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Finally assume that there exists an x, = x, such that we have
for all x,uw with x = u = x, :
V' (x) > 1
Yi(u) — B
Then the series (18) ts divergent.

1\

(xZuzxy). (26)

22. Observe that the condition (26) is certainly satisfied
from a certain z; on, if ¥ (x) has a finite limit w,

¥ (x) > @ < oo (x—0). (27)

23. Proof of the Theorem 6. Since x, can be replaced by any
greater number we can assume, without loss of generality,
that x; = z,. Then we proceed as in the proof of the Theorem 4
defining I’ (z) by (19) and obtain, as in the section 15, using (26):

F(¥(0) ¥'(x) = lim f(¥(0)) ¥'(%) = -IB lim £ (¥(0) V()

K—> © K— 0

> lim f(v,) = F (x).

K— o0

24. We see that F (x) satisfies the conditions of the
Theorem 2; therefore the integral [ F(z)dx is divergent and

the same holds for the series > F (¢), as F (x) is monotonically
decreasing. But then the series (18) is also divergent since
f (z) 1s a majorant of /' (x). The Theorem 6 is proved.

IV. ANOTHER METHOD IN THE CASE OF DIVERGENCE

25. TueorEm 7. The assertion of the Theorem 4 remains
valid if the assumption that W' (x) 18 monotonically increasing
i1s replaced by the assumption that Y’ (x) 1s monotonically
decreasing.

26. Proof. Since in any case ¥’ (z) = 0 there exists a finite w

such that
' (x) | o (x—o0)

and, as in the sec. 17, we see that this limit is = 1,
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Define the a, as in the sec. 18. Since we can multiply / (2)
by any fixed constant, we can assume that we have:

fx)z1 (ap=x=ay).

27. Denote the inverse function of ¥ (x) by o (x) = g, (2)

and its iterated o (d (%)), o (o (0 (2))),... by 0, (2), 05 (),..
and define a new function [/ (x) in such a way that we have:
F (o (x))
F(x)=— " (x=a,). 28)
(%) = &4 (™) (x=a,) (

For this purpose we put:

F(x) =1(a,Ex<ay), F(x) :m)(a1§x<a2),...
n 1
o= vem

and (28) follows immediately.

(ané'x <an+1)’ (29)

28. From (29) we have for x = a, and = T @,+:

n—1 n 1
F a,) = s F a, _O) = ;7 s
@) = Wy Mo v
1
and, putting = 0, =
P g (a0) 0
F (a 1
fla) . 1 (30)
F(a,—0) V' (ao)

Since we have w = 1, ¥ (x) = 1, we see that ¥ (x) —=x
is non-decreasing, and therefore, the same holds for the length
of the n — th interval between the a,, a,+; — a,. The number
of the a, lying in an interval of the length 1 in the half-line
r = a, has a finite upper bound which may be denoted by k.

29. From (29) it follows obviously that F' (z) 1s continuous
and monotonically increasing in any half-open interval {a,, a,+).
In the points a, we have a discontinuity if ¢, = 1. We can
therefore write for any ¥y = a,:

F() 2o F(x) (y—1=x=y). (31)
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30. Take here as y an integer m = a,, multiply by dz and

integrate from m — 1 to m; we obtain

F (m) = ¢} ’j’_ F (x) dx

m-—1

and therefore, denoting by n,— 1 the first integer > ag:

n

Y F(v) = o} } F(x) dx .

v=n, ng—1
31. On the other hand, the relation (28) can be written as
F(PY(x) ¥ (x) =F(x), (32)

and it follows therefore from the Theorem 2 that | F (z) dx
is divergent. We see that the series ) F(¢) diverges too.

32. In order to prove our Theorem it is therefore sufficient
to prove that we have

Jx) 2 Fx) (xza). (33)

But this relation is evident in the interval {a,, a,). Comparing
(17) and (32) this inequality follows also for the interval {a,, a,)
and from there on by induction for any = a,. The Theorem 7
1s proved.

V. NEW CONDITIONS FOR THE KEULER-MACLAURIN THEOREM

33. One of the ideas underlying the proof of the Theorem 6
was the introduction of the condition (26) which 1s a kind of
weakened monotony condition.

We give in what follows the corresponding generalisation of
the Euler-Maclaurin convergence criterion, in which we try to
weaken the monotony condition even more. Combining the
conditions of the Theorem 8 with the assumptions of the Theo-
rems 1 and 2 we obtain then further criteria for the convergence
and divergence of the series (18). |
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