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and therefore, using (13)

y<MM »MM y$(by) \i/(bv)

J / (x) dx ^ a J / (x) dx a J / (x) dx + a j / (x) dx
T(*o) <A(*o) *(*o) 7*(*v)

1

But the last right hand integral is, by (14), gg clog-, so
y

that we obtain:
y*(M Y(x0)

(1 — a) j f(x)dx:g J / (x) dx + c log -
•P(x0) *(*o> ^

The convergence of (2) follows now immediately from
^ {by) ^ 00.

13. Suppose that we have, on the other hand, for an a > x0 :

V (a) ^ if/ (a).

Proceeding then as in the proof of the Theorem 1 we have, as

from i// (by) -> oo and the total continuity of xj/ (x) follows
bv -> oo, for bv >: a:

J / (x) dx :g a J / (x) dx
y(a) *(«)

and, for v -» oo :

00 GO

J / (x) dx ^ a j / (x) dx
•P(a) <K«)

But here the left hand integral is > 0, the right hand integral
is majorized by it and the relation is impossible for a < 1. 3)

III. A NEW METHOD FOR NOT NECESSARILY MONOTONIC f(x)

14. Theorem 4. Assume that W (x) is for x ^ x0 a positive
and monotonically increasing differentiable function for which

3) Observe that in Ermakof's paper [1] the criteria are given in the following form:
00

S / (v) for a monotonie / (x) is convergent or divergent according as

lim f(*F(x))Y>(x)
fiMxWW

is < 1 or > 1. In the note [21 Ermakof takes ¥* (x) x which is no essential specialisation.

However, the conditions (5) for convergence and (9) for divergence (with the
specialisation VP (x) *) are already found in the textbooks, see e.g. [3],
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y' (x) is also monotonicallyincreasingand that we have :

y (x) > x

Suppose further that f(x) is>0 for x x() and integrable and

bounded from below by a positive number in any finite subinterval

of (x0, oo). If we have for all x

f(T(x))y'(x)^f(x),(17)
the sum

£/(v) (18)

is divergent.

15. Proof. Introduce the function

F (x)Inf /(m); (19)
Xq^U^X

then F (x) is monotonically decreasing and we have for each

x 2^ x0:
F (x) lim f(uK)

K-> 00

for a convenient sequence uK from the interval <x0, x}.
We can write therefore for a certain sequence vK from the

interval <x0, x) :

F(W(x)) 'F'(x) Ihn/('/'(>,)) y^¥ (fK)) ¥"
K-> 00 K -> 00

This is, however, by (17) ^ lim / (ttK) ^ F(x).
It follows

F (W (x)) W (x) ^ F (x)

00

so that the integral J F(x) dx is divergent. Since F (x) is mono-
OO

tonic, the same follows for the series 1 F(v) which has (18)

as a majorant. The Theorem 4 is proved.

16. Theorem 5. Assume that W (#) is for x ^ x0 a positive
and monotonically increasing differentiable function for which (16)
holds. Assume further that W (x) is either, from a certain x on,
monotonically increasing or, for x -> oo, convergent to a finite
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limit co. Assume finally that f (x) is ^ 0 for x ^ x0, measurable
and bounded in each interval x0 < x g a and satisfies for all
x ^ x0 and for a certain constant ô < i the inequality :

/(f (x)) ¥" (x) g Sf(x) (x^x0) (20)

Then the series (18) is convergent.

17. Proof. Take a number ß with 1 > ß > ö. Observe that
¥' (x) certainly cannot have for x go a limit co < 1. For
otherwise we would have, with x -» oo,

(¥ (x) — x)' —> co — 1 < 0 ¥ (x) — x —> — co

contrary to (16).
We have therefore in any case, from a certain x on,

W (x) A d, and, by (20), f (¥ (x)) ^ / (x). We can therefore

assume, changing x0 if necessary, that we have:

/(f (x)) g f{x) (xlx0). (21)

Further, if we have ¥ (x) -> co ^ 1 and if co is finite there
certainly exists an x1 such that we have, if x ^ xl7 y ^ xtl

3 <^*±<ß
ß~ ¥f(y) ö'

We can therefore assume, increasing x0 if necessary, that we
have :

¥"(*)^t¥"O0 0), (22)
0

and this is obviously also true if ¥' (x) is monotonically
increasing, so that we can now assume (22) as being true under
the conditions of our Theorem.

18. Put

x0 a0 ¥ (a0) a1 ¥(af) av+J

The sequence av is monotonically increasing. If lim av % were
finite, we would have ¥ (t) t, contrary to (16). Therefore we
have av | co.
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We have therefore for any x ^ an index v such that

av g x < av+1.

Denoting by c an upper bound for / )in the interval oq)

it follows then from (21):

/(x) ^ c (x^x0).
19. Put

G (x) Sup/ (u). (23)
U^X

G (x) is finite and monotonically decreasing and we have:

/(x)<G(x) (x^o). (24)

By (23), there exists for any x ^ a sequence of numbers

uK, uK ^ x such that G (W (x))lim f (W (hk)) and by (22)
K~> 00

G (f (x)) ¥"(*) lim / (IV (uJ)¥"(x) ^ lim ("«)) r("K) •

K -> 00 K -> 00 0

But this is, by (20),

<; ^ <5 lim f(uK) ^ ß G(x).
O K ~^ CO

20. We have therefore

G (V (x)) ¥" (x) ^ ß (x),
Oo

so that J G (a;) da: is convergent. But then, since G (a;) is monoto-
00

nically decreasing, the series G (v) is convergent too, and,
by (24), the same holds for the series (18). The Theorem 5 is

proved.

21. Theorem 6.- Assume that W (x) is for x *£ x0 a positive
and monotonically increasing differentiahle junction for which
we have (16). Suppose further that f (x) is > 0 for x ^ a:0, is

integrable and bounded from below by a positive number in any
finite subinterval of <a:0, oo) and satisfies for a constant ß > 1

and for all x ^ x0 the condition

/(•F(x)) T'{x) ^ ]S/(x),'x £ x0. (25)
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Finally assume that there exists x0 such that we have

for all x,u with xux, :

w (x) i
(26)

Then the series (18) is divergent.

22. Observe that the condition (26) is certainly satisfied
from a certain x1 on, if W (x) has a finite limit co,

¥' (x) ->co < oo(x->oo). (27)

23. Proof of the Theorem 6. Since x0 can be replaced by any
greater number we can assume, without loss of generality,
that % — x0. Then we proceed as in the proof of the Theorem 4

defining F (x) by (19) and obtain, as in the section 15, using (26) :

F(f(x)) ¥"(*) lim /(VCO) '/'"(A) g 1 lï^/(f(*0)V(vK)
K~* 00 P k—> CO

^ ïim/(wK) ^
K -» 00

24. We see that F (x) satisfies the conditions of the
00

Theorem 2 ; therefore the integral J F(x) dx is divergent and
OO

the same holds for the series £ F (e), as F (x) is monotonieally
decreasing. But then the series (18) is also divergent since

/ (x) is a majorant of F (x). The Theorem 6 is proved.

IV. Another method in the case of divergence

25. Theorem 7. The assertion of the Theorem 4 remains
valid if the assumption that W (x) is monotonieally increasing
is replaced by the assumption that W (x) is monotonieally
decreasing.

26. Proof. Since in any case W (x) > 0 there exists a finite co

such that
W (x) I co (x—> oo

and, as in the sec. 17, we see that this limit is ^ 1,
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