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UNE TRANSFORMATION VARIATIONNELLE
APPARENTÉE A CELLE DE FRIEDRICHS,

CONDUISANT A LA MÉTHODE DES PROBLÈMES
AUXILIAIRES UNIDIMENSIONNELS

par Joseph Hersch

§ 1. Introduction

1.1. K. 0. Friedrichs ([5]; voir aussi [2], pp. 201-9) a

découvert en 1929 une transformation variationnelle involutive,
faisant passer d'un principe de Minimum caractérisant une
grandeur d à un principe de Maximum « dual », caractérisant
la même grandeur d. — L'intérêt numérique de cette double
caractérisation est évident: si (comme c'est généralement le cas)
la grandeur d ne peut être déterminée exactement, le premier
principe permettra de l'évaluer par excès, le second de l'évaluer
par défaut. — L'intérêt théorique est considérable: il réside
surtout dans la dualité elle-même; mais aussi dans le fait que,
appliquée à un problème aux limites, la transformation de

Friedrichs fait passer du principe de Dirichlet au principe de

Thomson (à propos de ces principes: cf. [13, 3]). — L'idée de
base est très simple: si, dans un principe de Minimum, on élargit
la classe des fonctions admises à concurrence, le Minimum
diminue (ou reste inchangé).

1.2. Les raisonnements qui suivent s'appliquent à un nombre
fini quelconque de dimensions; pour fixer les idées, nous
considérons un domaine régulier G du plan, de contour F, et, dans G,
un problème de variation initial (I) du type:

(I)
d Min,, jj F (x, v, grad v) dÂ

G

sous la condition: v x(s) donnée sur F ;

x désigne le rayon vecteur (x, y), dA dxdy est l'élément d'aire,
5 mesure l'arc sur la courbe F.
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La transformation de Friedrichs consiste à « dissocier » v de

grad v dans l'intégrale ci-dessus: on y remplace grad v par un
champ vectoriel q (alors on a F7 (x, v, q)), et l'on traite les conditions

auxiliaires q — grad c 0 dans G et p — % («9) 0 sur r
à l'aide de multiplicateurs de Lagrange p (x) et p. (s) respectivement;

v et q varient désormais indépendamment. On obtient
ainsi un «problème libre»; on passe ensuite de celui-ci au
« problème dual » (D) en imposant à priori les conditions naturelles

suivantes du problème libre:

(1) F~q p (c'est-à-dire: Fq et Fv div p dans G;

(2) p-n p(s) sur F (n normale extérieure).

On postule en général que, à l'aide des conditions (1), on
puisse tirer v et q en fonction de x, p et div p. On pose alors

(transformation de Legendre)

(3) W (x, p, divp) q-p+v divp —F (x9v, q)

et l'on obtient le problème dual:

(D)
d Maxy { — F (x, p, div p) dA + 0/(5) p • n ds

sous la condition div p Fv

1.3. Considérons un problème de Dirichlet pour l'équation
de Poisson: A u — p (x) dans G, u x (s) sur F (p et x
fonctions données); posons

du 1 1

— ds - - D (u) +-£>(«)•
on 2 2

pu dA

où D (u) est l'intégrale de Dirichlet Jj grad2 ^ (M; le principe
G

de Dirichlet nous dit:

d Miny=;f(iS) sur r I - D (v) —(4) pv dA

On a donc ici

F(x,v,q) ^q2-pv; p q ; div p Fv - p ;
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f (3c,p, div p) q -p+vdi-p2 ;

d'où le principe dual:

(5) d Maxdiv-=_p OxO)?'» ds- - p2d^i
r G

qui n'est autre que le principe de Thomson (cf. [13]); le champ
extrémal est p grad u. Les champs vectoriels p concurrents sa-

tisfontl'équation différentielle, mais aucune condition aux limites.

1.4. Nous considérerons au § 2 une transformation varia-
tionnelle analogue (mais non involutive), reposant non plus sur
une dissociation de v et grad e, mais bien sur une dissociation
de la fonction v elle-même en deux fonctions / et g (le domaine G

étant à deux dimensions). Au § 3, nous appliquerons cette
transformation au problème considéré en 1.3 ci-dessus: elle fait
correspondre au principe de Dirichlet un principe très voisin de celui
de Thomson, mais restreignant les champs concurrents par des

conditions aux limites; ce principe a été obtenu par la « méthode
des problèmes auxiliaires unidimensionnels » [8, 7]. Au § 4, nous
montrerons comment cette méthode s'applique également aux
problèmes aux valeurs propres, et conduit, à partir du principe
de Rayleigh, à un principe de Maximum pour (la première
valeur propre) déjà obtenu à l'aide de problèmes auxiliaires
unidimensionnels [6, 7], inspirés par Payne-Weinberger [11].
Enfin, nous montrerons au § 5 qu'une forme essentiellement
équivalente de ce principe de Maximum (mais plus proche du
principe de Thomson), se rattachant à divers travaux dont
quelques-uns déjà anciens [12, 1, 14, 15, 10, 7, 9, 4], peut être
également obtenue en appliquant une transformation de
Friedrichs à peine modifiée.

2.1. Nous partons de nouveau du problème (I) considéré
en 1.2 :

§ 2. La transformation variationnelle proposée



— 162 —

Dans cette expression, nous remplaçons ç>x par /x, v par gy,
et arbitrairement v (#, y) tantôt par / (x, y), tantôt par g (x, y);

nous obtenons une fonction F (x, y, /, g", fx, gy) telle que

(6) F(x,y,v,v,vx,vy) F (x,y, v, vx9 vy) ;

/ (x, y) est supposée continue en x, ainsi que sa dérivée partielle fx;
g (x, j/) continue ea ?/, ainsi que gy; on suppose l'existence de

et g

Remarque, importante pour les applications: On n'exigera
pas que les fonctions / et g soient continues

Posons

U/,0] lf F(x> yJ, g, fx
G

J [e, c] /[e], nous avons donc:

ù Min/j9 J\_f,g~\

sous les conditions / g dans G et / g x (s) sur F.

2.2. Introduisons un « multiplicateur de Lagrange » A (x, p);
je définis

(7) d[A]Min,/> 9 J[/, A]
t f=9=X(s) sur r

où J [f,g; X]J[f,g\+|j
G

(donc J [/, g; 0] J [/, g]), et je fais les deux hypothèses
suivantes :

(a) Ce Minimum variationnel existe pour toutes les fonctions

A (x, y) de la classe considérée;

(b) La paire de fonctions {/, g} (dépendant de A) qui réalise

ce Minimum, est univoquement déterminée par les conditions
d'Euler

0 [F + X(f-g)-]f [Fy + X=Ff-
w j „ w

0 [F + 2 (f-g)lm, A (x, y) Fgy - X
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et la condition imposée / g% (s)surT.

Quelle que soit A (x,y) (dans la classe considérée), on a

(9) d[À] ^
car

dMim^ g

\f 9=x(s) sur r

sous la condition supplémentaire f g.

2.3. La solution u (x, y) du problème de variation initial (I)
satisfait l'équation d'Euler correspondante

d d
0 [FL =FU Fu Fu ;L J" " dx Ux dy "*

la paire de fonctions {/, g } { w, u} satisfait donc

0=[F]/ + [f]f,;
si donc, dans le problème de variation (7) définissant d [2], nous

posons

A(x,y)~[F]f\/Su
alors la paire de fonctions {u,satisfaitles deux équations
d'Euler (8); par l'unicité que nous avons postulée, elle réalise
donc le Minimum

celui-ci vaut donc J[u] d. Sous les hypothèses (a) et (b)
ci-dessus, nous avons donc par (9):

(10) d MaxA(x>y) d[X(x, y)~]

Le raisonnement qui précède est calqué sur celui de Friedrichs,
cf. [5] et [2].

2.4. Au lieu de choisir le « multiplicateur de Lagrange »

X (x, y), on peut également choisir une paire de fonctions
{ / (x, y), g (#, y) } satisfaisant la condition

<"> ÙHh'i,-fa- o:

on doit alors prendre X (x, y) — [F]f + [F]g.
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Pour toute paire { f(x,y),gy) } satisfaisant (11), on a

dv-\hr\~JU>9-> hf,9-]-\\,
G

d'où par (10):

(12) d Max/; a { J[f,gf]- JJ ([F]//+[F~]g g) dA }
G

sous les conditions (11) et

f(x,y) continue en x ainsi que fx ; fxx existe;

(13) g(x,y) continue en y, ainsi que gy ; gyy existe;

/ g X(s) sur r.
2.5. Remarque. — Il nous reste une liberté: la manière

(arbitraire) dont nous remplaçons ç par / ou par g dans F, sous
la condition (6). Même si c n'apparaît pas explicitement dans F,

nous sommes libres d'ajouter, dans F, des expressions s'annulant

lorsque / s- g. En particulier, si nous remplaçons F par

F + v • (/ — ë) avec v (#7 y) arbitraire, J [/, g] devient J [/, g]

+ JJ v (/— g) dA /[/, g; v]. Cela nous montre que, si nous
g

réservons notre liberté dans la construction de F, le choix
X (#, y) 0 ne signifie pas une restriction. La condition (11)
devient alors

(H*) [F]/=[F], 0;

donc

(12 d MÙX
ç construction de F satisfaisant (6) J \_fi g~\ •

t choix de / et g satisfaisant (11*) et (13)

§ 3. Application aux problèmes aux limites

Reprenons le problème considéré en 1.3. Le principe variation-
nel (I) est celui de Dirichlet (4) : F (#, y, c, vx, çy) \ (e* + vy) — pv\

je pose (parexemple !)F(x,y,/, g, fx, (fl + g]) - pf-
la condition (6) est satisfaite; la condition (11) est ici:

(11') fxx+dyy ~P(x,y)
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Nos hypothèses (a)et (b)sont satisfaites: A étant
choisie, / est déterminée par fxx A — dans et / % (s)

sur T; gest déterminée par gyy— A dans et sur :

ce sont les « problèmesauxiliaires ». — Nous

avons alors

J [/> 9] (inff+lFlg)dA

1

:(fx +9y)—pf+pf+ffxx+ggy dA

d'où par (12) :

12') dMax

(D X(s) /:
dx

ôn

dy

dn

{f, g satisfaisant
(13) et (11')

dx
q>x(s)( Ajjj +

ds — -2 (fx

OA 1

-gy) dA ;

(fx +9y) dA

Ceci est précisément le principe de Thomson (5), restreint aux
champs particuliers p (fx, g avec f g x (s) sur T. Ces

champs concurrents, qui tiennent compte des conditions aux
limites, sont «les meilleurs »: il est en effet facile [7, 8] de montrer

que, si pt fxx et p2 gyy, la borne (12') fournie par le

champ (Z^, gy) est plus précise que (ou égale à) celle (5) fournie
par p. (12') a été obtenue auparavant [7, 8] par la considération
de problèmes auxiliaires unidimensionnels, et admet une
interprétation physique simple (à l'aide du principe du Minimum de

l'énergie potentielle).

Remarque. — On peut obtenir le même résultat (12') en utilisant

(12*) au lieu de (12): on choisit alors arbitrairement p3 (x, y)
et l'on pose F (x,y,f,g,fx, gy) ;

nos hypothèses sont de nouveau satisfaites: / est déterminée par
f X(s) sur r et l'équation d'Euler 0 [F]x -fxx ; g est

déterminée par gx (s) sur f et 0 [F% ;

sous la condition (11'), nous avons alors par (12*), en introduisant

Pi — —f xxet p — Pi -gyy,^ \_f, p] Jj" [-J- +
ffxxA-ggyy]dA comme ci-dessus, d'où (12'). G

L'Enseignement mathém., t. XI, fasc. 2-3. 11
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§ 4. Application d'un raisonnement analogue aux problèmes
aux valeurs propres

Comme exemple-type, je considère le problème de la vibration

fondamentale d'une membrane couvrant un domaine G

du plan et fixée sur le contour F: on cherche ux (x, y) et un
nombre À1 tels que Au^ + Ax 0 et ux > 0 dans G, et ux 0

sur F. Le principe de Rayleigh dit:

f D (v) 1

1~ Min»-e»urr | JJ^}'

G

On peut aussi l'énoncer ainsi:

(14) A1 max k sous la condition: D (v) —k
t> 0 sur r G

Nous posons ici

F(x,y,f,g,fx,gy) =fx + gy+(1

où y (x, y) est une fonction arbitraire dans G; la condition (6)
est alors satisfaite. Nous avons maintenant, quelle que soit

y# ~

y(x, y),Xx̂ max k sous la conditionff> g
satisfYisant

(13) JJ ^ 0
\avec x(s)=0 G

En effet, si l'on restreint / et g par / g, alors on retrouve

pour k la condition (14); ici la classe des k admissibles a été

restreinte, donc max k est devenu plus petit.
Maintenons fixes le nombre k et la fonction y (x, y), et cher-

A A

chons les paires {/,g} qui rendent stationnaire l'intégrale: nous

avons les deux équations d'Euler

0= -ilFV =fxx + kyf; 0- [F~\g - gyy + k (1 -y) g

A A

Supposons (c'est essentiel ici / > 0 et g > Ö dans G.

Eliminons y: les fonctions f et g satisfont
A A

fxx 0yy i
(15) ~ — v k const.

f 9
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Réciproquement, si nous avons choisi une paire de fonctions

{f,g}satisfaisant (15) avec k>0, posons (1/&)

(/„//); alors 1 — y— (1 jk) (gjleséquations d'Euler rela-
A A

tives à y sont alors satisfaites par / et g. Pour et 0 sur T)

quelconques, nous vérifions

F (x,y,f,g,fx, gy) dA fl+al+'-^p + ^g2
f 9

A a

dA

dA g; 0,

A A

donc Xx ^ k; on a l'égalité en choisissant d'où
A A

i _ A/r —
^xx

—
®yy

(17) m JVIa.Xj y; g > 0 dans G satisfaisant I a a
|(15) et (13) avec *O)=0 Ç J g

C'est une spécialisation du principe de Maximum plus général

[7]:

(18) 1, Max ,„>oamcinfo (- '-f - ;
t fxx et gyy existent \ J 9 /

mais les paires de fonctions plus particulières {/, g} sont «les

meilleures ».

§ 5. La transformation de Friedrichs conduit à une autre forme
du même principe

Considérons de nouveau le principe de Rayleigh sous la
forme (14); remarquons que la fonction propre ux (x, y) n'est
déterminée qu'à un facteur constant près, il en est donc de même
de grad w3 ; tandis que le champ vectoriel grad k3/% est uniquement

déterminé. C'est pourquoi, opérant presque comme
Friedrichs (cf. 1.2), nous remplaçons — grad vjv par g, c'est-à-dire
— grad e par vq dans (14). ^ max k sous la condition

[v2 q2 —kv2 —2vp - (gradv +tij)] dA ^ 0
V, q

v Q sur r G
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quel que soit le champ p (« multiplicateur de Lagrange ») ; en
effet, si l7on restreint la paire { c, q} par q — grad e/e, on
retrouve la condition (14).

Gardons p fixe et cherchons à minimaliser l'intégrale en
variant v et q\ nous obtenons les deux équations d'Euler sui-

A

vantes pour un champ « extrémal » q:
A A

0 v2 q — v2 p d'où q p ;

4-2 -*• 4 -> 4-42
0 vq — kv — 2p-qv—p- grad v + div (v~p) v • (div q —q — k) ;

donc

(15') div q — q2 k ;

e quelconque, 0 sur T. 4
Si nous avons construit un tel champ vectoriel q dans G,

v et q satisferont les équations d'Euler correspondant au choix

p q. L'intégrale devient alors, pour ç et q quelconques,

(16') JJ[(?2 —2q - q — k)v2 — q • grad (v2)~\dA
G

JJ[(g — qf + div q — q2 —k ~\v2 dA 4 0
G

A

donc on a l'égalité en choisissant q —grad
d'où

(IV) A1 MaXf
; div f-f const (div q-q2)-

C'est une spécialisation du principe de Maximum (cf. [12, 1,

14, 15, 10, 7, 9, 4]):

(18') 2]; Max-J infG(div g— if2) ;

nous voyons en effet que l'inégalité (16') reste satisfaite pourvu
4- 4-2

que div q — q — k ^ 0 dans tout G.

Remarques. — (a) Le principe (18') est essentiellement
équivalent à (18): considérer le champ q (—fjf, —gy/g). A

(b) Il n'y a pas lieu d'exiger la continuité des champs q ou q :

il suffit que q± soit continue en x, q2 continue en y, et que les

dérivées partielles qx et q2 existent ; la même remarque s'applique
—>

x ^
aux champs p concurrents pour le principe de Thomson.
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Remarque finale. — Il y a lieu d'indiquer également les travaux de
M. G. Slobodianski. très proches à la fois de la transformation de Friedrichs
et de celle que nous décrivons ici: voir à ce sujet le livre de S. G. Miciilin:
I ariationsmethoden der mathematischen Physik (Akademie-Verlag, Berlin,
1962), pp. 300 ss.

(reçu le 15 mars 1964)
Prof. J. Hersch
E.P.F.
Zürich
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