X(S) fv +g)’ ‘\ dS TN (f’c +gy)dA ’
(13) et (11%) 2
r G

Ceci est précisément le principe de Thomson (5), restreint aux
champs particuliers }—5 = (f,, 8, avec [ = g = y (s) sur I'. Ces
champs concurrents, qui tiennent compte des conditions aux
limites, sont «les meilleurs »: il est en effet facile [7, 8] de mon-
trer que, sip, = /[, et P2y, = &y la borne (12") fournie par le
champ (7, g,) est plus premse que (ou égale a) celle (5) fournie
par p. (12") a été obtenue auparavant [7, 8] par la considération
de problémes auxiliaires unidimensionnels, et admet une inter-
prétation physique simple (a I’aide du principe du Minimum de
I’énergie potentielle).

Remarque. — On peut obtenir le méme résultat (12') en utili-
sant (12*) au lieu de (12): on choisit alors arbitrairement p, (z, y)

et Pon pose F (x, 3,1, 9,fw 9)) = 3 (fs+95)—p1 f=(p—p1) 9 ;
nos hypothéses sont de nouveau satisfaites: f est déterminée par

=y (s) sur I' et 'équation d’Euler 0 = [Fly = —py —fex; g est

déterminée par g = y(s) sur I' et 0 = [ﬁ]g = —(p—p1) =9,y ;
sous la condition (11°), nous avons alors par (12%), en introdui-

sant p; = —fo, ebp—p, = —g,,, d 2J[f,g] = H[ (f2+95)+
Hex+39,,|dA comme ci-dessus, d’ou (12).

L’Enseignement mathém., t. XI, fasc. 2-3. ' 11
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§ 4. Application d’un raisonnement analogue aux problémes
aux valeurs propres

Comme exemple-type, je considére le probléeme de la vibra-
tion fondamentale d’une membrane couvrant un domaine G
du plan et fixée sur le contour I': on cherche u, (x,y) et un
nombre A, tels que du, + A, u;, = 0 et u; > 0 dans G, et u;, = 0
sur I'. Le principe de Rayleigh dit:

2, = Mi { D) }
1 = 1nv:O sur I 2 :
v°dA
jj(;

On peut aussi I’énoncer ainsi:

(14) 1, = max k sous la condition: vy D(v)—k jjv d4 = 0.

v=0sur '

Nous posons ici

F(,p. 02000 9) =f2+a2—k[f2+(1—pwg2]

ou u(z,y) est une fonction arbitraire dans G; la condition (6)
est alors satisfaite. Nous avons maintenant, quelle que solt

p(z,y), A, = max k sous la condition{f ; samgqam 13 ” FdA >0.

avec x(s)=
En effet, si 'on restreint f et g par f =g, aloxs on retrouve
pour k la condition (14); ici la classe des k£ admissibles a été
restreinte, donc max k& est devenu plus petit.
Maintenons ﬁXAesAle nombre k et la fonction u (z, y), et cher-
chons les paires {f, g} qui rendent stationnaire I'intégrale: nous
avons les deux équations d’Euler

0= —3[Fl, =fuxtkuf; 0= —%[F],=9,+k(1—-wg.

Supposons (c’est essentiel ici!) ]‘A> 0 et gA> 0 dans G. Eli-
minons u: les fonctions f et g satisfont

(15) — fix — @ = k = const.
S g




(16)
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Re01proquement si nous avons choisi une paire de fonctions
{f,g} satisfaisant (15) avec k > 0, posons pu(z,y) = — (1/k)
]‘xx/f alors 1 — pu = — (1/k) g /g les équations d’Euler rela-

tives & p sont alors satisfaites par f et g. Pour f et g (=0 sur I)
quelconques, nous vérifions

- (‘(‘ [ fox g/\
HF (X, s fr Gsfrxrgy) dA = fi4gr+ =2+ —i’ygzl 1A
vy | f g

J
G

donc A; = k; on a I’égalité en choisissant ]/‘\— g = u, (z,y), dou

Jex 9
(17) /11 = Max f-g>0 dans Gsatlsfalsant <_ A ”%y .

(15) et (13) avec x(s)=

C’est une spécialisation du principe de Maximum plus géné-
ral [7]:
(18) j*1 = Max f>g>0dans G infG <_ fxx - @> 5

fxx €t yy existent f g

mais les paires de fonctions plus particulieres {f, g} sont «les
meilleures ».

§ 5. La transformation de Friedrichs conduit & une autre forme
du méme principe

Considérons de nouveau le principe de Rayleigh sous la
forme (14); remarquons que la fonction propre u, (z,y) n’est
déterminée qu’a un facteur constant pres, il en est donc de méme
de grad uy; tandis que le champ vectoriel grad u,/u; est unique-
ment déterminé. C’est pourquoi, opérant presque comme Frie-
drichs (cf. 1.2), nous remplagons — grad ¢/¢ par 5, ¢’est-a-dire
— grad ¢ par ¢q dans (14). 4, = max £ sous la condition

v J[[vz g2 —kv* —2vp - (grad v +vq)] dA = 0,

v, q o/
v=0surI” G

Py ' s ; ~ 2
= <fx—-]-i’5f>2+(9y—-€§g> ]dA :
JIoL S g .

IV
o




— 168 —

quel que soit le champ p (« multlphcateur de Lagrange»); en
effet, si I'on restreint la paire { ¢, q} par ¢ = — grad ¢/¢, on
retrouve la condition (14).

Gardons ; fixe et cherchons a minimaliser I'intégrale en
variant ¢ et ¢; nous obtenons les d(iux équations d’Euler sui-
vantes pour un champ «extrémal » ¢:

A A
2——)- 2-9 y —> -—>.
0=0v"q—v"p, dou g=p;
A
_).2

0=vq —kv—2p-qu—p -gradv+ div(wp) =0 -(divg —q —k) ;

donc
(15") divg —q =k ;
¢ quelconque, = 0 sur I A

Sl nous avons construit un tel champ vectoriel q dans G,
¢ et ¢ satisferont les équations d’Euler correspondant au choix
Z — ¢. L’intégrale devient alors, pour ¢ et gquelconques,

y -2 - ﬁ) :;

(16" [fl(a" —2q -q —k)v* —q - grad (v*)]dA

G
— ([[(d—q)+divg —q —k]o?dA =0,
G

A

donc A; = k; on a I’égalité en choisissant 5 = — grad u,/u,,
d’ou

/ ~ 9 . 5 —/;2
A7) ho= Maxg Gt T cons (diva =g 7).

(Vest une spécialisation du principe de Maximum (cf. [12, 1,
14, 15, 10, 7, 9, 4]):
(18") A, = Max7 infg (divg —q°) ;
nous voyons en effet que I'inégalité (16') reste satisfaite pourvu

que dlvq —g * k=0 dans tout G.

Remarques. — (a) Le principe (18") est essentiellement équi-
valent & (18): considérer le champ Z; = (— 1/, —&/8)- N

(b) 111’y a pas lieu d’exiger la contlnulte des champs ¢ ou q
il suffit que ¢, soit continue en z, ¢, continue en y, et que les
dérivées partlelles 71, €Y 05, existent; la mémeremarque s’applique

aux champs p concurrents pour le principe de Thomson.




[6]

[l |
[7]

[9]

[10]

[11]

[12]
[13]

A

[14]

[15]
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