
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 11 (1965)

Heft: 2-3: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: EXISTENCE AND APPROXIMATION THEOREMS FOR ORDINARY
DIFFERENTIAL EQUATIONS AND THEIR SYSTEMS PART I

Autor: Sarafyan, Diran

DOI: https://doi.org/10.5169/seals-39971

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 28.11.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-39971
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


EXISTENCE AND APPROXIMATION THEOREMS

FOR ORDINARY DIFFERENTIAL EQUATIONS
AND THEIR SYSTEMS1)

PART I

Diran Sarafyan

1. Historical background and weaknesses of Peano's theorem.

Euler in his work written in Latin entitled " Institutionnel
Calculi Integralis " published in 1768, described a method of

approximate solution of ordinary differential equations of first
order

dy

dx

subjected to the initial condition x ;r0, y y0 •

In this method, through the use of the recurrence formula

37+1 37 + (Xi+i-xdfix^yi) (2)

starting with the known pair of numbers (x0, y0) or the point
P0 (x0, y0) and an increasing sequence {xt}, the numbers

yu yn or the points Pt {xu 2/f), (i =- 1, n) are determined.
Euler considered these numbers yt as approximations to the

exact values Y (x^ where y Y (x) is assumed to be a solution
of (1) satisfying the initial condition.

The geometric figure obtained by joining consecutively the
points P0, Pu...,Pn by a straight line segment is called an
" Euler polygonal-line " and his numerical procedure for the
approximate solution of differential equations the Euler's
Method. It is also quite often referred to as Cauchy-Lipschitz

i) Sponsored by tlic Mathematics Research Center, U.S. Army, Madison, Wisconsin
under Contract No. I)A-11 -022-0RI)-2059.
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Method because of the improvements and generalization
introduced by these mathematicians.

Indeed, although Euler originated this method, he never
treated rigorously the convergence of the sequences and series

involved in his process*) nor did he show the existence of the
solution Y (x) which he supposedly was approximating.

Between the years of 1820 and 1830, Cauchy in his lectures
at the u Ecole Polytechnique " in Paris, brought in the
mathematical rigor that Euler's original numerical procedure lacked
and converted it into an existence and uniqueness theorem for
equations (1) and for systems of differential equations of the
type

~ fi(x,yr,(11,.,.,«). (3)
ax

A summarized form of this theorem was first published in
1835. A better but still incomplete version of it was published
in 1844 by one of Cauchy's pupils, father Moigno (see [1]).

In 1868, Lipschitz considerably simplified Cauchy's proof
[2]. In particular he replaced the requirement of the existence
and the continuity of the partial derivative of / (x, y) with
respect to y for equation (1) and the existence and the continuity
of the partial derivatives of the functions ft (x, yu yn) with
respect to dependent variables yt for the systems (3) by a less

restrictive requirement which is now well known as a Lipschitz
condition.

In 1886, Peano, separating the problem of the existence of
the integral curves of (1) from that of their uniqueness at a point
(x0l y0), established an existence theorem [3] with no other
requirement on / (#, y) except its continuity, which theorem he

later extended to systems (3) [4].
Peano proved his existence theorem with the use of a class

of formulas satisfying a certain approximation condition. He
considered Euler7s formula as an example and showed that it
was a member of his class of formulas. Unfortunately, he failed

*) See for instance, " Leonardi Euleri Opera Omnia; Series 1, Opera Mathematica,
Volumen XI; Institutiones Calculi Integral's; 1913 pp. 427-429.
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to show what the other formulas were or how one could construct
them.

Thus although Peano did establish, theoretically, the
existence of a major and a minor solution through a point, he did not

provide the practical means of constructing or approximating
them.

He illustrated his findings with the example, by now well

known, that y ± x2 were the two extremal solutions of the
differential equation

4x3 j/
—j r when v 7^ 0 or y 7^ 0
x + y"

0 when v y 0

corresponding to the initial conditions x 0, y 0. But he

did not indicate which were the members of his class of formulas
that would reveal the existence of these specific extremal
solutions or enable one to approximate them. Eider's polygonal
lines defined through EuleEs recurrence relation, as used by
Peano, would show only the existence of the trivial solution
y 0.

It is worth mentioning at this stage, fleetingly, leaving a

more thorough discussion of this subject for the second part of
this work, that if the polygonal lines were defined, for instance,
with the use of the formula

1

Jà+i yi + - U<i. 0 + ku 2)

where

Ko +

h 1 hf (x I + h,0)

then one would obtain the major solution to the right of the
point (0, 0) and the minor one to the left.

A decade later Arzelà [5] considerably simplified the proof of
Peano's theorem by using solely Euler's recurrence relation
without recourse to Peano's class of formulas.

dJL

dx
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However, in doing so, Arzelà was reducing, perhaps unwittingly,

the theoretical scope of Peano's theorem and transforming
it into a constructive existence and pseudo-uniqueness theorem,
since, as will be shown later on, the existence of only a single
solution can be established and approximated through this
method.

Nevertheless, Arzelà's method and its variations [6, 7, 8, 9]
are today preferably used in place of, and even at times mistaken
for, Peano's original, tedious proof.

However in spite of this wide and universal acceptance of
Arzelà's method there seems ground to believe that the before
mentioned subtle limitation imposed by this method remains
either undetected or misunderstood.

More recently Sansone [10], through the adaptation of an
elegant method given by Tonelli, relative to the existence of
solutions of Volterra type functional equations [11], still further
shortened and simplified the proof of Peano's theorem.

It must be noted once more, as in Arzelà's proof, that the
resulting simplicity was detrimental to the theoretical scope of
Peano's theorem.

The Sansone-Tonelli method also yields and approximates
only one solution from an infinite number of solutions that may
pass through a point. However in this case, this solution may or

may not be the same as the one obtained through Arzelà's
method. This, as will be seen, is due to the fact that Arzelà's
and Sansone-Tonelli's methods are each biased in favor of one

particular solution, not necessarily the same, from all the
solutions of the differential equation(s) satisfying the given initial
condition.

Furthermore, this " biased " solution may not be an interesting

extremal solution. In this case these two methods do not
provide means even for the approximate determination of this
preferred (extremal) solution.

Although Arzelà's method is more convenient in practical use

than Sansone-Tonelli's, both are inadequate for numerical evaluation.

Besides, from the standpoint of approximate solution of
differential equations, Arzelà's method [9b, 12a] is evidently no
other than the numerical procedure given by Euler some 130
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years earlier, which as is well known, is a " first order approximation

" method, that is, a very poor one.

At times Peano's theorem is treated by the method of

Weierstrass' polynomial approximation originated by Severini

[13, 12b, 14]. But this method does not proxide any practical
basis for the approximate solution of the differential equations.

Finally during the period 1946-1947 Baiada [15, 16, 17] and

Cafiero [18], simultaneously but independently of each other,
succeeded in improving Tonelli-Sansone's and Arzela's versions
of Peano's theorem, respectively. Their approach made possible
the determination of every solution through the initial point P0.

Baiada's method, like Tonelli-Sansone's requires an integration

at each step. This makes the process impractical except in
some special cases, such as, when / (x, y) is a polynomial.

In Cafiero's method the rectangular region V1V2V3V4 (fig. 1)

is partitioned by a net of horizontal and vertical lines into a set
of rectangles which are called " partial rectangles ". A point P
belonging to the region V1V2V3V4 will fall in fi(h) (P), a certain
partial rectangle corresponding to some partitioning Z)(h)

(where " h " designates the norm of partitioning of the interval
[x0, b{\ of figure 1).

A number ySh) (P) satisfying the relation

m(h) (P) ^ y(h) (P) g M(h) (P)

is associated with the point P, m(h) (P) and M(h) (P) being the
extremal values of / (x, y) on R(h) (P).

A line with slope y(h) (P0) is drawn from P0 to P1>h, its
intersection point with the right vertical side of R(h) (P0). The
process is repeated again and again until a polygonal line is
obtained extending over the entire interval [x0, b^. Thereafter
the polygonal lines corresponding to all modes of partitioning
D{h) are considered and Ascoli's theorem is used.

These are some of the main features of the proof of Cafiero's
version of Peano's theorem. They have been indicated here
for two reasons: this approach is little known and it is entirely
inadequate for concrete practical applications.

It is now our purpose to establish a strong constructive
theorem.
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In this theorem also the continuity of the function f (x, y)
[19, 20] will he the sole requirement, however the polygonal lines
will be defined by a class of parametric recurrence formulas
instead of the single and rigid formula (2). In this way the
various weaknesses or shortcomings encountered in the Peano's
theorem will be avoided. However the advantages of this
new existence theorem will not be made evident until the second

part of this work, where it will also be shown that only a change
of the recurrence relation through which the (convergent)
sequence of polygonal lines {rt} is defined may affect the integral
curve T, the limit of {rt}

2. Symbols and Notations. For the sake of convenience
and unless otherwise stated the symbols Pf, p, P, P' and P" will
represent the points Pt (h yt) p (x, y), P (x, y), P' (x', y') and
P" (x", y") respectively.

The function / (x, y) and its value at Pf will be often denoted

by / and fh respectively.
The first order derivative of a function cp (x) will be denoted

by — and whenever there is no confusion, merely by cp'. Its
dx

higher order derivatives will be denoted by Dnx cp (#), n ^ 2, and
whenever there is no ambiguity, merely by Dn cp (x) or Dn cp

As usual, cp (x) e Cn will indicate that cp (x) belongs to the
class C\ that is, cp and its derivatives up to the order n (inclusive),
are continuous.

Finally the closure of the open set X will be designated by X.

3. We shall first be concerned with the derivation of four
lemmas. Consider the differential equation (1) where / (x, y)
is a single but real valued function of the two real variables x, y,
defined and continuous on some open and simply connected

region R of the x, y plane.
Let P0 (x0l y0) be a point of R. There exists a circular

neighborhood of P0 such that is interior to R.

Disregarding the case / (x, y) 0 as trivial, assume m represents
the norm of / (#, y) over the set that is

\\f(x,y)\\5,0
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Thus for all points of Qlwehave \f(x,y)\ gm.
The so-called butterfly region shall now be constructed in the

usual way as follows:

Draw through P0 the lines L1 and L2 with respective slopes

- m and + m These lines intersect the circumference

constituting the boundary of the circle in four points, two to the

left of P0 and two to the right.
For the sake of simplicity, only the two points to the right will

be considered, henceforth designated by V± and V2 as shown in

Figure 1.

The line through V1 and V2, which intersects perpendicularly
the x-axis at (b1, 0), together with the lines L1 and L2 bound A1,
the triangular region P0 V1 V2 which with its boundary lie
entirely in the interior of R.

What follows will revolve mainly around the closed interval
/1 =s [a?0, and the closure A1 (the right half of the butterfly
region).

We shall refer to I1 as the " first right partial interval of

convergence " or merely as an " interval of convergence " while
A1 will be referred to as the " first right partial region of convergence

" or simply a
14 region of convergence ".

y

m h

Fig. 1
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Consider an arbitrary partition of I± by dividing this interval
in any manner into n parts. Let the points of division be

x0 < x1 < x2 < < xn_l < xn bx

We shall now describe a device which to every division point
of It will make correspond a unique but special point in Ax.

Let Xj and xj+l be any two consecutive points of the partition
and define xj + l — Xj hj < H (n), the latter being the norm
of the partition.

Assume the point Pj (xj, yj) e At corresponding to Xj to be

known. Relative to this point Pj consider the coefficients

kj,o hjfixj + ah),yj+ßh)')
(4)

1 kj,i hjf(xj+fij,yj+ij,i-ikj,i-i)1 1,2, ...,p

where p is an arbitrarily selected natural number, "q"s are positive

ration als, and the Greek letters a, ß, p and rj designate
parameters or arbitrary constants such that

f a2 {b1 — x0)2q~2+ ß2 (bt —x^>0,
0 ^ /(j. ^ 1 i1,2(5)I -1 I ^ 1

Define
pyj•i yj+I; (0

i 0

where the " k " s are known quantities obtained as described
above and the "A" s designate again, just as the other Greek

letters, parameters or arbitrary real constants but now such that

(7)
i=0

Let the point P/ + 1 (xj + uyj + 1)^ where yj + 1 is obtained by
the use of any particular recurrence formula (6), correspond to
the partition point xj + 1 We shall show that PJ + 1 e Ax

I

I
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Let us recall that | / (x, y) | ^ m for all points of Qx. Bat
because of the first relation in (5), (xj + ochj, yj + ßhf) e Qx, thus

\f {xj + tthqjyj+ßhqj)\ < m.

Multiplying both members of this relation by hj > 0 we
obtain

I kJt o
I g mhj (8)

On the other hand with i 1 we have from (4)

kj,ihjf,v;+ H o yj + „ kJt 0),
or also

I i I hj I/(*/+/(/. o hj9 yj + rjjt 0 kJt o) I
• (9)

Furthermore, since | rjJf 0
| ^ 1, one derives from the relation

(8)

- rnhs â i1j,okj,o ^ rnhj
or

yj ~ mhj ^ yj + tijt o kjt o ^ yj + mh} (10)

The triangular region is bounded by the lines x hl
and y y o ± m (x — x0) Thus if a point P(x, y) belongs to
A x then its coordinates must satisfy

*o — x ^ bx

y0 - m(x~x0) S y ^ y0 + m(x-x0). (11)

Since Pj e At% x0 Xj < bXl then (11) becomes •

y0 - m(xj -x0) ^ j/y g y0 + m(Xj-x0)

From the latter relation we derive

y0 - m(xJ+i -x0) g j>j - mhj

yj + mhj S y0 + m(xj+l -x0)

In view of the fact that xj + 1 < bx these relations in turn can
be replaced by

y0 - m (bx Xq) ^ yj - mhj (12a)

yj + mhj ^ v0 + m(b1 -x0) (12b)
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The combination of the relations (10), (12a) and (124) gives

y0- m (hi -x0) g yj + ^ 0 kj_ 0^ y0 + m (fej -x0). (13)

The equations of the two parallel lines to the #-axis through
the points Vu V2 e Qt are

y y0 ± (bx -x0). (14)

A comparison between (13) and (14) indicates that the point
o hj-> Vjj, o &/, o) falls in Q1 between these parallel

lines through V1 and V2 It follows that

I / (Xj + fxjt o hj, yj + rjj, 0 kjt 0) I ^ m

In view of the above relation, (9) can be replaced by

I kjt i I ^ Ä,.m. (15)

Following the same procedure that enabled us to obtain the
relation | kjs 7

| Ig hj m from | kjt 0 j ^ hj m we find consecutively

I kj, 2
I ^ hj m

I ki,Pl S

In other words we have

I kj, 11 ^ hj m i 0, 1, ...,p (16)

From (4) we derive

I yJ+1 - yj 1 I I h I S I hikJ,* I
•

i=0 0

Then on account of (7) and (16) we have | + 1 — //,• : gS m
and consequently also

yj ~ hjtn^y/+1 ^ yj + hj m (17)

which indicates that the point as was to be proved.
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Thus any recurrence formula (6) enables us to depart from a

known point PjeAl corresponding to Xj and to determine
another point Pj + 1 e At corresponding to xj + 1

Since P0 is a known point we shall depart from it by taking
/ — O and determine through the repeated application of a

particular formula (6) the sequence of points P0, Pl7 Pn_l5
all belonging to A1 and corresponding to respective division
points of the considered partition of I1.

Joining these points consequtively with a line, a polygonal
line P0 Pi Pn is obtained having these same points as vertices
and lying entirely in A1 and therefore being bounded.

Let yn designate the polygonal line obtained through the
partitioning of the interval Ix arbitrarily, into n parts.

Carry out this process for n 1,2,... starting with the
entire interval I± and by adding more and more partitioning
points to the ones already existing, in such a way, that the norm
H (n) decreases monotonically to zero with increasing n.

Thus a sequence of polygonal lines {yn} constituting a family
is obtained.
Now we are ready to establish four lemmas which exhibit

some of the properties of these polygonal lines and are essential
for later use.

For this purpose let yn e $F be an arbitrarily selected
polygonal line with n sides. Thus any property possessed by yn

can be attributed to all the polygonal lines constituting the
family

Lemma I : — The polygonal lines of SF represent uniformly
bounded functions of x e /t

Proof: Since all the polygonal lines yn e lie in A1 they are
uniformly bounded and consequently the functions yn (x)
representing them are also uniformly bounded for all x e I1

Lemma II: — For any two distinct points Pr (x\ y') and
P" [x\ y") of a polygonal line the relation

y" - / ^ m I x" - xß I (18)
holds.
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Proof: The coordinates of any two consecutive vertices
Pj (xr Vj), pj +1 (Xj + uVj + i) of yn satisfy (17), which relation
can also be written:

mxj — mxj+1 rg yJ + 1 — yj ^ mxJ + 1 — mxj (19)

For any two distinct points P', P" of the segment or side

Pj Pj +1 we have

x" — x' XJ+1 — Xj

The combination of (19) and (20) gives us

mx' — mx" y" — y' ^ mx" — mx' (21)

which is essentialty the same as the relation (19) except for the
fact that the numbers (xj, yj) and (xj + Xl yj +1) are replaced by
(x', y')and (x",y")

We thus conclude that the relation (19) holds not only for the
coordinates of any two consécutives vertices Pjr Pj + 1 of yn but
also for the coordinates of any two distinct points of any one
side of yn

Furthermore (21) is equivalent to (18). Therefore the validity

of the relation (18) for the coordinates of any two distinct
points of a side of yn becomes established.

We shall now consider the case where the points Pf and P"
belong to two different sides, for instance PjPj + 1 and Pq Pq + l
of yn1 evidently with integers / 2^ 0 and /4"1=? ^~" 1,

and also for the sake of convenience, with the assumption that
Xj < x' < xj + 1 and xq< x" xq + 1

The use of the relation (19) with the coordinates of the points
P' and Pj +17 Pj + i and Pj + 2i •••> Pq and P" will give consecutively

mx' — mXj+1 g yJ+1 — v' ^ mxJ+1 — mx'

mxj+l - mxj+2 S yj+2 - yj+i è mXj+2 - mxj + i

mxq — mx" ^ y" — yq rg mx" — mxq.
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The addition of member to member, respectively, of all these

relations, yields

mx' — mx" ^ y" — y' S m" — mx'
that is

I y" — y' I S m \ x" — x' |

which proves the lemma.
However it must be observed that instead of m, if we use m1

and m2, the actual minimum and maximum values respectively
of / (#, y) on then the above process would yield

m1(x" — xf) ^ y" — y' g m2(x" — x') (22)

Lemma III: — The family is composed of equicontinuous
functions of x on the closed interval Ilm

Proof: Let y yn (x) be the equation of yn e $F and e be a

G

given positive number. Take 3 — •

m
Assume P' and P" be any two distinct points on yn but such

that I x" — x' I < 3

Then one has

m I x" — x' I < g

Furthermore from the consideration of the Lemma II, it
follows that

\y" - y' I < e,
or

I yn(x") - y„(x') I < e
where x\ x" g /1

Thus since for every positive number g there is a positive
number <5 G/m such that whenever | x" — x' | < <5, x\ x" g ll
the inequality

I y„(x") - yn(x')I< <5

holds, it results that the polygonal line functions of that is
y„ (x), (n 1, 2, are equicontinuous functions on /1.

Lemma IV : — From the sequence of polygonal line functions
{yn (;£')}, xe/tand n — 1, 2, it is possible to select a uniformly
convergent subsequence.

L'Enseignement mathérm, t. XI, fasc. 2-3. 10



— 150 —

Proof: From lemmas I and III it is known that the polygonal
line functions yn (x) e are uniformly bounded and are equi-
coritinuous on the closed interval lx [x0, bx] Then in accordance

with Ascolfs Theorem it is possible to extract from
(#)} a subsequence {yn. (#)} which will converge uniformly

to a function F (x) And since {yn (x)} are continuous on the
interval Iu the same is true also for this limit function r (x)

For the sake of simplicity the convergent subsequence
{yni (#)} will be henceforth designated by {Pf (#)} with
i 1,2,...; but the subscript i does not necessarily imply,
anymore, that the interval Ix [#0, &1] has been divided into
i parts since now i ^ n

Furthermore, the norm of the partitioning of the interval I x

relative to a polygonal line F^ shall be designated by Ht.
4. We are now in the position to prove that the limit function

is differentiable and also satisfies the differential equation (1) ;

that is, r is an integral curve.
Let x' be an arbitrarily chosen fixed point from the closed

interval lx [x0l bx] and let x" be a neighboring point. It must
be shown that

P(x") - r(x')lim / (V, r (x')).
x" - x'

In other words, we must show that for each e > 0, a natural
number N and a real number ô > 0 exist, such that

Pv(x") - Pv(x')

x — X

for all v > N and whenever 0 < | x" — x' | < b

Let us observe that on account of the continuity of the function

/ (x, y) on the closed circular region Qx and particularly at
the point P' (xf, y') eA1 where y' F (x'), to an arbitrarily
selected e > 0, there corresponds a circular neighborhood ^ of

P', # C Ax such that for all points P (x, y) e one has

If(x,y) ~ f(x',y') I < e

Consider through P' two lines with slope ± f m. These

lines intersect the circle bounding # in four points. Joining
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these points consecutively with a straight line a rectangular

open region 31 C < C A± is obtained.

If 45 designates the length of a horizontal side of M then

105m will be the length of a vertical side (see figure 2).

Let S represent that subset of 3t which is the rectangular
region bounded by the lines y — y' + 4dm

Evidently for all points P (#, y) e S the preceding inequality
holds true. Thus we can say that given e > 0 there exists a
ö > 0 such that

I f(x,y) --/(*',/) I < e (23a)

whenever

I x — x' I g 2ô and j v — y' J ^ 45m (23 b)
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Now since the sequence of functions {rt (x)} converges
uniformly to r (x) on /l7 if e' min (e, 2dm) then we know that
there exists a natural number N' such that for all v > N'

I r(x) - rv(x) I <e'
on the interval Ix

Evidently this inequality holds also for x' e /1? thus

1 r(x') - rv(x')\ < 2dm (24)

On a polygonal line Tv (v > Nf) consider the points
(x\ rv (x')) and (x, Fv {x)) with | x — x' | < 2ô Then because
of relation (18) of Lemma II one has

I rv(x) - rv(x') I < 25m. (25)

We can write

I rv(x) - r(xo I g I rv(x) - rv(*') | + | rv(x') - r(x') \.

The consideration of (24) and (25) gives then

I rv(x) - r(x') I <4öm

provided that v > N' and | x — x' | < 2d
These inequalities imply in their turn that the point (x, T (x))

belongs to the region S. In other words, those portions of the
polygonal lines Tv, v > Nf that fall between the two lines

x x' ±2<5 lie entirely in the interior of the rectangular region

Now it must be observed that Hn, the norm of the partition
of the interval Ix decreases monotonically as the number of
division or partition points increases. It follows that there
exists a natural number N ^ N' such that for all the polygonal
lines Tv, v > N, Hv > ö

This requirement implies that any polygonal line Tv must
have in S at least one vertex point lying to the left of the line
x x' — <3, one to the right of x ~ x' + <5, and at least two
between these lines.

Consider that part of the polygonal line Tv, v > TV, which
extends, from the first vertex located to the left of the line
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x — x' — d to the other first vertex located to the right of

x x' + d

Since now hj < Hv < c5, the relations (14) give

— dm < kj, i < ôm i — 0, 1, p

Then relative to the points hj, yj-\-Vj, i-i kj, i-i)
associated with a vertex (Xj, Tv (xj)), of the above described part
of any one of these polygonal lines one has

yj - dm ^ yj + riJt i-1 kjt ^ ^ yj + dm

As a consequence of these relations it is seen that the considered

points (xjJrjiij} hj, yj+yj, i-± kj} may lie not
only in S but fall also in its complement in M which consists of two
rectangular strips of height dm on both sides of S, below and
above it.

Then if m1 A m1 and m2 A m2 are the two extreme values
of the continuous function / (x, y) on 0t, we must have

äf(xj+ßj,i-ihj,yj + < m2.

It follows that relative to two consecutive vert ces

(xj, rv (xj)), {xj + 1, rv (xj + 1)) the formula (6) yields

- / rv(xj+1) - rv(xj) _m i ^ — <; m 2

In other words the slope of each side of the considered part
of the polygonal lines ro is bounded by the numbers fn1 and m2.

Therefore, an almost verbatim repetition of the proof of
Lemma II applied to the point (xf, Tv (#')) and (x", Tv (x"))
on the same polygonal line such that 0 < | x" - x' | < d,
yields

m1(x"-x') < rv(x") - rv(x') A m2 (x" —xr)

or

_ rv(x") - rv(x') _mi ^ ;—ry S m2 (26)
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Let (x1^yl) and (x2l y2) be the points of M C # where

/ (x, y) takes its extreme values m1 and m2, respectively. Then
on account of the relations (23a) and (23b) one has:

l/(*i,jh) -/(x\y') I < e

1/(*2>#2) -/03/) I < e;
that is

/(*',/) -6<m1 </(x',/) + 6 (27)

f(x\y') - e < m2 <f(x\yj + g (28)

The combination of (27) and (28) with (26) yields

^ M*") - rv(x')/(x - e < ; </(x y + e
X — X

Noting that y' T (xr) we can also write

rv(x") - rv(x') -/(x'T(x')) < G

with v > N and 0 < | — P | < 5

On observing that whatever has been established to the right
of P0 can in similar manner be established to the left of P0

(taking hf < 0), we can announce:
General Existence Theorem: Consider the ordinary

differential equation
dy
-T- f(1)dx

where f (x, y) is a single but real valued function of the two real
variables x, y, defined and continuous on some open and simply
connected region R of the x, y-plane. Then for each point
Po (xoi Vo) E R there exist a closed interval Ix [au bx~\,

a1 < x0 < bx and a function r (x) e C1 on 11 such that P (x)
is a solution of (1) on I± and y0 P (x0)

5. In order to consider the case where P0 is a boundary
point of R we assume now that / (x, y) is defined and continuous
on the union R of the open region R and some set of its boundary
points.
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Let co, with radius p and center at P0, be a circular arc

extending from one boundary point of R to another and lying
entirely in R.

This arc divides R into two sets, one of which contains P0.

Let Q designate the union of this set and co.

Suppose that the following conditions are realized (if necessary

by decreasing the radins p) :

a) The numbers m1 — inf {/ (x, y)} and m2 — sup {/ (x, ?/)},

(x, y) e Q, are finite;

b) Two points P1 and P2 with common abscissa x can be

found on the lines Li and L2, y ~ y0 + (x — x0) m1 and y y0

+ (x — x0) m2, respectively, such that the segments P0P1 and

P0 P 2 lie in ß-

Let 2 represent the closure of the triangular region P0 P1 P2
bounded by the lines Lx, L2 and x — x.

Clearly in 2 C ß, we can proceed just as before in A and
show the existence of an integral curve P starting at P0 and

lying entirely in A.
It must be mentioned that there are other methods of

construction of such triangular regions A besides the above indicated
procedure.

It is left to the interested reader to show rthat regions of

convergence Jean easily be found for the differential equation

dy x — ^Jlx2 — 2y2

dx y
with P0 (1,1).

6. Substitutes for the Set of Incremental Coefficients k:
Without any change in the method of proof of this general
existence theorem, the set of coefficients (4) can be replaced
by the following larger set of coefficients

kj, 0 — hjf(Xj + cchj,yj+ßh^)
£-1

kj, 1 hjf (xj+nj,i_!yj + X i-x, v kJw r) (29)
£' 0

i 1, 2,
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with the parameters a, ß, pand >y satisfying the relations

a2 (bi-Xo)2"'2 + ß2 {bi-x0)2q'~2gl, >0, >0
0 ^ hj, i-l^1 i1,2,...,p

i-1
Z I U !•

i' 0

In fact, proceeding as before it will be readily found that the
relations (16), that is,

I kjj I <; hj m i 0, 1, ...,p

hold, the four lemmas are valid, as are other relations and
argumentations given in the course of the proof of the theorem.

It is seen that set (4) is a subset of (29).
We readily recognize that nob only Euler;s relation but also

other wellknown recurrence formulas, like those used in Modified
Euler, Runge-Kutta and Nyström methods, are members of this
consistent set of incremental coefficients [21].

Finally it is worthwhile observing that the " k "s which
appear in (4) and (29) are in linear combinations. However
with some slight and obvious changes we may take them in
nonlinear combinations. One such set of non-linear type is:

kj,O bjf(xj+ ahj> yj +ßhqj)

kj,i hj, yj+^ »-t.«' )• (30)

i 1, 2, p

where r is a natural number and the parameters a, ß1 p and rj

satisfy the relations

a2 (bx ~x0)2q'2 + ß2 (bx-x0)2q'~2 ^ 1 q > 0, q' > 0

0 g Pj,t-1 ^ 1

i-l
Z ij,i-i,ï 1

' 0 •

i' 0
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