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EXISTENCE AND APPROXIMATION THEOREMS
FOR ORDINARY DIFFERENTIAL EQUATIONS
AND THEIR SYSTEMS!?)

PART I

Diran SARAFYAN

1. Historical background and weaknesses of Peano’s theorem.
Euler in his work written in Latin entitled “ Institutionum
Calculi Integralis ” published in 1768, described a method of
approximate solution of ordinary differential equations of first
order

dy

el f(x, ) (1)

subjected to the initial condition z = zy, y = y, .
In this method, through the use of the recurrence formula

Vier = Vi + (1 —x) f (x5, ) (2)

starting with the known pair of numbers (z,, yo) or the point
Py (z0,Yo) and an increasing sequence {z;}, the numbers
Uiy -y Y, Or the points P; (z;, y;), (1 = 1, ..., n) are determined.

Euler considered these numbers y; as approximations to the
exact values Y (z;), where y = Y («) 1s assumed to be a solution
of (1) satisfying the initial condition.

The geometric figure obtained by joining consecutively the
points Py, Py, ..., P, by a straight line segment is called an
“ Euler polygonal-line ” and his numerical procedure for the
approximate solution of differential equations the KEuler’s
Method. It is also quite often referred to as Cauchy-Lipschitz

1) Sponsored by the Mathematics Rescarch Center, U.S. Army, Madison, Wisconsin
under Contract No., DA-11-022-ORD-2059.
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Method because of the improvements and generalization intro-
duced by these mathematicians.

Indeed, although Euler originated this method, he never
treated rigorously the convergence of the sequences and series
involved in his process*) nor did he show the existence of the
solution Y (z) which he supposedly was approximating.

Between the years of 1820 and 1830, Cauchy in his lectures
at the “ Ecole Polytechnique ” in Paris, brought in the mathe-
matical rigor that Euler’s original numerical procedure lacked
and converted it into an existence and uniqueness theorem for
equations (1) and for systems of differential equations of the

type

dy;
dx

= fi(x, vy, ..., y,) (i=1,...,n). (3)

A summarized form of this theorem was first published in
1835. A better but still incomplete version of it was published
in 1844 by one of Cauchy’s pupils, father Moigno (see [1]).

In 1868, Lipschitz considerably simplified Cauchy’s proof
[2]. In particular he replaced the requirement of the existence
and the continuity of the partial derivative of f (x,y) with
respect to y for equation (1) and the existence and the continuity
of the partial derivatives of. the functions f; (x, ¥4, ..., ¥,) With
respect to dependent variables y; for the systems (3) by a less
restrictive requirement which 1s now well known as a Lipschitz
condition.

In 1886, Peano, separating the problem of the existence of
the integral curves of (1) from that of their uniqueness at a point
(%o, Yo), established an existence theorem [3] with no other
requirement on f (x, y) except its continuity, which theorem he
later extended to systems (3) [4].

Peano proved his existence theorem with the use of a class
of formulas satisfying a certain approximation condition. He
considered Euler’s formula as an example and showed that it
was a member of his class of formulas. Unfortunately, he failed

*) See for instance, “ Leonardi Euleri Opera Omnia; Series 1, Opera Mathematica,
Volumen XI; Institutiones Calculi Integralis; 1913 ”, pp. 427-429,
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to show what the other formulas were or how one could construct
them.

Thus although Peano did establish, theoretically, the exis-
tence of a major and a minor solution through a point, he did not
provide the practical means of constructing or approximating
them.

He illustrated his findings with the example, by now well
known, that y = -+ x* were the two extremal solutions of the

differential equation

4x3 y
2

dy x4 -+ y,,

T =

when x 20 or y #0

0 when x =y =0

corresponding to the initial conditions x = 0, y = 0. But he
did not indicate which were the members of his class of formulas
that would reveal the existence of these specific extremal solu-
tions or enable one to approximate them. Euler's polvgonal
lines defined through Euler’s recurrence relation, as used by
Peano, would show only the existence of the trivial solution
g = 4,

It 1s worth mentioning at this stage, fleetingly, leaving a
more thorough discussion of this subject for the second part of
this work, that if the polygonal lines were defined, for instance,
with the use of the formula

1
YViv1 = Vi T 5 (ki o +ki, 1)
where
ki,O = hf (xi+%h%a y;+%h)
ki1 =hf(x;+h,y,+k o)

then one would obtain the major solution to the right of the
point (0, 0) and the minor one to the left.

A decade later Arzela [5] considerably simplified the proof of
Peano’s theorem by using solely Euler’s recurrence relation
without recourse to Peano’s class of formulas.
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However, in doing so, Arzeld was reducing, perhaps unwittin-
gly, the theoretical scope of Peano’s theorem and transforming
it into a constructive existence and pseudo-uniqueness theorem,
since, as will be shown later on, the existence of only a single
solution can be established and approximated through this
method.

Nevertheless, Arzeld’s method and its variations [6, 7, 8, 9]
are today preferably used in place of, and even at times mistaken
for, Peano’s original, tedious proof.

However in spite of this wide and universal acceptance of
Arzeld’s method there seems ground to believe that the before
mentioned subtle limitation imposed by this method remains
either undetected or misunderstood.

More recently Sansone [10], through the adaptation of an
elegant method given by Tonelli, relative to the existence of
solutions of Volterra type functional equations [11], still further
shortened and simplified the proof of Peano’s theorem.

It must be noted once more, as in Arzeld’s proof, that the
resulting simplicity was detrimental to the theoretical scope of
Peano’s theorem.

The Sansone-Tonelli method also yields and approximates
only one solution from an infinite number of solutions that may
pass through a point. However in this case, this solution may or
may not be the same as the one obtained through Arzeld’s
method. This, as will be seen, is due to the fact that Arzeld’s
and Sansone-Tonelli’s methods are each biased in favor of one
particular solution, not necessarily the same, from all the solu-
tions of the differential equation(s) satisfying the given initial
condition.

Furthermore, this “ biased ” solution may not be an interes-
ting extremal solution. In this case these two methods do not
provide means even for the approximate determination of this
preferred (exiremal) solution.

Although Arzela’s method 1s more convenient in practical use
than Sansone-Tonelli’s, both are inadequate for numerical evalu-
ation. Besides, from the standpoint of approximate solution of
differential equations, Arzeld’s method [9b, 12a] is evidently no
other than the numerical procedure given by Euler some 130
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years earlier, which as is well known, is a “ first order approxi-
mation ” method, that is, a very poor one.

At times Peano’s theorem is treated by the method of
Weierstrass’ polynomial approximation originated by Severiui
[13, 12b, 14]. But this method does not provide any practical
basis for the approximate solution of the differential equations.

Finally during the period 1946-1947 Baiada [15, 16, 17] and
Cafiero [18], simultaneously but independently of each other,
succeeded in improving Tonelli-Sansone’s and Arzela’s versions
of Peano’s theorem, respectively. Their approach made possible
the determination of every solution through the initial point P.

Baiada’s method, like Tonelli-Sansone’s requires an integra-
tion at each step. This makes the process impractical except in
some special cases, such as, when f (x, y) 1s a polynomial.

In Cafiero’s method the rectangular region V,V, V3V, (fig. 1)
1s partitioned by a net of horizontal and vertical lines into a set
of rectangles which are called “ partial rectangles ”. A point P
belonging to the region V,V,V,;V, will fall in R™ (P), a certain
partial rectangle corresponding to some partitioning D™
(where “ A7 designates the norm of partitioning of the interval
(29, by] of figure 1).

A number p® (P) satisfying the relation

m® (P) £ u® (P) = M® (P)

is associated with the point P, m™® (P) and M™ (P) being the
extremal values of f (z, y) on R™ (P). |

A line with slope u® (Py) is drawn from Pg to P, ,, its inter-
section point with the right vertical side of R™ (P,). The
process is repeated again and again until a polygonal line is
obtained extending over the entire interval [z, b;]. Thereafter
the polygonal lines corresponding to all modes of partitioning
D™ are considered and Ascoli’s theorem is used.

These are some of the main features of the proof of Cafiero’s
version of Peano’s theorem. They have been indicated here
for two reasons: this approach is little known and it is entirely
inadequate for concrete practical applications.

It is now our purpose to establish a strong constructive
theorem. |
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In this theorem also the continuity of the function f(z, ¥)
[19, 20] will be the sole requirement, however the polygonal lines
will be defined by a class of parametric recurrence formulas
instead of the single and rigid formula (2). In this way the
various weaknesses or shortcomings encountered in the Peano’s
theorem will be avoided. However the advantages of this
new existence theorem will not be made evident until the second
part of this work, where it will also be shown that only a change
of the recurrence relation through which the (convergent)
sequence of polygonal lines {I';} is defined may affect the integral
curve I', the limit of {I';} .

2. Symbols and Notations. For the sake of convenience
~and unless otherwise stated the symbols P;, P, P, P" and P" will
represent the points P; (;, ¥:) P (Z, ¥), P (X, ¥), P’ («, y') and
P” (2", y") respectively.

The function f (x, y) and its value at P, will be often denoted
by f and f;, respectively.

The first order derivative of a function ¢ (x) will be denoted
by g;f and whenever there 1s no confusion, merely by ¢’. Its
higher order derivatives will be denoted by D} ¢ (z), n = 2, and
whenever there is no ambiguity, merely by D" ¢ (z) or D" ¢ .

As usual, ¢ (x) € C" will indicate that ¢ (x) belongs to the
class C", that is, ¢ and its derivatives up to the order # (inclusive),
are continuous.

Finally the closure of the open set X will be designated by X.

3. We shall first be concerned with the derivation of four
lemmas. Consider the differential equation (1) where f (z, y)
is a single but real valued function of the two real variables z, y,
defined and continuous on some open and simply connected
region It of the z, y plane.

Let Pg (x4, yo) be a point of R. There exists a circular
neighborhood Q, of P, such that Q, is interior to R. Dis-
regarding the case f (z,y) = 0 as trivial, assume m represents
the norm of f (z, y) over the set Q,, that is

1/ (x|, =m>0.
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Thus for all points of @, we have | f (z,¥) | =m. .
The so-called butterfly region shall now be constructed in the

usual way as follows:

Draw through P, the lines L; and L, with respective slopes
— m and ++ m . These lines intersect the circumference cons-
tituting the boundary of the circle Q; in four points, two to the
left of P, and two to the right.

For the sake of simplicity, only the two points to the right will
be considered, henceforth designated by V; and ¥, as shown in
Figure 1.

"}

The line through V, and V,, which intersects perpendicularly
the z-axis at (b, 0), together with the lines L., and L, bound 4,
the triangular region P, V; ¥V, which with its boundary lie
enticely in the interior of R.

What follows will revolve mainly around the closed interval
I, = [z,, b,] and the closure A, (the right half of the butterfly
region).

We shall refer to 7, as the “ first right partial interval of
convergence ” or merely as an “ interval of convergence ” while
4, will be referred to as the “ first right partial region of conver-
gence ” or simply a “region of convergence ”.
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Consider an arbitrary partition of 7, by dividing this interval
in any manner into n parts. Let the points of division be

XO <x1 <x2<...<xn_1 <xn=b1

We shall now describe a device which to every division point
of I, will make correspond a unique but special point in 4.

Let z, and z;, ; be any two consecutive points of the partition
and define x;,, — x; = h; = H (n), the latter being the norm
of the partition.

Assume the point P; (z;, y;) € 4, corresponding to x; to be

known. Relative to this point P; consider the coefficients
| kj,o = hif(x;+ohj, y;+Bhj) (4)
1 kj,i = hjf(xj T U i1 hj’ Yj+’7j,i—1kj,i—1) i =1,2,...,p

(132

where p is an arbitrarily selected natural number, “q”’s are posi-
tive rationals, and the Greek letters a, ff, u and # designate para-
meters or arbitrary constants such that

o0 (by —x0)* 7+ B2 (by—x0)** "? £1,9>0,4q'>0 _
0 é ,LLJ-’L-_I é 1 i = 1, 2, ...,p. (5)
|’7j,i—1| <1
Define
p
Yi+1 = Y; + Z A ik (6)
i=0

where the “ %k ” s are known quantities obtained as described
above and the “ 17 s designate again, just as the other Greek
letters, parameters or arbitrary real constants but now such that

Y
o

(7)

Js 1t

p
}vj,i — 1, i
i=0

2

Let the point P, (%;41, ¥;+1), Where y;, Is obtained by
the use of any particular recurrence formula (6), correspond to
the partition point z;,,. We shall show that P;,; e 4, .
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Let us recall that |f (z,y) | < m for all points of ?2_1 But
because of the first relation in (5), (x;+ ah?, y;+ph?) € 2, thus
|f (ej+ahfy;+Bhi) ] = m.

Multiplying both members of this relation by #; > 0 we

obtain
| kj ol < mh;. (8)

On the other hand with ¢ = 1 we have from (4)

kv =hf(x;+u 0hy;+1;0k; 0,
or also
ij,1 | = hj |f(xj+,“j,ohjayj"*"?j,okj, o). 9)

Furthermore, since |5, o | = 1, one derives from the rela-
tion (8)
— mh; £ 1; 0k; o S mh;
or |
yi—mh; = y; +15.0k; 0 S y; + mh;. (10)

The triangular region A, is bounded by the lines z = b,
and y =y, £ m (r—x,) . Thus if a point P(x, y) belongs to
4, then its coordinates must satisfy

Xo =X = by
Yo = m(X—=Xo) =y = yo + m(x—xo). (11)
Since P; € 4y, 2, = x; < by, then (11) becomes
Yo —m(x;—Xo) £ y; £ yo +m (X; —Xg) .
From the latter relation we derive
Yo — m(xj-f-l —Xg) = Y — mhj
i+ mh; < yo + m(x;4—xo) .

In view of the fact that z;,,; = b, these relations in turn can
be replaced by

Yo = m(by —xo) £ y; — mh; (12a)
yj + mh; <y, + m(b; —x,). (12b)
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The combination of the relations (10), (12a) and (12b) gives
Yo — m(b; —xo) = yi+ nj,okj.o < Yo + m(by —xy). (13)

The equations of the two parallel lines to the z-axis through
the points V,, V, € Q, are

y = yo = m(b; —x). (14)

A comparison between (13) and (14) indicates that the point
;45,0 hj, y;7+1n;. 0 kj. o) falls in Q; between these parallel
lines through V; and V, . It follows that

(f(xj+ﬂj,0hjayj'!"njgokj,o)l é m.
In view of the above relation, (9) can be replaced by
ki 1| £ h;m. (15)

Following the same procedure that enabled us to obtain the
relation |k; ;| < h;m from |k; o| = h; m we find consecu-
tively

| k; o] = h. m

| k.

=
J, P = J

In other words we have

lkiy; | = h;m i =0,1,...,p (16)

From (4) we derive

II/\

ij+1 y}lmlzlltjt

p
Zjljl'

Then on account of (7) and (16) we have |y, — y; | = h; m
and consequently also

yi—hm Sy, Sy;+h;m (17)

which indicates that the point P; e A, as was to be proved.
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Thus any recurrence formula (6) enables us to depart from a
known point P; € A, corresponding to z; and to determine
another point P;,, € 4, corresponding to z;,; .

Since P, is a known point we shall depart from it by taking
j = 0 and determine through the repeated application of a par-
ticular formula (6) the sequence of points Py, Py, ..., P,_4, P,
all belonging to 4, and corresponding to respective division
points of the considered partition of ;.

Joining these points consequtively with a line, a polygonal
line P, P, ... P, is obtained having these same points as vertices
and lying entirely in 4; and therefore being bounded.

Let y, designate the polygonal line obtained through the
partitioning of the interval 7, arbitrarily, into n parts.

Carry out this process for n = 1,2, ... starting with the
entire interval 7, and by adding more and more partitioning
points to the ones already existing, in such a way, that the norm
H (n) decreases monotonically to zero with increasing n.

Thus a sequence of polygonal lines {y,} constituting a family
Z 1s obtained. \

Now we are ready to establish four lemmas which exhibit
some of the properties of these polygonal lines and are essential
for later use.

For this purpose let y, € # be an arbitrarily selected poly-
gonal line with n sides. Thus any property possessed by vy,
can be attributed to all the polygonal lines constituting the -
family &.

Lemma I: — The polygonal lines of & represent uniformly
bounded functions of z €1, .

Proof: Since all the polygonal lines y, € & lie in 4, they are
uniformly bounded and consequently the functions 1y, ()
representing them are also uniformly bounded for all x e 7, .

Lemma II: — For any two distinct points P’ (z’, y’) and
P" (2", y") of a polygonal line the relation

[y =y S mx = x| (18)
holds. |
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Proof: The coordinates of any two consecutive vertices
Pi(x;,y;), Pir1 (Xj41,Yj+1) of y, satisfy (17), which relation
can also be written:

MX; — MX;qy = Yjuy — Vj S MXjpq — MX; . (19)

For any two distinet points P’, P” of the segment or side
P;P;,,; we have

y' =y _ i+ Yy

124 14 (20)
X = X xJ'+1 - XJ
The combination of (19) and (20) gives us
mx" —mx” £y’ —y = mx" — mx’ (21)

which 1s essentially the same as the relation (19) except for the
fact that the numbers (z;, y;) and (z;,4, y;+,) are replaced by
(@, y') and (2", y") .

We thus conclude that the relation (19) holds not only for the
coordinates of any two consecutives vertices P;, P;,, of y, but
also for the coordinates of any two distinct points of any one
side of vy, .

Furthermore (21) is equivalent to (18). Therefore the vali-
dity of the relation (18) for the coordinates of any two distinct
points of a side of y, becomes established.

We shall now consider the case where the points P’ and P”
belong to two different sides, for instance P; P;,, and P, P,
of y,, evidently with integers j =0 and j+1 =g < n — 1,
and also for the sake of convenience, with the assumption that
v, =2 <z, andx, <2 = 2,4

The use of the relation (19) with the coordinates of the points
P" and P;,, P;,; and P;,,, ..., P, and P" will give consecu-
tively

’

' ,
mx' —mx;yq = Yjrg —V = MXjp — mx ‘

MmX;rq1 — MX;jy, S Vito = Vi1 = MXjp, — mx;..q !

" " S/
mx, —mx" £y —y, = mx —mx,.
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The addition of member to member, respectively, of all these
relations, yields

mxl - n’lx” g J}Il _ yl é mll . mx
that 1s
Y =y S mlx =X

which proves the lemma. |

However it must be observed that instead of m, if we use m,
and m,, the actual minimum and maximum values respectively
of f (x,y) on Q;, then the above process would yield

m(x"—=x") 2 y"—y = m,(x"—x") (22)

Lemma III: — The family & is composed of equicontinuous
functions of x on the closed interval /,.
Proof: Let y = y, (x) be the equation of y, € # and € be a

. aps €
given positive number. Take 6 = —-
m

Assume P’ and P” be any two distinet points on y, but such
that |2" — 2" | < 6.
Then one has
m|x" —x'| <e.

Furthermore from the consideration of the Lemma II, it

follows that
1y =yl <e,
or
|7, (") =y (x) | <€

where 2', 2" € [, .

Thus since for every positive number € there is a positive
number ¢ = €/m such that whenever | 2" — 2’| < 6, 2", 2" €1,
the inequality

l'yn(xu) _'))n(xl)[ <9 n = 15 2»

holds, it results that the polygonal line functions of &, that is
Yu (2), (0 =1, 2, ...), are equicontinuous functions on 7.

Lemma IV: — From the sequence of polygonal line functions

{ya (@)}, zelyandn = 1,2, ..., it is possible to select a uniformly
convergent subsequence.

I’Enseignement mathém., t. XI, fasc. 2-3. 10
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Proof: From lemmas I and IIT1itis known that the polygonal
line functions y, (x) € # are uniformly bounded and are equi-
continuous on the closed interval I, = [x,, b;]. Then in accor-
dance with Ascoli’s Theorem it is possible to extract from
{y» (x)} a subsequence {y,, (#)} which will converge uniformly
to a function I' (z) . And since {y, ()} are continuous on the
interval /,, the same is true also for this limit function I' (z) .

For the sake of simplicity the convergent subsequence
{7, (@)} will be henceforth designated by {I;(z)} with
t =1,2,...; but the subseript i does not necessarily imply,
anymore, that the interval 7, = [z, b;] has been divided into
. parts since now 1 =< n .

Furthermore, the norm of the partitioning of the interval /7,
relative to a polygonal line I';, shall be designated by H;.

4. We are now in the position to prove that the limit func-
tion 1s differentiable and also satisfies the differential equation (1);
that is, I' is an integral curve.

Let 2’ be an arbitrarily chosen fixed point {from the closed
interval 1, = [z,, ;] and let " be a neighboring point. It must
be shown that

I'(x")y — I'(x")

lim . , = f(x', I'(x")).
— X )

x"—>x’

In other words, we must show that for each € > 0, a natural
number /N and a real number 6 > 0 exist, such that

I,(x") = I(x)

”"

f(x’, F(_x’))] < e

.__x’

for all v > NV and whenever 0 < |2" — 2’ | < §.

Let us observe that on account of the continuity of the func-
tion f (x, y) on the closed circular region Q, and particularly at
the point P’ (z,y’) € 4, where y’ = I' (z), to an arbitrarily
selected € > 0, there corresponds a circular neighborhood % of
P', & C A such that for all points P (x, y) € € one has

| f(x,y) =f(x",y) | <e.

Consider through P’ two lines with slope + 3 m. These
lines intersect the circle bounding % in four points. Joining
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these points consecutively with a straight line a rectangular
open region # C € C 4, is obtained.

If 45 designates the length of a horlzontal side of # then
106m will be the length of a vertical side (see figure 2).

y A

y'+5dm

y' +4om

y'=r(x)

y' —46m

y' —5om

Let S represent that subset of % which is the rectangular
region bounded by the lines y = y' + 4om .

Evidently for all points P (z, y) € S the preceding inequality
holds true. Thus we can say that given € > 0 there exists a
6 > 0 such that

f () —f(x,y) | <e (23a)

whenever

x —x'| £26 and |y —yp'| £ 40m. (23b)
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Now since the sequence of functions {I'; (z)} converges uni-
formly to I' (x) on /,, if € = min (g, 26m) then we know that
there exists a natural number N’ such that for all v > NV’

1 F(x) - I(x)| <€
on the interval / 1
Evidently this inequality holds also for 2" € I,, thus

| T (x") — I',(x")| < 26m . (24)

On a polygonal line I, (v > N’) consider the points
(', I'y (2')) and (z, I, (x)) with |2 — 2" | < 26 . Then because
of relation (18) of Lemma II one has

|, (x) — I',(x")| <26m. (25)
We can write

| I, (x) = I'(x) | = [Iy(x) = I,(xX) ]+ [ I (x) = T'(x)[.
The consideration of (24) and (25) gives then
|, (x) — T'(x")| < 4ém

provided that v > N' and |2 — 2’ | < 24.

These inequalities imply in their turn that the point (z, I' (z))
belongs to the region §. In other words, those portions of the
polygonal limes I',,v > N’ that fall between the two lines
x = 2’ + 26 lie entirely in the interior of the rectangular region
S.

Now 1t must be observed that H,, the norm of the partition
of the interval /I, decreases monotonically as the number of
division or partition points increases. It follows that there
exists a natural number V = N’ such that for all the polygonal
lines I'y,v > N, H, > 6. ‘

This requirement implies that any polygonal line I', must
have in § at least one vertex point lying to the left of the line
x =z’ — 0, one to the right of x = 2’ 4 J, and at least two
between these lines.

Consider that part of the polygonal line I',, v > NV, which
extends, from the first vertex located to the left of the line
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r =2 —  to the other first vertex located to the right of
r=a +96.
Since now h; < H, < 9, the relations (14) give

—om <k;,; <om i =0,1,...,p.

Then relative to the points (z;+pu;, ;-1 kpy;+nj, i1 k;, i—1)
associated with a vertex (z;, I', (x,)), of the above described part
of any one of these polygonal lines one has

y; —om S y; +nj-1 kj -1 S y; +om.

As a consequence of these relations it is seen that the consi-
dered points (x;4u; ;-1 b;, y;4n;, -1 k;, i—1) may lie not
only in § but fall also in its complement in £ which consists of two
rectangular strips of height ém on both sides of §, below and
above it.

Then if m, = m,; and m, < m, are the two extreme values
of the continuous function f (z, y) on Z, we must have

my S f(Xj4+u -0 hpy, + 0500k 2 S my.

It follows that relative to two consecutive vert ces
(z;, I'y (), (244, Ty (x;44)) the formula (6) yields

Fv(xj+1) - Fv(xj) < 7
.

m; <

Xj+1 — X
In other words the slope of each side of the considered part
of the polygonal lines I', is bounded by the numbers @, and i,.
Therefore, an almost verbatim repetition of the proof of
Lemma II applied to the point (x', I', (z)) and (z”, I', (z"))

on the same polygonal line such that 0 < |2 — 2’| < 6,
yields

my(x"=x") = I(x") = I',(x') < iy (x" —x")

or

r,(x" — I, (x
g 2 LD 26)

x" - x'
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Let (X, 7,) and (X,, ¥,) be the points of # C ¥ where
f (z, y) takes its extreme values m, and m,, respectively. Then
on account of the relations (23a) and (23b) one has:

|f(XL, 7)) —f(x, ) <e
(X5, 02) = f(x",p) ] <e;
that 1s
F&Ly) —e<m <f(x,y)+e¢ (27)
J&LYy) —e<im, <f(x,y)+e. (28)
The combination of (27) and (28) with (26) yields
r,(x") —I,(x’)

"

J(x'y) —e< <f(xLy) + €.

— xl
Noting that y' = I' (') we can also write

r(") - I&)

"

x" - x'.

S(x', I'(x"))| <e

withv>Nand 0 < |2" —2' | < §.

On observing that whatever has been established to the right
of P, can in similar manner be established to the left of P,
(taking h; < 0), we can announce:

General Existence Theorem: Consider the ordinary diffe-
rential equation

dy

rlaACIN) (1
where [ (z, y) is a single but real valued function of the two real
variables z, y, defined and continuous on some open and simply
connected region R of the z, y-plane. Then for each point
P, (xg,yo) € R there exist a closed interval [, = [aq, b,],
a, < o < b, and a function I' () e C' on I, such that I' (2)
is a solution of (1) on 7, and y, = I' (z,) -

5. In order to consider the case where P, is a boundary
point of R we assume now that f (z, y) 1s defined and continuous
on the union R of the open region R and some set of its boundary
points.
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Let o, with radius p and center at P,, be a circular arc
extending from one boundary point of R to another and lying
entirely in R.

This arc divides R into two sets, one of which contains P0
Let Q designate the union of this set and w.

Suppose that the following conditions are realized (if neces-
sary by decreasing the radius p):

@) The numbers m, = inf {f (z, )} and m, = sup {f (=, ¥)},

(x, y) € Q, are finite;

b) Two points P1 and P2 with common abs01ssa X can be
found on the lines T, and La, y = yo + (z—2,) m, and Y = Yo
+ (x—1,) m,, respectively, such that the segments P, P, and
P, P, lie in Q.

Let 4 represent the closure of the triangular region P, P, P,
bounded by the lines 11, L, and z = %.

Clearly in 4 C @, we can proceed just as before in 4,, and
show the existence of an integral curve I starting at P, and
lying entirely in A.

It must be mentioned that there are other methods of cons-
truction of such triangular regions 4 besides the above indicated
procedure. |

It 1s left to the interested reader to show éthat regions of
convergence Acan easily be found for the differential equation

dy x — \/2x2 — 2y?

dx y

with P, (1,1).

6. Substitutes for the Set of Incremental Coefficients k:
Without any change in the method of proof of this general
existence theorem, the set of coefficients (4) can be replaced
by the following larger set of coefficients

Kjo = hyf (x;+ah%, y, +BhY)
i—1

kii=h;f(x;+u,-1h;,pi+ ) Mji-1,0 k) (29)

i'’=0

i=1,2,..,p
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with the parameters «, §, u and 5 satisfying the relations

0 (b —x0) "2 + B2 (b —x0)2"2 <1, q>0,9 >0

i—1

Z |’1j,i~1,i'| <1.

i’=0

In fact, proceeding as before it will be readily found that the
relations (16), that is,

| k; il < h;m i =0,1,...,p

hold, the four lemmas are valid, as are other relations and argu-
mentations given in the course of the proof of the theorem.

It 1s seen that set (4) is a subset of (29).

We readily recognize that not only Euler’s relation but also
other wellknown recurrence formulas, like those used in Modified
Euler, Runge-Kutta and Nystrém methods, are members of this
consistent set of incremental coefficients [21].

Finally it is worthwhile observing. that the “ %k ”s which
appear in (4) and (29) are in linear combinations. However
with some slight and obvious changes we may take them in non-
linear combinations. One such set of non-linear type is:

kjo = hyf(x;+ah}, y;+phT)

i—1 1
k; ;= hjf<xj + W -1 By Yt ( Z i =1, k;,i'>r>» (30)
_ i'=0
i =1,2,...,p

where r is a natural number and the parameters «, f, 4 and
satisfy the relations

o (by —x0)* 72 + B (by —x)** "% £ 1 q>0,9" >0

0=uji-1 =1

i—1
Z M, i1, = 1, Hi i-1, = 0.
i'=0
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