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30. Take here as y an integer m = a,, multiply by dz and

integrate from m — 1 to m; we obtain

F (m) = ¢} ’j’_ F (x) dx

m-—1

and therefore, denoting by n,— 1 the first integer > ag:

n

Y F(v) = o} } F(x) dx .

v=n, ng—1
31. On the other hand, the relation (28) can be written as
F(PY(x) ¥ (x) =F(x), (32)

and it follows therefore from the Theorem 2 that | F (z) dx
is divergent. We see that the series ) F(¢) diverges too.

32. In order to prove our Theorem it is therefore sufficient
to prove that we have

Jx) 2 Fx) (xza). (33)

But this relation is evident in the interval {a,, a,). Comparing
(17) and (32) this inequality follows also for the interval {a,, a,)
and from there on by induction for any = a,. The Theorem 7
1s proved.

V. NEW CONDITIONS FOR THE KEULER-MACLAURIN THEOREM

33. One of the ideas underlying the proof of the Theorem 6
was the introduction of the condition (26) which 1s a kind of
weakened monotony condition.

We give in what follows the corresponding generalisation of
the Euler-Maclaurin convergence criterion, in which we try to
weaken the monotony condition even more. Combining the
conditions of the Theorem 8 with the assumptions of the Theo-
rems 1 and 2 we obtain then further criteria for the convergence
and divergence of the series (18). |
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34. TarorEM 8. Let v, &, K be fived positive numbers, and.
A a fived real number. Assume | (x) non-negative and tntegrable
in any finite subinterval of the interval {x,, o). If for any y =

y xo— A

Mazx | zq, we have
7

f() = Kf(x) (y+Asx=yy+A+e), (34)

then from the convergence of the integral (2) follows the conver-
gence of the sertes (18).

+y—A
If for any x = Max (xo,ig—yd—> we haye
7
fx) =z Kf(y) (x+A4-y=y=yx+4), (35)

then from the divergence of the integral (2) follows the divergence
of the series (18).

35. Proof. If (34) holds we have, taking as y an integer ¢
and integrating with respect toz fromy¢ + Atoy v + A4 + &

yvt+ A+e

JO) = — J S dx,

yv+ A

and therefore, denoting by n, a convenient integer, for any
n > ng:

n n yv+A+e
XIS Y [ 0 dx, (36)

36. The limits of the integration in the right hand integrals
lie here between yny + A and yn + A + e.
[f an z lies in one of the integration intervals in (36) we have

x — A x — A
i

€
w+ A S xSy + A+ e, -
Y Y Y

and we see that any such z can lie at the most n ° + 1
Y

such intervals. The right hand expression in (36) is therefore
e yn+A+e¢
g(—+1> [ f(x)dx
Y yng+ A

and our assertion corresponding to the condition (34) is proved.
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37. Assuming that (35) is satisfied we take x as an integer ¢
and obtain, integrating with respect to y from y¢ 4 A —y

yv+ A

to yo + A: yf(x) 2 K | fdy,

yo+A4—7y

and therefore, for a convenient integer n,,

- n n yvt+ A yn+ A
c xSz Y | fdy= | fOdy.
v =n, v=n, yv+A-—vy yng+A—y

From this inequality the assertion corresponding to the
condition (35) follows immediately. The Theorem 8 is proved.

38. CoroLLARY. Assume f(x) non-negative, finite and inte-
grable 1n any finite subinterval of {x,, o). I] there exists an
integer N such that =™ [ () is from a certain x on either monotoni-
cally increasing or monotonically decreasing, the series (1§8)
converges or diverges according as the integral (2) is convergent
or divergent.

VI. CoOMMENTS ON PRINGSHEIM'S DISCUSSION OF THE PROBLEM

39. Although Ermakof’s convergence and divergence criteria
and in particular Ermakof’s second proof, using Abel’s functional
equation, are extremely interesting, they remained very little
known and 1t appears that the author’s paper [5] was the first
in which the problem was taken up in a modern way. The reason
for this may lie partly in the very negligent way in which
Ermakof’s notes were written and partly in some erroneous
and misleading statements about this problem which were formu-
lated by Pringsheim in [6], [7] and [8]. Although the essential
merit of Ermakof’s second paper consists just in the fact that
the function f(x) need not be assumed as monotonic — it 1is
true that Ermakof does not even mention this point in [2] —
Pringsheim says in [7], pp. 308-309:-“Es ist mir neuerdings
gelungen, dieselben [that ts Ermakof’s criteria] von einer ihnen
(auch in der von Herrn Ermakoff gegebenen Darstellung)
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