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SUR UNE EQUATION DIFFERENTIELLE LINEAIRE
A COEFFICIENTS VARIABLES

par Radu BapEesco, Eugeniu Dumrrresco, Constantin SAULESCO

1. CONSIDERATIONS PRELIMINAIRES.

Les cours classiques d’Analyse a 'usage des futurs physiciens
ou ingénieurs présentent aujourd’hui d’une maniére assez com-
plete les équations différentielles linéaires. Aprés 1'étude des
équations linéaires & coefficients constants, qui peut étre immé-
diatement généralisée au n-ieme ordre, les propositions concer-
nant Popérateur différentiel linéaire T (y), représenté par le
premier membre de I'équation, s’étendent d’une maniére na-
turelle au cas des coefficients variables. Comme premiére appli-
cation, les équations du type d’Euler réductibles aux équations
a coefficients constants.

La solution générale de toute équation différentielle appar-
tenant a ces classes peut étre écrite seulement si 'on sait résoudre
I équation algébrique caractéristique du n-iéme degré attachée a
cet opérateur et c’est la la premiere difficulté pédagogique a
laquelle se heurte une présentation simple et unitaire du cours.
Ensuite, I'extension de la théorie du wronskien a ces équations
doit étre faite sous un aspect purement théorique négligeant les
applications dans le cas du n-iéme ordre, car il n’y a pas dans
la Iittérature connue aucune équation différentielle compléte de
cet ordre qui soit assez facilement maniable et d’un simple
aspect.

C’est la lacune indiquée plus haut que nous voulons combler
ici en signalant deux équations différentielles du n-iéme ordre,
résolubles par une méme méthode, dont I’étude peut étre faite
par des moyens assez élémentaires.
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2. EQUATIONS DIFFERENTIELLES DU n-IEME ORDRE.

Nous présenterons ici I’équation d’Euler

i, ()
==/ (1)

.

To) = ¥ (-1

qui admet un systéme simple de fonctions fondamentales

&, B ..., B (2)

et ensuite I'équation a coefficients variables P, (z), polynomes
de la classe Appell de degrés égaux aux indices,

Pi(x)y(i)
Al

T() = X (=1 = f(x) (3)

! L’étude de ces équations a la méme généralité que les équa-
tions a coefficients constants du n-ieme ordre — ou celles d’Euler
du méme ordre — et peut étre faite en utilisant seulement les
connaissances élémentaires acquises en premiére année, au cours
d’Analyse. Remarquons que la méthode de résolution ne com-
porte au début qu'une seule dérivation de 'équation mais exige,

quand on passe & I’équation non-homogéne, la connaissance de
la solution particuliére |

1 X
Y(x) = — j"(x —1)" f(1) dt | (4)
de I’équation

Yo = f(x) (5)
répondant aux conditions de Cauchy
Y(a) = Y'(a) = ... =YY" () =0. (6)

Rappelons ensuite que les polynomes de la classe d’Appell
sont caractérisés par les relations

dP,, (x)
dx

= m.P,_,(x), (meN) (7
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et ont la représentation par intégrale

1 m
P,(x) = [(x=0"g@®)dt = Y ax™" (8)
0 i=0
ou
1
a; = (= 1)C, [ fg(ydt = (—1)'Chy; (9)
0

g (t) étant une fonction arbitraire, intégrable sur [0, 1]. On
vérifie immédiatement la relation (7) en dérivant directement
Iexpression (8). Observons en plus que la suite P, () = 2™
qui apparait dans l’équation (1) appartient aussi a la classe
d’Appell, de sorte que nous présenterons ici seulement la résolu-
tion de (3), celle de (1) pouvant étre obtenue d’une maniére
analogue.
Dérivant I’équation (3), nous avons

Pn( ) (n+1) 4 'zl‘ P;n(x) - ’an—l(x)
m=1 m!

= £ )

. [T( )] =

et, d’apres (7),
y(n+1) — n!f/(x)
P, (x)

(10)

équation qui admet la solution générale, obtenue en appliquant

(4),

O

P, (1) .

y=0,(x) + f(x—1)

Q, () est ici un polynome de degré n a coefficients arbitraires

Q,(x) = ) Cx"™' (12)
i=0

et @ un nombre réel choisi de maniere que 'intervalle [a, x] ne
contienne aucune racine du polynome P, (z).

La fonction (11), qui dépend linéairement de (n-+1) constantes
arbitraires C;, doit satisfaire aussi a ’équation (3) et cette condi-
tion nous permettra de déterminer I'une de ces constantes.
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3. RESOLUTION DE L’EQUATION HOMOGENE T (y) = o.

Considérons I'équation homogéne T (y) = o et écrivons que
le polynome arbitraire y, = Q,(x) vérifie cette équation. Nous
aurons, utilisant la représentation (8) des P, (x),

)l yI(x)dt = 0

et comme la somme n’est autre que le développement taylorien
de y,4(2) au voisinage de ¢t = z, cette condition, indépendante de z,
devient

gg(f)yo (dt =0 (13)

ou bien, tenant compte de (12) et de (9),
Z Ci’))n—i - O> (YO :7_/: O) (14)
i=0

Le coefficient C, s’exprime donc linéairement en fonction des n
coefficients arbitratres C; (1 = 0, 1, ..., n—1).

4, RESOLUTION DE L'EQUATION NON-HOMOGENE T (y) = f(2)

Passons & 1’équation non-homogéne (3) et observons qu’elle
peut étre obtenue en intégrant 1’équation (10) multipliée par
P, (z)

n!
culiere Y (x) donnée par (11) [ou 'on pose Q,(x) = 0]

T(Y) = f(x) — f(a) (15)

La constante d’intégration doit étre égale & —f (a) car, d’aprés
les conditions (6), I’expression 7' (Y) s’annule pour z = a.

Cecl précisé, cherchons une solution particuliére Y, (z) de (3)
qui soit de la forme Y, = Y-k, avec h constante. Nous aurons,
grace a la linéarité de 7' (y),

, de sorte que nous pourrons écrire pour la solution parti-

T(Y+h) = T(Y) + T(h) = f(x)
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ou bien, d’aprés (13) et observant que 7 (k) = (—1)"h.P,

@
h = (-1 P, (16)
La solution générale cherchée sera alors
_ [P AR L f@
y —Qn(X)+£(X~t) Pn(t)dt+( 1) o (17)

ou bien, en intégrant par parties et tenant compte de (14) pour
éliminer C,, elle aura expression

n—1

— n—i_ ¢ q\n—i _(_l)n _ (x___a)n
y = l_:ZO Ci[x" ' =(=1)"""P,_(0)] +[ P, P (@) :lf(.a)

Pn(t) -+ (x_t)Pn—l(t)
P, (1)

+n}(x—-t)"_1 f(t)dt. (18)

5. OBSERVATIONS.

a) Sous la forme (17), la résolution de (3) nécessite 'existence
et 'intégrabilité de la dérivée f' (z), tandis que la forme (18)
ne suppose que Uintégrabilité de f (x).

b) L’expression (18) met en évidence n fonctions fondamen -
tales de (3) — les polynomes qui multiplient les constantes arbi-
traires C;. Elles ont été déterminées sans résoudre aucune équation
algébrique caractéristique, propriété qui constitue un avantage
d’ordre pédagogique sur les équations linéaires a coefficients
constants ou sur les équations d’Euler.

¢) La solution générale (18) de U'équation (3) appartient a la
classe C"[a, b] si la fonction connue f (x) est bornée et intégrable
sur tout intervalle [a, b] de U'axe Ox, ou a et b sont compris entre
deux racines consécutives réelles de U équation P, (x) = 0.

d) Si ¢ est une racine réelle de cette équation P, (x) = 0, la
droite £ —c¢ = 0 est encore une intégrale car le long de cette
droite dz = 0.
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e) La solution (17) existe aussi pour ¢ = ¢, racine de P, (z),
(d’ordre de multiplicité m) si la fonction f (z) admet une dérivée
au voisinage de ¢ ou celle-ci se présente sous la forme

frx) = (x=0)'fi (%)

avec f, (¢) # 0,00 et ¢ = m, car ¢ est une singularité apparente

./Z . ' o
pour :fﬁ((%) Le cas m—1<g<m conduit & des intégrales géné-
ralisées, les solutions effectives de (3) étant données par (17)
(pour @ = c¢), et seulement le cas ¢ = m —1 est a rejeter une fois
que les intégrales correspondantes de (17) sont divergentes au

voisinage de c.

6. GENERALISATION DE LA METHODE.

Le probleme étudié s’étend d’une maniére naturelle au cas
des équations (3) qui peuvent étre réduites par p dérivations a
I’équation
fo? (%)

P, (x)

Y(Iz+p) — (19)

M. Const. Saulesco, étudiant I11e année, s’est proposé de trouver
ces équations et a montré qu’elles se présentaient sous la forme

T,0) = ¥ (=D G PP (7 () = o) (20)

o P,(z) est un polynome arbitraire du n-iéme degré et C° le
nombre des combinaisons b & b de a objets. Une suite de p
intégrations permet immédiatement d’effectuer le passage de
(19) & (20), ce qui constitue une vérification directe.

Par I'introduction des polynomes de la classe Appell P, (z),
(n = 0,1, ...), qu satisfont aux relations

PP(x) =nm-1)..n—i+1)P,_;(x), ( =0, 1, ..., n) (21)

’équation (20) prend la forme généralisant (3)
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- !
Z (—1y ((p H i L e = f0 (22)

ou

— !
700 _(p )

Jo(x).

Nous donnerons ici seulement les résultats obtenus par
M. Saulesco qui peuvent étre établis d’une maniére analogue au
cas traité dans cet article pour I'équation (3).

7. REsoLuTION DE L’EQUATION HOMOGENE T, (y) = 0.

La solution y, de I’équation homogene (19) [f, (x) = 0],

n+p—1

0o = Qn+p—1(x) = 'Z'o qj'xj (23)

qui dépend des p+-n constantes arbitraires ¢;, ne peut vérifier
I'équation homogeéne correspondante 7',(y) = 0 que si 'on intro-
duit p conditions supplémentaires entre ces constantes. Intégrant
p fois cette derniére équation, apparait un polynome du (p —1)-
eme degré et son identification a zéro donne les p conditions
cherchées portant sur les coefficients de P, (x) [introduits par
(8) ], et sur ceux de y,

Z (_l)l(n_l+])‘(p+l_]_1)‘an—an+J—l =0
i=0
(j=0,1, ..., p—1). (24)

Ces conditions peuvent étre mises par une autre voie sous une
forme plus restreinte dans laquelle figure la fonction connue
g (t) de (8). Observons pour cela que I'opérateur T, (y,) peut
s’écrire, tenant compte de (8) et exprimant le polynome y, par
son développement taylorien en (x—t),

1 (J) (p—j—1)
n J nt+p—j (0 dt
Tp(y()) (—1) ( _1), Z C 1 X gg(t)t [ tn+l ]
(25)




— 133 —

d’ou les p conditions mentionnées -

1 D pFP=—i—1H
0. [ 29 2o,
0

(j=0,1,..,p-1). (26)
Si nous prenons le polynome y, sous la forme
1 : X —1U n+p—1
Yo = fh(u)( U (27)
0 (n+p—1)!

avec h (u) arbitraire, mais intégrable sur [0, 1], les conditions
(26) s’écrivent .

11
[fg@® . h@.@¢—uwy . .u?"t.dt.du =0, (j=0,1, .., p—1)
00

(28)
qu’on peut aussi déduire directement de (24).

8. RESOLUTION DE L'EQUATION NON-HOMOGENE (20).

Une solution Y de I’équation non-homogéne (19) est

_ PN RN )
Y = (n—l—p—-l)!(j)(x H . P dt (29)

dans I’hypothése P,(0) # O et comme elle satisfait aux condi-
tions de Cauchy

Y(0) = Y'(0) = ... = YY" P~ D Q) = 0 (30)

on peut chercher une solution particuliére Y, de (20) qui soit
de la forme

Y, =Y+ W,_ (% (31)

ou W,_;(x) est un polynome du (p—1)éme degré en z. Si I'on
suppose fo(x) de la classe C?[0, b] — Vintervalle [0, b] ne conte-
nant aucune racine de P,(x) — les coeflicients de W ,_; () pour-
ront étre déterminés par une identification

T,y 0] = ¥ 58O, (32)
i=0 -

I EKneeionement mathém {1 XT faer 9.2
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On obtient ainsi les relations

1 ) (r—1-)) 1
Jgu).t"*v-f[———w””@] = (1 P g )
0 n.

tn+1

(j:0919°"3p_1)5 (33)

qui conduisent aux valeurs cherchées des coefficients de W ,_, (),
valeurs qu’il est inutile de transerire ici.

Remarquons pour clore cette synthétique exposition que I'on
peut remplacer I'intervalle [0, ] par un intervalle quelconque
[a, ] avec la méme caractéristique — P,(x) n’a aucune racine ¢
dans cet intervalle — Il suffit pour cela d’introduire les dévelop-
pements de P, (x), W,_i(x) et fo(x) suivant les puissances posi-
tives de (x —a). Une fois effectué ce changement, 'intégrale de
(29), étendue a l'intervalle [a, z], ne figurera pas dans la résolu-
tion du probleme de Cauchy

(n—1) (n—1)
0

x:x0>y:J’o:y/:J’Oa---ay =)
si 'on prend z, = a, et 'on aura un systéme linéaire qui per-

mettra de déterminer les divers coeflicients de @, ,— (7).

9. EXEMPLES.

Un exemple simple pour I'équation (3) est constitué par
I'équation
x* -1

2

y'—=xy' +y = f(x)

dont la solution générale s’écrit

7@

y=Co(x*+1) + Cix + [(x—1) a At + (@
ou bien sous la forme (18)
5 1 (x—a)?
y=Co(x*+1) + Cix + |- — — f(a)
2 a-—1
" tx — 1
+2§(x—t)(t2_1)2f(t).dt

avec la condition a? # 1 si f(a) # O.
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4

La solution du probleme de Cauchy (r = 2o, ¥ = Yo, ¥
= yo) peut étre facilement déduite de cette derniére expression

en prenant ¢ = x, # +1.
Un autre exemple est constitué par 'équation hypergéomé-
trique du type (20)

(x=xH)y" =p(1=2x)y" —pp+1)y = fo(x) (34

ou o =9y = —p, f = —(p+1), dont la solution classique ne
peut étre mise sous la forme connue représentée par une intégrale,
p étant un entier négatif. La solution (23) de 'équation homogene
(20), dont les coefficients vérifient les conditions (24) qui prennent
une forme simple

(J+1)q;ey +(p+1—=j)g; =0 (j=0,1, ..,p—1)

s’écrit en fonction des constantes arbitraires C, et C,
14
= O 4 G, Y (— 1) Chy X (35)
i=0

Cette solution a la forme plus simple

__.\p+1
Vo = jh (u)%du (35)

avec les conditions
1 1 .
fhwydu = Ay, | h(Wuldu = 4, , (i=1,2, ..., p+1)
0 0

A, et A, étant des constantes arbitraires.
La solution générale de I'équation non-homogéne (20) sera
alors

x (p)
j( ) L 0 ()dt-i— Z wix' (a#0; 1) (36)

y = yo +
(p+1)'a I — i=0

ou

(p_l+1)'l' Z ( )j_i+1(p—j—1)!'f(()j)(0)a
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expression qui peut etre facilement écrite sous une forme plus
restreinte.

La vérification de (35’) est immédiate puisque y, = 2?*! et
Y, = (1 —x)?*! sont des solutions particuliéres connues de
Iéquation homogeéne (34). Il en est de méme de (36) qui peut
etre dérivée (p+2) fois dans les hypotheses faites.

RESUME

Les auteurs étudient une équation différentielle linéaire du
n-ieme ordre (3), a coefficients polynomes de la classe Appell,
dont la résolution peut se faire par une voie élémentaire et qui
assure une unité d’exposition au chapitre des équations diffé-
rentielles du cours classique d’Analyse. Il est & remarquer que
I'équation (3) a la méme généralité que les équations a coeflicients
constants ou du type d’Euler sur lesquelles elle a 'avantage de
ne pas introduire une équation algébrique caractéristique, les
fonctions fondamentales étant immédiatement mises en évi-
dence. Une extension de (3) a conduit M. C. Saulesco aux équa-
tions (20) ou (22) qui dépendent d’un parametre entier p > O,
et 'exemple de I’équation hypergéométrique (24) permet la
vérification directe des résultats exposés d’'une maniére trop
succincte.

(recu le 1¢7 aoril 1964)

Institut Polytechnique
C. Dorobanti 232
Bucarest (3)
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