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ou bien, d'après (13) et observant que T (h) — 1 )nh.P0

fia).
h (-ir-V- (16)

La solution générale cherchée sera alors

y Qn(x)+ }(x~t)"f-^dt+ (17)
a *n\*) "0

ou bien, en intégrant par parties et tenant compte de (14) pour
éliminer CB, elle aura l'expression

y I +
'(-1)"
7?» fia)

'tr An-l P"(0 +(*-0^-1(0^,,+ n\{x~t)n -T— f{t) (18)
a \V

5. Observations.

a) Sous la forme (17), la résolution de (3) nécessite l'existence
et l'intégrabilité de la dérivée f (x), tandis que la forme (18)
ne suppose que Vintégrabilité de f (x).

b) L'expression (18) met en évidence n fonctions fondamentales

de (3) —les polynômes qui multiplient les constantes
arbitraires Ci. Elles ont été déterminées sans résoudre aucune équation
algébrique caractéristique, propriété qui constitue un avantage
d'ordre pédagogique sur les équations linéaires à coefficients
constants ou sur les équations d'Euler.

c) La solution générale (18) de Véquation (3) appartient à la
classe Cn [a, b~\ si la fonction connue f (x) est bornée et intégrable

sur tout intervalle [a, b] de Faxe Ox, où a et b sont compris entre
deux racines consécutives réelles de Véquation Pn{x) 0.

d) Si c est une racine réelle de cette équation Pn(x) 0, la
droite x — c 0 est encore une intégrale car le long de cette
droite dx 0.
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e) La solution (17) existe aussi pour a c, racine de Pn (x),

(d'ordre de multiplicité m) si la fonction / (x) admet une dérivée

au voisinage de c où celle-ci se présente sous la forme

/'(x) (x-c)Vi (x)

avec f1 (c) ^ 0,oo et q ^ m, car c est une singularité apparente

fit)
pour Le cas m — l<q<m conduit à des intégrales géné-

Pn(t)

ralisées, les solutions effectives de (3) étant données par (17)

(pour a c), et seulement le cas q ^ m — 1 est à rejeter une fois

que les intégrales correspondantes de (17) sont divergentes au
voisinage de c.

6. Généralisation de la méthode.

Le problème étudié s'étend d'une manière naturelle au cas
des équations (3) qui peuvent être réduites par p dérivations à

l'équation

yO.+ P) =/oP)(*> a9)

M. Const. Sàulesco, étudiant IIIe année, s'est proposé de trouver
ces équations et a montré qu'elles se présentaient sous la forme

Tp (y)t(-1)-' Cp~+lxP«>(x) (x) /0 (x) (20)
i 0

où Pn(x) est un polynome arbitraire du ft-ième degré et Cba le
nombre des combinaisons b à b de a objets. Une suite de p
intégrations permet immédiatement d'effectuer le passage de

(19) à (20), ce qui constitue une vérification directe.
Par l'introduction des polynômes de la classe Appell Pn(x),

[n 0, 1, qui satisfont aux relations

A°(x) n (n — 1)... (m — i +1) P„_; (x), (i 0 1 (21)

l'équation (20) prend la forme généralisant (3)
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