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of the problem and prove generalized versions of Pringsheim's
results.

This note brings therefore an improvement and simplification

of the sections I-Y and XI of [5], while I have nothing to
add to the sections VI-X of [5].

II. Ermakof's direct Method

6. The form of the expression (1) makes it plausible that
we will have to use the integral transformation formula

b T(b)

\f{x¥{x))x¥\x)dx=^ j f(x)dx. (3)
a W(a)

In order to be able to use (3) we have in any case to assume
that / (x) is integrable in the integration interval and W (x)

totally continuous between a and b. However, additional
conditions are necessary and two such conditions are known either
of which ensures the relation (3) :

J\ ' \f (x) is uniformly bounded in the integration interval;
J2 : W (x) is monotonically increasing or monotonically de¬

creasing.

7. Theorem 1. Assume that \jj (x) and W (x) are totally
continuous for x ^ x0 and that we have for a sequence by ^ x0
(v 1,2,

(&v) ^ Y (K), V (K) - 00 (v-* CX)>. (4)

Let f (x) be ^ 0 on no half-line x ^ £ almost everywhere — 0, and
measurable in an interval J containing all values of if/ (x) and W (x)
for x 3| x0. Assume further that for any finite subinterval of J
the transformation formula (3) holds as well for if (x) as for T (x).
Then, if we have for almost all x with x ^ x0 and for an a with
0 < a < 1 :

/(y fx))¥" (x)^ afty(x))$\x)(^4 o < a < 1, (5)

the integral (2) isconvergent and we have for all ig

W(x)>\ f/(x)(x|x0). (6)
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8. Proof. For an arbitrary x ^ x0 integrate (5) between
x and bv > x. Then we have, using (3) :

Y(bv) *(bv)
J / (x) dx ^ a J / (x) dx

¥(x) rj,(x)

and this remains true, by (4), if if/ (bv) is replaced by W (bv).

We can therefore write

yw
J / (x) dx ^ a J / (x) dx + a J / (x) dx

¥(x) W(x) »A (*)

or, bringing the first right hand term to the left :

y Cbv) y(*)
(1 — a) j / (x) dx ^ a J / (x) dx

*(*) >!> <*)

But here, if we take x it follows for &v -> oo the convergence

of (2) and also that the right hand expression is > 0 for

any x !H x0. (6) follows immediately and the Theorem 1 is

proved.

9. Theorem 2. Assume that xj/ (x), (x) arc totally continuous

for x ^ x0 and that f (x) is non-negative and measurable in an
interval J containing all values of \j/ (x) and (x). Assume that (3)
holds as well for xj/ (x) as for W (x). Assume further that there

exists an a ^ x0 sacA that:

y («)

J / (x) dx > 0 > (7)
\Jj (a)

and a sequence bv ^ x0 (c 1,2...) sacA that:

if/ (bv) -> go W (bD) oo (v-> oo) (8)

Then if we have for almost all x ^ x0 ;

f(W(x))¥'(x)^ / (|// (x)) IA' (x), (9)

the integral (2) is divergent and we have for all x ^ a :

¥(x)>\j/(x)(x^a). (10)
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10. Proof. For any x > a we obtain from (9), integrating
on both sides from a to x and using (3):

W(x) «p(x)

J f(x)dx^ J / (x) dx
V (a)

and therefore
¥ (x) Via)

j /(x)dx^ J f(x)dx (x^a). (11)
ij/(x) I{/(a)

This proves already (10).

Putting in (11) x bv it follows
W(bv) V(a)

j f(x)dx ^ j f (x) dx (12)

while, if (2) were convergent, the left side integral in (12) would
tend to 0.

Theorem 2 is proved.

11. Theorem 3. Assume that ij/(x) and ¥ (x) are totally
continuous for x fx x0l that (3) holds as well for if (x) as for
¥ (x) and f (x) is ^ 0 and measurable in an interval containing
all values of if {x) and ¥ (x) for x > x0 without being almost

everywhere 0 in (¥ (a), oo). Assume further that there exists

a constant y, 0 < y < 1, and a sequence bv ^ x0 (v — 1,2,...)
such that

yif (bv) S ¥ (bv) 0 < y < 1 if (bv) -> oo (v-+ oo) (13)

and further that for a constant c from a certain x xl ^ x0 on:

f{x)û~ (x^Xi) (14)
X

Assume finally that for a constant a, 0 < a < 1 ;

f (¥ (x)) ¥' (x) g a/(V> (x)) if' (x), 0 < a < 1 (15)

Then the integral (2) converges and we have ¥ (x) > if (x)
for all x > x0.

12. Proof. We have as in the proof of the Theorem 1:

J f (x)dx S a j / (x) dx
v(*a) <M*o)
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and therefore, using (13)

y<MM »MM y$(by) \i/(bv)

J / (x) dx ^ a J / (x) dx a J / (x) dx + a j / (x) dx
T(*o) <A(*o) *(*o) 7*(*v)

1

But the last right hand integral is, by (14), gg clog-, so
y

that we obtain:
y*(M Y(x0)

(1 — a) j f(x)dx:g J / (x) dx + c log -
•P(x0) *(*o> ^

The convergence of (2) follows now immediately from
^ {by) ^ 00.

13. Suppose that we have, on the other hand, for an a > x0 :

V (a) ^ if/ (a).

Proceeding then as in the proof of the Theorem 1 we have, as

from i// (by) -> oo and the total continuity of xj/ (x) follows
bv -> oo, for bv >: a:

J / (x) dx :g a J / (x) dx
y(a) *(«)

and, for v -» oo :

00 GO

J / (x) dx ^ a j / (x) dx
•P(a) <K«)

But here the left hand integral is > 0, the right hand integral
is majorized by it and the relation is impossible for a < 1. 3)

III. A NEW METHOD FOR NOT NECESSARILY MONOTONIC f(x)

14. Theorem 4. Assume that W (x) is for x ^ x0 a positive
and monotonically increasing differentiable function for which

3) Observe that in Ermakof's paper [1] the criteria are given in the following form:
00

S / (v) for a monotonie / (x) is convergent or divergent according as

lim f(*F(x))Y>(x)
fiMxWW

is < 1 or > 1. In the note [21 Ermakof takes ¥* (x) x which is no essential specialisation.

However, the conditions (5) for convergence and (9) for divergence (with the
specialisation VP (x) *) are already found in the textbooks, see e.g. [3],
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