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SUR UNE ÉQUATION DIFFÉRENTIELLE LINÉAIRE
A COEFFICIENTS VARIABLES

par Radu Badesco, Eugeniu Dumitresco, Constantin Saulesco

1. Considérations préliminaires.

Les cours classiques d'Analyse à l'usage des futurs physiciens
ou ingénieurs présentent aujourd'hui d'une manière assez
complète les équations différentielles linéaires. Après l'étude des

équations linéaires à coefficients constants, qui peut être
immédiatement généralisée au ft-ième ordre, les propositions concernant

l'opérateur différentiel linéaire T (?/), représenté par le

premier membre de l'équation, s'étendent d'une manière
naturelle au cas des coefficients variables. Comme première
application, les équations du type d'Euler réductibles aux équations
à coefficients constants.

La solution générale de toute équation différentielle
appartenant à ces classes peut être écrite seulement si Von sait résoudre

Véquation algébrique caractéristique du n-ième degré attachée à

cet opérateur et c'est là la première difficulté pédagogique à

laquelle se heurte une présentation simple et unitaire du cours.
Ensuite, l'extension de la théorie du wronskien à ces équations
doit être faite sous un aspect purement théorique négligeant les

applications dans le cas du ft-ième ordre, car il n'y a pas dans

la littérature connue aucune équation différentielle complète de

cet ordre qui soit assez facilement maniable et d'un simple
aspect.

C'est la lacune indiquée plus haut que nous voulons combler
ici en signalant deux équations différentielles du n-ième ordre,
résolubles par une même méthode, dont l'étude peut être faite

par des moyens assez élémentaires.
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2. Equations différentielles du w-ième ordre.

Nous présenterons ici l'équation d'Euler

T(y)E (-l)""'^r- =/(*) (1)
i 0 ll

qui admet un système simple de fonctions fondamentales

x, x2, xn (2)

et ensuite réquation à coefficients variables Pn (#), polynômes
de la classe Appell de degrés égaux aux indices,

^ •Pi(x)y{i)
T(y)E - iy1 (3)

i 0 l-

L'étude de ces équations a la même généralité que les équations

à coefficients constants du 7i-ième ordre — ou celles d'Euler
du même ordre — et peut être faite en utilisant seulement les
connaissances élémentaires acquises en première année, au cours
d'Analyse. Remarquons que la méthode de résolution ne
comporte au début qu'une seule dérivation de l'équation mais exige,
quand on passe à l'équation non-homogène, la connaissance de
la solution particulière

Y(x) -}(x-tyf(t)dt (4)
ft"• a

de l'équation
Y("+1) /(*)(5)

répondant aux conditions de Cauchy

Y(a) Y'{a)Yw(à) 0. (6)

Rappelons ensuite que les polynômes de la classe d'Appell
sont caractérisés par les relations

dPm (x)

dx (meIV) (7)
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et ont la représentation par intégrale

1 m

Pm (x)J (x - t)m 0 (0 X (8)
0 i 0

où

fl! - D'Ci» J ^ (0 df — D'cU (9)
0

g (£) étant une fonction arbitraire, intégrable sur [o, 1]. On
vérifie immédiatement la relation (7) en dérivant directement
l'expression (8). Observons en plus que la suite Pm (x) xm

qui apparaît dans l'équation (1) appartient aussi à la classe

d'Appell, de sorte que nous présenterons ici seulement la résolution

de (3), celle de (1) pouvant être obtenue d'une manière
analogue.

Dérivant l'équation (3), nous avons

^ r T( Al (tt+1) V -1 (^) rm\TlT(y)] *= £ /m) =f'(X)dx ni #„:=1 ml

et, d'après (7),

/«+i> n\LS^ (io)
p.w

équation qui admet la solution générale, obtenue en appliquant
(4),

y Qn(x) + S(X ~t)" ——dt.(11)
a \J)

Qn (x) est ici un polynome de degré n à coefficients arbitraires

Q„(x)X (12)
i — 0

et a un nombre réel choisi de manière que l'intervalle [a, x] ne
contienne aucune racine du polynome Pn(x).

La fonction (11), qui dépend linéairement de (w+1) constantes
arbitraires Ch doit satisfaire aussi à l'équation (3) et cette condition

nous permettra de déterminer l'une de ces constantes.
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3. Résolution de l'équation homogène T (y) o.

Considérons l'équation homogène T (y) o et écrivons que
le polynome arbitraire y0 Qn{x) vérifie cette équation. Nous

aurons, utilisant la représentation (8) des Pm{x),

T(y0)1 9(0E —ß- yP (x) 0
O i O

1
•

et comme la somme n'est autre que le développement taylorien
de y0(t) au voisinage de t — x, cette condition, indépendante de x,
devient

\ge)y0{t)dt0 (13)
O

ou bien, tenant compte de (12) et de (9),

ÊQh 0, (7o#0). (14)
1 0

Le coefficient Cn s'exprime donc linéairement en fonction des n
coefficients arbitraires Ct(i 0, 1, n — 1).

4. Résolution de l'équation non-homogène T(y) f(x)

Passons à l'équation non-homogène (3) et observons qu'elle
peut être obtenue en intégrant l'équation (10) multipliée par
Pn(x)
—-—, de sorte que nous pourrons écrire pour la solution

particulière Y (x) donnée par (11) [où l'on pose Qn(x) 0]

T(Y) =f(x) -f(a) (15)

La constante d'intégration doit être égale à —/(a) car, d'après
les conditions (6), l'expression T (7) s'annule pour x ~ a.

Ceci précisé, cherchons une solution particulière Yp (x) de (3)
qui soit de la forme Yp 7+A, avec h constante. Nous aurons,
grâce à la linéarité de T (y),

T(Y+h) T(Y) + T(h) ^ f{x)
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ou bien, d'après (13) et observant que T (h) — 1 )nh.P0

fia).
h (-ir-V- (16)

La solution générale cherchée sera alors

y Qn(x)+ }(x~t)"f-^dt+ (17)
a *n\*) "0

ou bien, en intégrant par parties et tenant compte de (14) pour
éliminer CB, elle aura l'expression

y I +
'(-1)"
7?» fia)

'tr An-l P"(0 +(*-0^-1(0^,,+ n\{x~t)n -T— f{t) (18)
a \V

5. Observations.

a) Sous la forme (17), la résolution de (3) nécessite l'existence
et l'intégrabilité de la dérivée f (x), tandis que la forme (18)
ne suppose que Vintégrabilité de f (x).

b) L'expression (18) met en évidence n fonctions fondamentales

de (3) —les polynômes qui multiplient les constantes
arbitraires Ci. Elles ont été déterminées sans résoudre aucune équation
algébrique caractéristique, propriété qui constitue un avantage
d'ordre pédagogique sur les équations linéaires à coefficients
constants ou sur les équations d'Euler.

c) La solution générale (18) de Véquation (3) appartient à la
classe Cn [a, b~\ si la fonction connue f (x) est bornée et intégrable

sur tout intervalle [a, b] de Faxe Ox, où a et b sont compris entre
deux racines consécutives réelles de Véquation Pn{x) 0.

d) Si c est une racine réelle de cette équation Pn(x) 0, la
droite x — c 0 est encore une intégrale car le long de cette
droite dx 0.
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e) La solution (17) existe aussi pour a c, racine de Pn (x),

(d'ordre de multiplicité m) si la fonction / (x) admet une dérivée

au voisinage de c où celle-ci se présente sous la forme

/'(x) (x-c)Vi (x)

avec f1 (c) ^ 0,oo et q ^ m, car c est une singularité apparente

fit)
pour Le cas m — l<q<m conduit à des intégrales géné-

Pn(t)

ralisées, les solutions effectives de (3) étant données par (17)

(pour a c), et seulement le cas q ^ m — 1 est à rejeter une fois

que les intégrales correspondantes de (17) sont divergentes au
voisinage de c.

6. Généralisation de la méthode.

Le problème étudié s'étend d'une manière naturelle au cas
des équations (3) qui peuvent être réduites par p dérivations à

l'équation

yO.+ P) =/oP)(*> a9)

M. Const. Sàulesco, étudiant IIIe année, s'est proposé de trouver
ces équations et a montré qu'elles se présentaient sous la forme

Tp (y)t(-1)-' Cp~+lxP«>(x) (x) /0 (x) (20)
i 0

où Pn(x) est un polynome arbitraire du ft-ième degré et Cba le
nombre des combinaisons b à b de a objets. Une suite de p
intégrations permet immédiatement d'effectuer le passage de

(19) à (20), ce qui constitue une vérification directe.
Par l'introduction des polynômes de la classe Appell Pn(x),

[n 0, 1, qui satisfont aux relations

A°(x) n (n — 1)... (m — i +1) P„_; (x), (i 0 1 (21)

l'équation (20) prend la forme généralisant (3)
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Z (-Wy+' Pn-,(x).yin-'Hx) (22)
i o (n-i)'.il

OÙ

(.p ~ 1) •m -,~/o(-v).
m

Nous donnerons ici seulement les résultats obtenus par
M. Sàulesco qui peuvent être établis d'une manière analogue au
cas traité dans cet article pour l'équation (3).

7. Résolution de l'équation homogène Tp(y) 0.

La solution y0 de l'équation homogène (19) [f0 (x) 0],

y0 Q„+p-iWZ (23)
7=0

qui dépend des constantes arbitraires ne peut vérifier
l'équation homogène correspondante Tp(y) 0 que si l'on introduit

p conditions supplémentaires entre ces constantes. Intégrant
p fois cette dernière équation, apparaît un polynome du (p — 1)-
ème degré et son identification à zéro donne les p conditions
cherchées portant sur les coefficients de Pn (x) [introduits par
(8) ], et sur ceux de y0

Z - A (" -< +j)'• P+ - 1) ' n+j-i 0

0=0, 1, p-\). (24)

Ces conditions peuvent être mises par une autre voie sous une
forme plus restreinte dans laquelle figure la fonction connue

g (t) de (8). Observons pour cela que l'opérateur Tp (y0) peut
s'écrire, tenant compte de (8) et exprimant le polynome y0 par
son développement taylorien en (x — t),

u' P~1 1

Tp(y0) 777 Z CJp-lX'Sg(t).f+>-J
\P~~ *)' j 0 0

r/oj\tï

(25)
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d'où les pconditions mentionnées

y(oJ) (0~

t"

(p-j-1)
dt 0

(j0, 1 p-l).(26)
Si nous prenons le polynome y0 sous la forme

1 (x—UY+P-1
y0j h(m) —— — du (27)

o (n+p-1)!
avec h (u) arbitraire, mais intégrable sur [0, 1], les conditions
(26) s'écrivent

î i
j j g (t). h (u) (t—u)n up~j~1 .dt .du 0 (j =0 1 p — 1)
o o

(28)

qu'on peut aussi déduire directement de (24).

8. Résolution de l'équation non-homogène (20).

Une solution Y de l'équation non-homogène (19) est

1 * n+p- 1 r (p) /x
y J(x-0 (29)

(n +p—1) o P„(t)
K

dans l'hypothèse P„(0) # 0 et comme elle satisfait aux conditions

de Cauchy

7(0) 7' (0) 7(,+p_1)(0) 0 (30)

on peut chercher une solution particulière Yp de (20) qui soit
de la forme

Yp7+ Wp^(x)(31)

où Wp-X{x)est un polynome du l)ème degré en Si l'on
suppose f0(x) de la classe Cp [0, — l'intervalle [0, b] ne contenant

aucune racine de Pn(x)— les coefficients de (x) pourront

être déterminés par une identification
P~ 1

Tp[l7p-i(x)] L /^(0)*. (32)
i O il

1 ' F! n «p i trn p m p n I m n t h p m YT facn
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On obtient ainsi les relations

(p-l-j)
dt=(-1)"(P 1

—/ÔJ>(0)
rc

(j 0, 1, p-1), (33)

qui conduisent aux valeurs cherchées des coefficients de Wp-1 (x),
valeurs qu'il est inutile de transcrire ici.

Remarquons pour clore cette synthétique exposition que l'on
peut remplacer l'intervalle [o, x] par un intervalle quelconque
[a, x] avec la même caractéristique — Pn(x) n'a aucune racine c

dans cet intervalle — Il suffit pour cela d'introduire les développements

de Pn (x)7 Wp-^x) et f0(x) suivant les puissances
positives de (x — a). Une fois effectué ce changement, l'intégrale de

(29), étendue à l'intervalle [a, #], ne figurera pas dans la résolution

du problème de Cauchy

x x0 y y0 y' y0y'""1»

si l'on prend x0 a, et l'on aura un système linéaire qui
permettra de déterminer les divers coefficients de Qn+P-i{x).

9. Exemples.

Un exemple simple pour l'équation (3) est constitué par
l'équation

x2 - 1

—-—y" - xy'+

dont ]a solution générale s'écrit
* f'(t)

y C0 (x2 +1) + CjX + J(x-f)2
_

dt
n 11

ou bien sous la forme (18)

y — (x +1) + c + [1
(x—a)2'

2 a2 — 1 m
x tx 1

+ 2KX~0(?2_1)2

avec la condition a2 # 1 si / (a) # 0.
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La solution du problème de Cauchy (x — x0l y y0, y'
y0) peut être facilement déduite de cette dernière expression

en prenant a x0 ^ ±1.
Un autre exemple est constitué par l'équation hypergéomé-

trique du type (20)

x-x2)y"- p(l-2x)y'-p(p + l f0(x) (34)

où oc y —p, ß — (/? + l), dont la solution classique ne

peut être mise sous la forme connue représentée par une intégrale,
ß étant un entier négatif. La solution (23) de l'équation homogène
(20), dont les coefficients vérifient les conditions (24) qui prennent
une forme simple

U + l)^+i + (p + l-j)qj0 0' =0 1

s'écrit en fonction des constantes arbitraires Cx et C2

y0 C1xp+1 + C2 £ (-1); (35')
i 0

Cette solution a la forme plus simple

1 (x _t/)P+ 1

y0 $h(u) - da(35)
o (P + l)!

avec les conditions

î i
J h (u) du Â1 j h (m) w'dw x42 (/ 1 2 p + 1)
0 0

A} et A2 étant des constantes arbitraires.
La solution générale de l'équation non-homogène (20) sera

alors

1 x f(p)(t) P~1

y — yo + J*~^P
t _ t2

dt + Z wix' (a ¥=0 ; l) (36)

où

P'1

(p — i + 1)! d j i
£ (-1
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expression qui peut être facilement écrite sous une forme plus
restreinte.

La vérification de (35') est immédiate puisque yx — xp+1 et

y2 (1 —x)p+1 sont des solutions particulières connues de

l'équation homogène (34). Il en est de même de (36) qui peut
être dérivée (p+2) fois dans les hypothèses faites.

Résumé

Les auteurs étudient une équation différentielle linéaire du
ft-ième ordre (3), à coefficients polynômes de la classe Appell,
dont la résolution peut se faire par une voie élémentaire et qui
assure une unité d'exposition au chapitre des équations
différentielles du cours classique d'Analyse. Il est à remarquer que
l'équation (3) a la même généralité que les équations à coefficients
constants ou du type d'Euler sur lesquelles elle a l'avantage de

ne pas introduire une équation algébrique caractéristique, les

fonctions fondamentales étant immédiatement mises en
évidence. Une extension de (3) a conduit M. C. Saulesco aux équations

(20) ou (22) qui dépendent d'un paramètre entier p > 0,
et l'exemple de l'équation hypergéométrique (24) permet la
vérification directe des résultats exposés d'une manière trop
succincte.

(reçu le 1er avril 1964)

Institut Polytechnique
G. Dorobanti 232
Bucarest (3)
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