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ou bien, d’aprés (13) et observant que 7 (k) = (—1)"h.P,

@
h = (-1 P, (16)
La solution générale cherchée sera alors
_ [P AR L f@
y —Qn(X)+£(X~t) Pn(t)dt+( 1) o (17)

ou bien, en intégrant par parties et tenant compte de (14) pour
éliminer C,, elle aura expression

n—1

— n—i_ ¢ q\n—i _(_l)n _ (x___a)n
y = l_:ZO Ci[x" ' =(=1)"""P,_(0)] +[ P, P (@) :lf(.a)

Pn(t) -+ (x_t)Pn—l(t)
P, (1)

+n}(x—-t)"_1 f(t)dt. (18)

5. OBSERVATIONS.

a) Sous la forme (17), la résolution de (3) nécessite 'existence
et 'intégrabilité de la dérivée f' (z), tandis que la forme (18)
ne suppose que Uintégrabilité de f (x).

b) L’expression (18) met en évidence n fonctions fondamen -
tales de (3) — les polynomes qui multiplient les constantes arbi-
traires C;. Elles ont été déterminées sans résoudre aucune équation
algébrique caractéristique, propriété qui constitue un avantage
d’ordre pédagogique sur les équations linéaires a coefficients
constants ou sur les équations d’Euler.

¢) La solution générale (18) de U'équation (3) appartient a la
classe C"[a, b] si la fonction connue f (x) est bornée et intégrable
sur tout intervalle [a, b] de U'axe Ox, ou a et b sont compris entre
deux racines consécutives réelles de U équation P, (x) = 0.

d) Si ¢ est une racine réelle de cette équation P, (x) = 0, la
droite £ —c¢ = 0 est encore une intégrale car le long de cette
droite dz = 0.
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e) La solution (17) existe aussi pour ¢ = ¢, racine de P, (z),
(d’ordre de multiplicité m) si la fonction f (z) admet une dérivée
au voisinage de ¢ ou celle-ci se présente sous la forme

frx) = (x=0)'fi (%)

avec f, (¢) # 0,00 et ¢ = m, car ¢ est une singularité apparente

./Z . ' o
pour :fﬁ((%) Le cas m—1<g<m conduit & des intégrales géné-
ralisées, les solutions effectives de (3) étant données par (17)
(pour @ = c¢), et seulement le cas ¢ = m —1 est a rejeter une fois
que les intégrales correspondantes de (17) sont divergentes au

voisinage de c.

6. GENERALISATION DE LA METHODE.

Le probleme étudié s’étend d’une maniére naturelle au cas
des équations (3) qui peuvent étre réduites par p dérivations a
I’équation
fo? (%)

P, (x)

Y(Iz+p) — (19)

M. Const. Saulesco, étudiant I11e année, s’est proposé de trouver
ces équations et a montré qu’elles se présentaient sous la forme

T,0) = ¥ (=D G PP (7 () = o) (20)

o P,(z) est un polynome arbitraire du n-iéme degré et C° le
nombre des combinaisons b & b de a objets. Une suite de p
intégrations permet immédiatement d’effectuer le passage de
(19) & (20), ce qui constitue une vérification directe.

Par I'introduction des polynomes de la classe Appell P, (z),
(n = 0,1, ...), qu satisfont aux relations

PP(x) =nm-1)..n—i+1)P,_;(x), ( =0, 1, ..., n) (21)

’équation (20) prend la forme généralisant (3)
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