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and therefore, using (13)

W (by) ¥ (by) V¥ (by) Y (by)
| fdx<a | fXNdx=0a [ fx)dx+a | f(x)dx.
¥(xp) V(xg) V(xg) ¥ (by)

1
But the last right hand integral is, by (14), < clog—, so
7

that we obtain:

7% (by) ¥ (xo) 1
(1—-0) | fx)dx =< | f(x)dx + c log-.
¥ (xo) ¥ (xo) Y

The convergence of (2) follows now immediately from
Y (b,) - oo.

13. Suppose that we have, on the other hand,‘ forana > x,:
¥ (a) = Y (a).

Proceeding then as in the proof of the Theorem 1 we have, as
from ¥ (b,) — oo and the total continuity of  (x) follows
b, - oo, for b, = a:

¥ (by) ¥ (by)
J f@dx=sa | f(x)dx,
¥ (a) V(@)

and, for v » oo:

Tf(x)dxéfx Ofof(x)dx.

¥ (a) ¥ (a)

But here the left hand integral is > 0, the right hand integral
1s majorized by it and the relation 1s impossible for a < 1.3)

IIl. A NEW METHOD FOR NOT NECESSARILY MONOTONIC f(x)

14. TuEOREM 4. Assume that ¥ (x) is for x = x, a positive
and monotonically tncreasing differentiable function for which

3) Observe that in Ermakof’s paper [1] the criteria are given in the following form:
§ f (v) for a monotonic f (x) is convergent or divergent according as
lim S (x)¥" (%)
X0 f(Y(x)W(x)
is < 1 or > 1. In the note [2] Ermakof takes ¥ (x) = x which is no essential speciali-

sation. However, the conditions (5) for convergence and (9) for divergence (with the
specialisation ¥ (x) = x) are already found in the textbooks, see e.g. [3].
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W' () is dlso monotonically increasing and that we have:
Y(x)>x (x=x0). (16)

Suppose further that f(x) is > 0 for x = z, and integrable and
bounded from below by a positive number in any finite subinterval
of {zo, o0). If we have for all x = x,:

fP)P ) zf(x), (17)
the sum
AL (18)

1s divergent.
15. Proof. Introduce the function

F(x) = Inf f(u); (19)
XgSusx
then F (z) is monotonically decreasing and we have for each
T = Lo:
F (x) = lim f(u,)
for a convenient sequence u, from the interval {x,, z).

We can write therefore for a certain sequence v, from the
interval {xy, z):

F(¥(0) ¥'(x) = lim £ (¥ () V'(x) Z lim f(¥ (@) ¥ (0.
This is, however, by (17) = lim f (v,) = F(x).
It follows

F(¥(x) ¥ (x) 2 F ),

so that the integral | F(z) dz is divergent. Since F (z) is mono-

tonic, the same follows for the series X F(¢) which has (18)
as a majorant. The Theorem 4 is proved.

16. TurorEM 5. Assume that W (z) is for x = x, @ positive
and monotonically increasing differentiable function for which (16)
holds. Assume further that W' (x) is either, from a certain x on,
monotonically increasing or, for x — oo, congergent to a finite
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limit w. Assume finally that f (x) is =0 for x = x,, measurable
and bounded in cach interval ry, = x < a and satisfies for all
x = x, and for a certain constant 6 < 1 the inequality :

P @)X S 6f() (x2xp). (20)
Then the series (18) is convergent.

17. Proof. Take a number f with 1 > f > 4. Observe that
¥’ (x) certainly cannot have for x —» oo a limit @ < 1. For
otherwise we would have, with x — oo,

(Y(x)—x) »0—-1<0, ¥(x) —x—> — ©

contrary to (16).

We have therefore in any case, from a certain z on,
Y (x) = 6, and, by (20), f (¥ (x)) =< f(x). We can therefore
assume, changing z, if necessary, that we have:

[P (x) =fx) (x=x0). (21)

Further, if we have ¥ (x) - @ = 1 and if w is finite there
certainly exists an x; such that we have, if z = z{, y = 24,

o Y (x)

B ¥y
We can therefore assume, increasing x, i1f necessary, that we
have:

e

lIA
lIA

5 .

N’

P(x) =<V () (Yzxzxo), (22)

B
and this is obviously also true if ¥ (x) i1s monotonically

increasing, so that we can now assume (22) as being true under
the conditions of our Theorem.

18. Put
xO = ao, 'P(CIO) = al s seey Y’(CI‘) — a._,+1 9 s
The sequence a, is monotonically increasing. If lim a, = 7 were

finite, we would have ¥ (t) = 7, contrary to (16). Therefore we
have a, T .
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We have therefore for any x = z, an index ¢ such that
a, = < Oy41-

Denoting by ¢ anupper bound for f (x) in the interval {aq, @)
it follows then from (21):

f(x) £c¢ (x2x0).
19. Put
G (x) = Supf(u). (23)

G (z) is finite and monotonically decreasing and we have:
f(x) 2 Gx) (x=x)- (24)
By (23), there exists for any « = 2, a sequence of numbers

i, u, =z such that G (¥ (z)) = lim (¥ (u,) and by (22)

K =
K= o0

G (¥ (x) ¥'(x) = lim f(¥(u) V(%) £ lim f(¥ (ux))'[g Yi(u,).

But this 1s, by (20),
-
<= o limf(u) S BGE).

K—®

20. We have therefore
G (¥ () ¥ (x) £ G (v),
so that | G(z) dz is convergent. But then, since G (z) is monoto-

nically decreasing, the series Y G (¢) is convergent too, and,
by (24), the same holds for the series (18). The Theorem 5 is
proved.

21. TuroreEM 6. Assume that V¥ (z) s for x = x, a positive

~and monotonically increasing differentiable function for which

we have (16). Suppose further that f (x) ts > 0 for x = x4, 1S
integrable and bounded from below by a positive number in any

finite subinterval of {x,, o©) and satisfies for a constant p > 1
and for all x = x, the condition

JE) P () 2 pfx), x = x,. (25)




— 112 —
Finally assume that there exists an x, = x, such that we have
for all x,uw with x = u = x, :
V' (x) > 1
Yi(u) — B
Then the series (18) ts divergent.

1\

(xZuzxy). (26)

22. Observe that the condition (26) is certainly satisfied
from a certain z; on, if ¥ (x) has a finite limit w,

¥ (x) > @ < oo (x—0). (27)

23. Proof of the Theorem 6. Since x, can be replaced by any
greater number we can assume, without loss of generality,
that x; = z,. Then we proceed as in the proof of the Theorem 4
defining I’ (z) by (19) and obtain, as in the section 15, using (26):

F(¥(0) ¥'(x) = lim f(¥(0)) ¥'(%) = -IB lim £ (¥(0) V()

K—> © K— 0

> lim f(v,) = F (x).

K— o0

24. We see that F (x) satisfies the conditions of the
Theorem 2; therefore the integral [ F(z)dx is divergent and

the same holds for the series > F (¢), as F (x) is monotonically
decreasing. But then the series (18) is also divergent since
f (z) 1s a majorant of /' (x). The Theorem 6 is proved.

IV. ANOTHER METHOD IN THE CASE OF DIVERGENCE

25. TueorEm 7. The assertion of the Theorem 4 remains
valid if the assumption that W' (x) 18 monotonically increasing
i1s replaced by the assumption that Y’ (x) 1s monotonically
decreasing.

26. Proof. Since in any case ¥’ (z) = 0 there exists a finite w

such that
' (x) | o (x—o0)

and, as in the sec. 17, we see that this limit is = 1,
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