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ON ERMAKOF’'S CONVERGENCE CRITERIA
AND ABEL’S FUNCTIONAL EQUATION. *)

A.M. OSTROWSKI

I. INTRODUGCTION

1. We owe to V. Ermakof ([1], [2]) very remarkable cri-
teria for the convergence or divergence of infinite series 2 f(¢)
(f(x) > 0) which uses the quotient

f(¥ () ¥ (x)
f(x)

(1)

for continuously differentiable function ¥ (x) with the properties

Y (x) >x,¥(x) > o (x—>00).

As a matter of vfact, the first discussion given by Ermakof [1]
only established directly the connection with the convergence
or the divergence of the integral

Ojo £ (x) dx (2)

so that in order to obtain the results concerning the infinite
series we have to assume that f (x) is monotonically decreasing
or to make some analogous assumptions to permit the transition
from the integral to the infinite series. We discuss some con-
ditions of this kind in the sections 33-38.

2. In his second paper [2] Ermakof developped however
a new and very ingenious method of proof using Abel’s functional
equation

P (P (x)=09Kx +1.

*) This investigation was carried out under the contract DA-91-591-EUC-2824 of
the Institute of Mathematics, University of Basle, with the US Department of the Army.
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This method allows, under suitable regularity conditions on
¥ (x), to connect directly the behavior of (1) with the conver-
gence or divergence of the infinite series X f(v), without any
monotony condition for f(x).})

But Ermakof only sketched his discussion and indicated as
the sufficient additional condition to impose on ¥ (z) thet, in
our notations, ¥’ (x,) is = 1, for a suitable z,.%)

It appears however that this additional condition is not
sufficient to carry the discussion through. In a paper [5],
published 1955, T showed that if beyond Ermakof’s condition
P’ (x) 1s supposed monotonically increasing, the method can be
carried through, indeed. If on the other hand ¥’ (x) is supposed
monotonically decreasing the method worked but Ermakof’s
additional condition was not necessary.

3. In this communication 1 develop a new method of proof
which allows to avoid Abel’s functional equation and to obtain
the essential results for not necessarily monotonic f («). This
gives a direct and very elementary way of proof as well for
monotonically increasing as, (in the case of convergence), for
monotonically decreasing ¥’ (z). Beyond that, this method
allows also to prove the convergence criteria in the case that
lim ¥’ (x) exists and is finite (Theorems 4-6).

4. As to the divergence criterion, here too, a new resultin
the case of monotonically decreasing ¥’ (z) can be obtained
(Theorem 7), however, with a different method which has more
points of contact with Ermakof’s second proof — here we have
to form a minorant of f (z), which can be interpreted as the deri-
vative of a solution of Abel’s functional equation —.

5. In the first sections of this paper we give 3 Theorems
concerning the convergence and divergence of the integral (2)
generalizing some results given in our first paper [5]. Finally,
in the last part of the paper we discuss Pringsheim’s treatment

1 Curiously enough, Abel’s functional equation was also treated by Korkine in the
note [4] where he gave another and direct proof of Ermakof’s criteria for monotonic
f(x), without using, however, this functional equation.

2) Ermakof says in his paper [2] in a footnote on p. 142: “ C’est la seule condition
pour que notre démonstration soit juste.”
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of the problem and prove generalized versions of Pringsheim’s
results.

This note brings therefore an improvement and simplifi-
cation of the sections I-V and XI of [5], while I have nothing to
add to the sections VI-X of [5].

1I. ERMAKOF’S DIRECT METHOD

6. The form of the expression (1) makes it plausible that
we will have to use the integral transformation formula

b ¥ (b)
Jf(P(x) P/ (x)dx = w! )f(X) dx. (3)

In order to be able to use (3) we have in any case to assume
that f (z) is integrable in the integration interval and ¥ (x)
totally continuous between a and b. However, additional con-
ditions are necessary and two such conditions are known either
of which ensures the relation (3):

Jq: [f (:c)] is uniformly bounded in the integration interval;
J,: ¥ (x) 1is monotonically increasing or monotonically de-
creasing.

7. TurorEM 1. Assume that ¥ (x) and ¥ (x) are totally

continuous for x = x, and that we have for a sequence b, = x,
(v = 1,2, ...)

y (b)) = ¥ (b)), ¥ (b,) > o0 (v—o0). (4

Let | (z) be = 0 on no half-line x = & almost everywhere = 0, and
measurable in an interval J containing all values of  (x) and ¥ (x)
for x = x,. Assume further that for any finite subinterval of J
the transformation formula (3) holds as well for W (x) as for ¥ (x).
Then, if we have for almost all x with x = x, and for an o with
0 <a<1:

FP Q)P (%) = af (Y (D) Y'(x) (x2x), 0 <a <1, (5)

the tniegral (2) is convergent and we have for all x = x,:

¥ (x) >y (x) (xzxp). (6)
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