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of the problem and prove generalized versions of Pringsheim’s
results.

This note brings therefore an improvement and simplifi-
cation of the sections I-V and XI of [5], while I have nothing to
add to the sections VI-X of [5].

1I. ERMAKOF’S DIRECT METHOD

6. The form of the expression (1) makes it plausible that
we will have to use the integral transformation formula

b ¥ (b)
Jf(P(x) P/ (x)dx = w! )f(X) dx. (3)

In order to be able to use (3) we have in any case to assume
that f (z) is integrable in the integration interval and ¥ (x)
totally continuous between a and b. However, additional con-
ditions are necessary and two such conditions are known either
of which ensures the relation (3):

Jq: [f (:c)] is uniformly bounded in the integration interval;
J,: ¥ (x) 1is monotonically increasing or monotonically de-
creasing.

7. TurorEM 1. Assume that ¥ (x) and ¥ (x) are totally

continuous for x = x, and that we have for a sequence b, = x,
(v = 1,2, ...)

y (b)) = ¥ (b)), ¥ (b,) > o0 (v—o0). (4

Let | (z) be = 0 on no half-line x = & almost everywhere = 0, and
measurable in an interval J containing all values of  (x) and ¥ (x)
for x = x,. Assume further that for any finite subinterval of J
the transformation formula (3) holds as well for W (x) as for ¥ (x).
Then, if we have for almost all x with x = x, and for an o with
0 <a<1:

FP Q)P (%) = af (Y (D) Y'(x) (x2x), 0 <a <1, (5)

the tniegral (2) is convergent and we have for all x = x,:

¥ (x) >y (x) (xzxp). (6)
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8. Proof. For an arbitrary x = z, integrate (b) between
xz and b, > x. Then we have, using (3):

¥ (by) ¥ (by)

[ fx)dx £a | f(x)dx

¥ (x) Y(x)

and this remains true, by (4), if ¥ (b,) is replaced by ¥ (b,).
We can therefore write

¥ (by) ¥ (by) ¥ (x)
J fdx 2a | f(x)dx +a [ f(x) dx,
¥(x) W(x) ¥ (x)

or, bringing the first right hand term to the left:

¥ (by) ¥ (x)
(1-0) | f(X)dx =a | f(x)dx.
¥(x) ¥ (x)

But here, if we take x = b, it follows for b, - oo the conver-
gence of (2) and also that the right hand expression is > 0 for
any * = x,. (6) follows immediately and the Theorem 1 1s
proved.

9. TuEOREM 2. Assume that (), ¥ (x) are totally continuous
for x = x, and that f (x) ts non-negative and measurable tn an
interval J containing all values of W () and ¥ (x). Assume that (3)
holds as well for  (x) as for ¥ (x). Assume further that there
exists an a = x, such that:

¥(a)

[ f(x)dx >0, (7)

¥ (a)

and a sequence b, = x4 (¢ = 1,2...) such that:

¥ (b)) » o0, ¥ (b) > 0 (v—>0c0). (8)
Then if we have for almost all z = x, -

SE) P ) 2, @)y (), 9)

the tntegral (2) is divergent and we have for all x = a:

v (x) >y (x) (xza). (10)
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10. Proof. For any x > a we obtain from (9), integrating
on both sides from a to z and using (3):

¥ (x) CY(x)
[ f(dx =z | f(x)dx
¥ (a) Y (a)
and therefore
¥ (x) ¥ (a)
[ fdxz [ f@dx (xZa). (11)
Y(x) v (a)

This proves already (10).
Putting in (11) z = b, 1t follows

¥ (by) ¥ (a) |
J fdxz | f(x)dx (12)
¥ (by) v (a)

while, if (2) were convergent, the left side integral in (12) would
tend to 0.
Theorem 2 is proved.

14. Turorem 3. Assume that Yy(x) and ¥ (x) are totally
continuous for x = x,, that (3) holds as well for ¥ (x) as for
¥ (x) and | (z) is = 0 and measurable in an interval containing
all values of Y (x) and ¥ (x) for x > x, without being almost
everywhere = 0 in (¥ (a), o). Assume further that there exists
a constant y, 0 < y < 1, and a sequence b, = x, (v = 1,2,...)
such that

w(b,) = ¥(b), 0<y<1,y(b)—>o0(>0), (13)

and further that for a constant ¢ from a certain x = x; = x, On:

fy S— (rzx). (14)

Assume finally that for a constant o, 0 < o < 1:
S ®) V' (x) Saf(W )Y (x), 0<a<l. (15

Then the integral (2) converges and we have ¥ (x) > Y ()
for all x > x,.

12. Proof. We have as in the proof of the Theorem e
¥ (by) W (by)

[ f(x)dx <a | f(x)dx

¥(xg) W(xg)
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and therefore, using (13)

W (by) ¥ (by) V¥ (by) Y (by)
| fdx<a | fXNdx=0a [ fx)dx+a | f(x)dx.
¥(xp) V(xg) V(xg) ¥ (by)

1
But the last right hand integral is, by (14), < clog—, so
7

that we obtain:

7% (by) ¥ (xo) 1
(1—-0) | fx)dx =< | f(x)dx + c log-.
¥ (xo) ¥ (xo) Y

The convergence of (2) follows now immediately from
Y (b,) - oo.

13. Suppose that we have, on the other hand,‘ forana > x,:
¥ (a) = Y (a).

Proceeding then as in the proof of the Theorem 1 we have, as
from ¥ (b,) — oo and the total continuity of  (x) follows
b, - oo, for b, = a:

¥ (by) ¥ (by)
J f@dx=sa | f(x)dx,
¥ (a) V(@)

and, for v » oo:

Tf(x)dxéfx Ofof(x)dx.

¥ (a) ¥ (a)

But here the left hand integral is > 0, the right hand integral
1s majorized by it and the relation 1s impossible for a < 1.3)

IIl. A NEW METHOD FOR NOT NECESSARILY MONOTONIC f(x)

14. TuEOREM 4. Assume that ¥ (x) is for x = x, a positive
and monotonically tncreasing differentiable function for which

3) Observe that in Ermakof’s paper [1] the criteria are given in the following form:
§ f (v) for a monotonic f (x) is convergent or divergent according as
lim S (x)¥" (%)
X0 f(Y(x)W(x)
is < 1 or > 1. In the note [2] Ermakof takes ¥ (x) = x which is no essential speciali-

sation. However, the conditions (5) for convergence and (9) for divergence (with the
specialisation ¥ (x) = x) are already found in the textbooks, see e.g. [3].
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