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On obtient ainsi les relations

(p-l-j)
dt=(-1)"(P 1

—/ÔJ>(0)
rc

(j 0, 1, p-1), (33)

qui conduisent aux valeurs cherchées des coefficients de Wp-1 (x),
valeurs qu'il est inutile de transcrire ici.

Remarquons pour clore cette synthétique exposition que l'on
peut remplacer l'intervalle [o, x] par un intervalle quelconque
[a, x] avec la même caractéristique — Pn(x) n'a aucune racine c

dans cet intervalle — Il suffit pour cela d'introduire les développements

de Pn (x)7 Wp-^x) et f0(x) suivant les puissances
positives de (x — a). Une fois effectué ce changement, l'intégrale de

(29), étendue à l'intervalle [a, #], ne figurera pas dans la résolution

du problème de Cauchy

x x0 y y0 y' y0y'""1»

si l'on prend x0 a, et l'on aura un système linéaire qui
permettra de déterminer les divers coefficients de Qn+P-i{x).

9. Exemples.

Un exemple simple pour l'équation (3) est constitué par
l'équation

x2 - 1

—-—y" - xy'+

dont ]a solution générale s'écrit
* f'(t)

y C0 (x2 +1) + CjX + J(x-f)2
_

dt
n 11

ou bien sous la forme (18)

y — (x +1) + c + [1
(x—a)2'

2 a2 — 1 m
x tx 1

+ 2KX~0(?2_1)2

avec la condition a2 # 1 si / (a) # 0.
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La solution du problème de Cauchy (x — x0l y y0, y'
y0) peut être facilement déduite de cette dernière expression

en prenant a x0 ^ ±1.
Un autre exemple est constitué par l'équation hypergéomé-

trique du type (20)

x-x2)y"- p(l-2x)y'-p(p + l f0(x) (34)

où oc y —p, ß — (/? + l), dont la solution classique ne

peut être mise sous la forme connue représentée par une intégrale,
ß étant un entier négatif. La solution (23) de l'équation homogène
(20), dont les coefficients vérifient les conditions (24) qui prennent
une forme simple

U + l)^+i + (p + l-j)qj0 0' =0 1

s'écrit en fonction des constantes arbitraires Cx et C2

y0 C1xp+1 + C2 £ (-1); (35')
i 0

Cette solution a la forme plus simple

1 (x _t/)P+ 1

y0 $h(u) - da(35)
o (P + l)!

avec les conditions

î i
J h (u) du Â1 j h (m) w'dw x42 (/ 1 2 p + 1)
0 0

A} et A2 étant des constantes arbitraires.
La solution générale de l'équation non-homogène (20) sera

alors

1 x f(p)(t) P~1

y — yo + J*~^P
t _ t2

dt + Z wix' (a ¥=0 ; l) (36)

où

P'1

(p — i + 1)! d j i
£ (-1
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expression qui peut être facilement écrite sous une forme plus
restreinte.

La vérification de (35') est immédiate puisque yx — xp+1 et

y2 (1 —x)p+1 sont des solutions particulières connues de

l'équation homogène (34). Il en est de même de (36) qui peut
être dérivée (p+2) fois dans les hypothèses faites.

Résumé

Les auteurs étudient une équation différentielle linéaire du
ft-ième ordre (3), à coefficients polynômes de la classe Appell,
dont la résolution peut se faire par une voie élémentaire et qui
assure une unité d'exposition au chapitre des équations
différentielles du cours classique d'Analyse. Il est à remarquer que
l'équation (3) a la même généralité que les équations à coefficients
constants ou du type d'Euler sur lesquelles elle a l'avantage de

ne pas introduire une équation algébrique caractéristique, les

fonctions fondamentales étant immédiatement mises en
évidence. Une extension de (3) a conduit M. C. Saulesco aux équations

(20) ou (22) qui dépendent d'un paramètre entier p > 0,
et l'exemple de l'équation hypergéométrique (24) permet la
vérification directe des résultats exposés d'une manière trop
succincte.

(reçu le 1er avril 1964)

Institut Polytechnique
G. Dorobanti 232
Bucarest (3)
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