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ON ERMAKOF’'S CONVERGENCE CRITERIA
AND ABEL’S FUNCTIONAL EQUATION. *)

A.M. OSTROWSKI

I. INTRODUGCTION

1. We owe to V. Ermakof ([1], [2]) very remarkable cri-
teria for the convergence or divergence of infinite series 2 f(¢)
(f(x) > 0) which uses the quotient

f(¥ () ¥ (x)
f(x)

(1)

for continuously differentiable function ¥ (x) with the properties

Y (x) >x,¥(x) > o (x—>00).

As a matter of vfact, the first discussion given by Ermakof [1]
only established directly the connection with the convergence
or the divergence of the integral

Ojo £ (x) dx (2)

so that in order to obtain the results concerning the infinite
series we have to assume that f (x) is monotonically decreasing
or to make some analogous assumptions to permit the transition
from the integral to the infinite series. We discuss some con-
ditions of this kind in the sections 33-38.

2. In his second paper [2] Ermakof developped however
a new and very ingenious method of proof using Abel’s functional
equation

P (P (x)=09Kx +1.

*) This investigation was carried out under the contract DA-91-591-EUC-2824 of
the Institute of Mathematics, University of Basle, with the US Department of the Army.
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This method allows, under suitable regularity conditions on
¥ (x), to connect directly the behavior of (1) with the conver-
gence or divergence of the infinite series X f(v), without any
monotony condition for f(x).})

But Ermakof only sketched his discussion and indicated as
the sufficient additional condition to impose on ¥ (z) thet, in
our notations, ¥’ (x,) is = 1, for a suitable z,.%)

It appears however that this additional condition is not
sufficient to carry the discussion through. In a paper [5],
published 1955, T showed that if beyond Ermakof’s condition
P’ (x) 1s supposed monotonically increasing, the method can be
carried through, indeed. If on the other hand ¥’ (x) is supposed
monotonically decreasing the method worked but Ermakof’s
additional condition was not necessary.

3. In this communication 1 develop a new method of proof
which allows to avoid Abel’s functional equation and to obtain
the essential results for not necessarily monotonic f («). This
gives a direct and very elementary way of proof as well for
monotonically increasing as, (in the case of convergence), for
monotonically decreasing ¥’ (z). Beyond that, this method
allows also to prove the convergence criteria in the case that
lim ¥’ (x) exists and is finite (Theorems 4-6).

4. As to the divergence criterion, here too, a new resultin
the case of monotonically decreasing ¥’ (z) can be obtained
(Theorem 7), however, with a different method which has more
points of contact with Ermakof’s second proof — here we have
to form a minorant of f (z), which can be interpreted as the deri-
vative of a solution of Abel’s functional equation —.

5. In the first sections of this paper we give 3 Theorems
concerning the convergence and divergence of the integral (2)
generalizing some results given in our first paper [5]. Finally,
in the last part of the paper we discuss Pringsheim’s treatment

1 Curiously enough, Abel’s functional equation was also treated by Korkine in the
note [4] where he gave another and direct proof of Ermakof’s criteria for monotonic
f(x), without using, however, this functional equation.

2) Ermakof says in his paper [2] in a footnote on p. 142: “ C’est la seule condition
pour que notre démonstration soit juste.”
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of the problem and prove generalized versions of Pringsheim’s
results.

This note brings therefore an improvement and simplifi-
cation of the sections I-V and XI of [5], while I have nothing to
add to the sections VI-X of [5].

1I. ERMAKOF’S DIRECT METHOD

6. The form of the expression (1) makes it plausible that
we will have to use the integral transformation formula

b ¥ (b)
Jf(P(x) P/ (x)dx = w! )f(X) dx. (3)

In order to be able to use (3) we have in any case to assume
that f (z) is integrable in the integration interval and ¥ (x)
totally continuous between a and b. However, additional con-
ditions are necessary and two such conditions are known either
of which ensures the relation (3):

Jq: [f (:c)] is uniformly bounded in the integration interval;
J,: ¥ (x) 1is monotonically increasing or monotonically de-
creasing.

7. TurorEM 1. Assume that ¥ (x) and ¥ (x) are totally

continuous for x = x, and that we have for a sequence b, = x,
(v = 1,2, ...)

y (b)) = ¥ (b)), ¥ (b,) > o0 (v—o0). (4

Let | (z) be = 0 on no half-line x = & almost everywhere = 0, and
measurable in an interval J containing all values of  (x) and ¥ (x)
for x = x,. Assume further that for any finite subinterval of J
the transformation formula (3) holds as well for W (x) as for ¥ (x).
Then, if we have for almost all x with x = x, and for an o with
0 <a<1:

FP Q)P (%) = af (Y (D) Y'(x) (x2x), 0 <a <1, (5)

the tniegral (2) is convergent and we have for all x = x,:

¥ (x) >y (x) (xzxp). (6)
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8. Proof. For an arbitrary x = z, integrate (b) between
xz and b, > x. Then we have, using (3):

¥ (by) ¥ (by)

[ fx)dx £a | f(x)dx

¥ (x) Y(x)

and this remains true, by (4), if ¥ (b,) is replaced by ¥ (b,).
We can therefore write

¥ (by) ¥ (by) ¥ (x)
J fdx 2a | f(x)dx +a [ f(x) dx,
¥(x) W(x) ¥ (x)

or, bringing the first right hand term to the left:

¥ (by) ¥ (x)
(1-0) | f(X)dx =a | f(x)dx.
¥(x) ¥ (x)

But here, if we take x = b, it follows for b, - oo the conver-
gence of (2) and also that the right hand expression is > 0 for
any * = x,. (6) follows immediately and the Theorem 1 1s
proved.

9. TuEOREM 2. Assume that (), ¥ (x) are totally continuous
for x = x, and that f (x) ts non-negative and measurable tn an
interval J containing all values of W () and ¥ (x). Assume that (3)
holds as well for  (x) as for ¥ (x). Assume further that there
exists an a = x, such that:

¥(a)

[ f(x)dx >0, (7)

¥ (a)

and a sequence b, = x4 (¢ = 1,2...) such that:

¥ (b)) » o0, ¥ (b) > 0 (v—>0c0). (8)
Then if we have for almost all z = x, -

SE) P ) 2, @)y (), 9)

the tntegral (2) is divergent and we have for all x = a:

v (x) >y (x) (xza). (10)
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10. Proof. For any x > a we obtain from (9), integrating
on both sides from a to z and using (3):

¥ (x) CY(x)
[ f(dx =z | f(x)dx
¥ (a) Y (a)
and therefore
¥ (x) ¥ (a)
[ fdxz [ f@dx (xZa). (11)
Y(x) v (a)

This proves already (10).
Putting in (11) z = b, 1t follows

¥ (by) ¥ (a) |
J fdxz | f(x)dx (12)
¥ (by) v (a)

while, if (2) were convergent, the left side integral in (12) would
tend to 0.
Theorem 2 is proved.

14. Turorem 3. Assume that Yy(x) and ¥ (x) are totally
continuous for x = x,, that (3) holds as well for ¥ (x) as for
¥ (x) and | (z) is = 0 and measurable in an interval containing
all values of Y (x) and ¥ (x) for x > x, without being almost
everywhere = 0 in (¥ (a), o). Assume further that there exists
a constant y, 0 < y < 1, and a sequence b, = x, (v = 1,2,...)
such that

w(b,) = ¥(b), 0<y<1,y(b)—>o0(>0), (13)

and further that for a constant ¢ from a certain x = x; = x, On:

fy S— (rzx). (14)

Assume finally that for a constant o, 0 < o < 1:
S ®) V' (x) Saf(W )Y (x), 0<a<l. (15

Then the integral (2) converges and we have ¥ (x) > Y ()
for all x > x,.

12. Proof. We have as in the proof of the Theorem e
¥ (by) W (by)

[ f(x)dx <a | f(x)dx

¥(xg) W(xg)
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and therefore, using (13)

W (by) ¥ (by) V¥ (by) Y (by)
| fdx<a | fXNdx=0a [ fx)dx+a | f(x)dx.
¥(xp) V(xg) V(xg) ¥ (by)

1
But the last right hand integral is, by (14), < clog—, so
7

that we obtain:

7% (by) ¥ (xo) 1
(1—-0) | fx)dx =< | f(x)dx + c log-.
¥ (xo) ¥ (xo) Y

The convergence of (2) follows now immediately from
Y (b,) - oo.

13. Suppose that we have, on the other hand,‘ forana > x,:
¥ (a) = Y (a).

Proceeding then as in the proof of the Theorem 1 we have, as
from ¥ (b,) — oo and the total continuity of  (x) follows
b, - oo, for b, = a:

¥ (by) ¥ (by)
J f@dx=sa | f(x)dx,
¥ (a) V(@)

and, for v » oo:

Tf(x)dxéfx Ofof(x)dx.

¥ (a) ¥ (a)

But here the left hand integral is > 0, the right hand integral
1s majorized by it and the relation 1s impossible for a < 1.3)

IIl. A NEW METHOD FOR NOT NECESSARILY MONOTONIC f(x)

14. TuEOREM 4. Assume that ¥ (x) is for x = x, a positive
and monotonically tncreasing differentiable function for which

3) Observe that in Ermakof’s paper [1] the criteria are given in the following form:
§ f (v) for a monotonic f (x) is convergent or divergent according as
lim S (x)¥" (%)
X0 f(Y(x)W(x)
is < 1 or > 1. In the note [2] Ermakof takes ¥ (x) = x which is no essential speciali-

sation. However, the conditions (5) for convergence and (9) for divergence (with the
specialisation ¥ (x) = x) are already found in the textbooks, see e.g. [3].
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W' () is dlso monotonically increasing and that we have:
Y(x)>x (x=x0). (16)

Suppose further that f(x) is > 0 for x = z, and integrable and
bounded from below by a positive number in any finite subinterval
of {zo, o0). If we have for all x = x,:

fP)P ) zf(x), (17)
the sum
AL (18)

1s divergent.
15. Proof. Introduce the function

F(x) = Inf f(u); (19)
XgSusx
then F (z) is monotonically decreasing and we have for each
T = Lo:
F (x) = lim f(u,)
for a convenient sequence u, from the interval {x,, z).

We can write therefore for a certain sequence v, from the
interval {xy, z):

F(¥(0) ¥'(x) = lim £ (¥ () V'(x) Z lim f(¥ (@) ¥ (0.
This is, however, by (17) = lim f (v,) = F(x).
It follows

F(¥(x) ¥ (x) 2 F ),

so that the integral | F(z) dz is divergent. Since F (z) is mono-

tonic, the same follows for the series X F(¢) which has (18)
as a majorant. The Theorem 4 is proved.

16. TurorEM 5. Assume that W (z) is for x = x, @ positive
and monotonically increasing differentiable function for which (16)
holds. Assume further that W' (x) is either, from a certain x on,
monotonically increasing or, for x — oo, congergent to a finite
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limit w. Assume finally that f (x) is =0 for x = x,, measurable
and bounded in cach interval ry, = x < a and satisfies for all
x = x, and for a certain constant 6 < 1 the inequality :

P @)X S 6f() (x2xp). (20)
Then the series (18) is convergent.

17. Proof. Take a number f with 1 > f > 4. Observe that
¥’ (x) certainly cannot have for x —» oo a limit @ < 1. For
otherwise we would have, with x — oo,

(Y(x)—x) »0—-1<0, ¥(x) —x—> — ©

contrary to (16).

We have therefore in any case, from a certain z on,
Y (x) = 6, and, by (20), f (¥ (x)) =< f(x). We can therefore
assume, changing z, if necessary, that we have:

[P (x) =fx) (x=x0). (21)

Further, if we have ¥ (x) - @ = 1 and if w is finite there
certainly exists an x; such that we have, if z = z{, y = 24,

o Y (x)

B ¥y
We can therefore assume, increasing x, i1f necessary, that we
have:

e

lIA
lIA

5 .

N’

P(x) =<V () (Yzxzxo), (22)

B
and this is obviously also true if ¥ (x) i1s monotonically

increasing, so that we can now assume (22) as being true under
the conditions of our Theorem.

18. Put
xO = ao, 'P(CIO) = al s seey Y’(CI‘) — a._,+1 9 s
The sequence a, is monotonically increasing. If lim a, = 7 were

finite, we would have ¥ (t) = 7, contrary to (16). Therefore we
have a, T .
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We have therefore for any x = z, an index ¢ such that
a, = < Oy41-

Denoting by ¢ anupper bound for f (x) in the interval {aq, @)
it follows then from (21):

f(x) £c¢ (x2x0).
19. Put
G (x) = Supf(u). (23)

G (z) is finite and monotonically decreasing and we have:
f(x) 2 Gx) (x=x)- (24)
By (23), there exists for any « = 2, a sequence of numbers

i, u, =z such that G (¥ (z)) = lim (¥ (u,) and by (22)

K =
K= o0

G (¥ (x) ¥'(x) = lim f(¥(u) V(%) £ lim f(¥ (ux))'[g Yi(u,).

But this 1s, by (20),
-
<= o limf(u) S BGE).

K—®

20. We have therefore
G (¥ () ¥ (x) £ G (v),
so that | G(z) dz is convergent. But then, since G (z) is monoto-

nically decreasing, the series Y G (¢) is convergent too, and,
by (24), the same holds for the series (18). The Theorem 5 is
proved.

21. TuroreEM 6. Assume that V¥ (z) s for x = x, a positive

~and monotonically increasing differentiable function for which

we have (16). Suppose further that f (x) ts > 0 for x = x4, 1S
integrable and bounded from below by a positive number in any

finite subinterval of {x,, o©) and satisfies for a constant p > 1
and for all x = x, the condition

JE) P () 2 pfx), x = x,. (25)
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Finally assume that there exists an x, = x, such that we have
for all x,uw with x = u = x, :
V' (x) > 1
Yi(u) — B
Then the series (18) ts divergent.

1\

(xZuzxy). (26)

22. Observe that the condition (26) is certainly satisfied
from a certain z; on, if ¥ (x) has a finite limit w,

¥ (x) > @ < oo (x—0). (27)

23. Proof of the Theorem 6. Since x, can be replaced by any
greater number we can assume, without loss of generality,
that x; = z,. Then we proceed as in the proof of the Theorem 4
defining I’ (z) by (19) and obtain, as in the section 15, using (26):

F(¥(0) ¥'(x) = lim f(¥(0)) ¥'(%) = -IB lim £ (¥(0) V()

K—> © K— 0

> lim f(v,) = F (x).

K— o0

24. We see that F (x) satisfies the conditions of the
Theorem 2; therefore the integral [ F(z)dx is divergent and

the same holds for the series > F (¢), as F (x) is monotonically
decreasing. But then the series (18) is also divergent since
f (z) 1s a majorant of /' (x). The Theorem 6 is proved.

IV. ANOTHER METHOD IN THE CASE OF DIVERGENCE

25. TueorEm 7. The assertion of the Theorem 4 remains
valid if the assumption that W' (x) 18 monotonically increasing
i1s replaced by the assumption that Y’ (x) 1s monotonically
decreasing.

26. Proof. Since in any case ¥’ (z) = 0 there exists a finite w

such that
' (x) | o (x—o0)

and, as in the sec. 17, we see that this limit is = 1,
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Define the a, as in the sec. 18. Since we can multiply / (2)
by any fixed constant, we can assume that we have:

fx)z1 (ap=x=ay).

27. Denote the inverse function of ¥ (x) by o (x) = g, (2)

and its iterated o (d (%)), o (o (0 (2))),... by 0, (2), 05 (),..
and define a new function [/ (x) in such a way that we have:
F (o (x))
F(x)=— " (x=a,). 28)
(%) = &4 (™) (x=a,) (

For this purpose we put:

F(x) =1(a,Ex<ay), F(x) :m)(a1§x<a2),...
n 1
o= vem

and (28) follows immediately.

(ané'x <an+1)’ (29)

28. From (29) we have for x = a, and = T @,+:

n—1 n 1
F a,) = s F a, _O) = ;7 s
@) = Wy Mo v
1
and, putting = 0, =
P g (a0) 0
F (a 1
fla) . 1 (30)
F(a,—0) V' (ao)

Since we have w = 1, ¥ (x) = 1, we see that ¥ (x) —=x
is non-decreasing, and therefore, the same holds for the length
of the n — th interval between the a,, a,+; — a,. The number
of the a, lying in an interval of the length 1 in the half-line
r = a, has a finite upper bound which may be denoted by k.

29. From (29) it follows obviously that F' (z) 1s continuous
and monotonically increasing in any half-open interval {a,, a,+).
In the points a, we have a discontinuity if ¢, = 1. We can
therefore write for any ¥y = a,:

F() 2o F(x) (y—1=x=y). (31)
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30. Take here as y an integer m = a,, multiply by dz and

integrate from m — 1 to m; we obtain

F (m) = ¢} ’j’_ F (x) dx

m-—1

and therefore, denoting by n,— 1 the first integer > ag:

n

Y F(v) = o} } F(x) dx .

v=n, ng—1
31. On the other hand, the relation (28) can be written as
F(PY(x) ¥ (x) =F(x), (32)

and it follows therefore from the Theorem 2 that | F (z) dx
is divergent. We see that the series ) F(¢) diverges too.

32. In order to prove our Theorem it is therefore sufficient
to prove that we have

Jx) 2 Fx) (xza). (33)

But this relation is evident in the interval {a,, a,). Comparing
(17) and (32) this inequality follows also for the interval {a,, a,)
and from there on by induction for any = a,. The Theorem 7
1s proved.

V. NEW CONDITIONS FOR THE KEULER-MACLAURIN THEOREM

33. One of the ideas underlying the proof of the Theorem 6
was the introduction of the condition (26) which 1s a kind of
weakened monotony condition.

We give in what follows the corresponding generalisation of
the Euler-Maclaurin convergence criterion, in which we try to
weaken the monotony condition even more. Combining the
conditions of the Theorem 8 with the assumptions of the Theo-
rems 1 and 2 we obtain then further criteria for the convergence
and divergence of the series (18). |
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34. TarorEM 8. Let v, &, K be fived positive numbers, and.
A a fived real number. Assume | (x) non-negative and tntegrable
in any finite subinterval of the interval {x,, o). If for any y =

y xo— A

Mazx | zq, we have
7

f() = Kf(x) (y+Asx=yy+A+e), (34)

then from the convergence of the integral (2) follows the conver-
gence of the sertes (18).

+y—A
If for any x = Max (xo,ig—yd—> we haye
7
fx) =z Kf(y) (x+A4-y=y=yx+4), (35)

then from the divergence of the integral (2) follows the divergence
of the series (18).

35. Proof. If (34) holds we have, taking as y an integer ¢
and integrating with respect toz fromy¢ + Atoy v + A4 + &

yvt+ A+e

JO) = — J S dx,

yv+ A

and therefore, denoting by n, a convenient integer, for any
n > ng:

n n yv+A+e
XIS Y [ 0 dx, (36)

36. The limits of the integration in the right hand integrals
lie here between yny + A and yn + A + e.
[f an z lies in one of the integration intervals in (36) we have

x — A x — A
i

€
w+ A S xSy + A+ e, -
Y Y Y

and we see that any such z can lie at the most n ° + 1
Y

such intervals. The right hand expression in (36) is therefore
e yn+A+e¢
g(—+1> [ f(x)dx
Y yng+ A

and our assertion corresponding to the condition (34) is proved.
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37. Assuming that (35) is satisfied we take x as an integer ¢
and obtain, integrating with respect to y from y¢ 4 A —y

yv+ A

to yo + A: yf(x) 2 K | fdy,

yo+A4—7y

and therefore, for a convenient integer n,,

- n n yvt+ A yn+ A
c xSz Y | fdy= | fOdy.
v =n, v=n, yv+A-—vy yng+A—y

From this inequality the assertion corresponding to the
condition (35) follows immediately. The Theorem 8 is proved.

38. CoroLLARY. Assume f(x) non-negative, finite and inte-
grable 1n any finite subinterval of {x,, o). I] there exists an
integer N such that =™ [ () is from a certain x on either monotoni-
cally increasing or monotonically decreasing, the series (1§8)
converges or diverges according as the integral (2) is convergent
or divergent.

VI. CoOMMENTS ON PRINGSHEIM'S DISCUSSION OF THE PROBLEM

39. Although Ermakof’s convergence and divergence criteria
and in particular Ermakof’s second proof, using Abel’s functional
equation, are extremely interesting, they remained very little
known and 1t appears that the author’s paper [5] was the first
in which the problem was taken up in a modern way. The reason
for this may lie partly in the very negligent way in which
Ermakof’s notes were written and partly in some erroneous
and misleading statements about this problem which were formu-
lated by Pringsheim in [6], [7] and [8]. Although the essential
merit of Ermakof’s second paper consists just in the fact that
the function f(x) need not be assumed as monotonic — it 1is
true that Ermakof does not even mention this point in [2] —
Pringsheim says in [7], pp. 308-309:-“Es ist mir neuerdings
gelungen, dieselben [that ts Ermakof’s criteria] von einer ihnen
(auch in der von Herrn Ermakoff gegebenen Darstellung)
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anhaftenden, sehr wesentlichen Beschrankung, né&mlich der
ausschliesslichen Anwendbarkeit auf Reihen mit niemals zuneh-
menden Gliedern zu befreien, und zwar lassen sie sich auch in
dieser erweiterten Form mit Hilfe der oben charakterisierten,
in meiner Abhandlung durchgefithrten Methode ableiten.”

Further, on p. 327 of [7] Pringsheim says after having
discussed the case that f (z) is never increasing, in a footnote:
“ Dies ist der von Herrn Ermakoff ausschliesslich betrachtete
Fall.”

The same i1s implied in the statement about Ermakof’s
criteria in [8] on p. 89: “ Die letztere habe ich neuerdings in der
Weise verallgemeinert, dass f () nicht mehr als monoton voraus-
gesetzt zu werden braucht.”

It is obvious that the reader of the last statement cannot
help believing that while Ermakof did assume the monotony of
/ (x), Pringsheim in his paper [7] quoted proved that this assump-
tion can be dropped.

On the other hand, what Pringsheim did in[7] with Ermakof’s
criteria can be reduced to the observation that the transition
from (2) to (18) in the Euler-Maclaurin theorem can be achieved
if we have

f(v+0)
f )

for natural ¢, uniformly in 6.

This is certainly a pretty unfair way to deal with the inge-
nious proof of Ermakof and the beautiful result given in his
paper [2].

- 1(voo, 0Z60Z1)

40. However, Pringsheim derived the above result which
1s, of course, a very special case of our Theorem 8, from an
elegant “ Corollary ” to Ermakof’s criteria. In this “ Corollary ”
the expression (1) is replaced by:

FLP )]) ¥ ()
S
where, as usual, [x] denotes the greatest integer contained in z.

This expression is of interest since only the values of f for
Integer arguments enter into it, and in this discussion the

I’Enseignement. mathém_  t XT face 9.2 o
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assumption about the monotony of f(xz) is not necessary. On
the other hand, it is pretty difficult to handle if f (z) is given
by an analytic expression.

Since Pringsheim’s formulation of this “ Corollary ” is too
special we derive in the sections 44-45 a generalized form of it.

)

41. In the paper [6] Pringsheim gives a very general conver-
gence criterion which is also mentioned in [7] and [8]. This
criterion uses, in the notations of sec. 7-12 and assuming that
Y(r) = ¥ (x) (x = x;), the expression

¥ (x+h)
o, (x)kz W(jx) f(x) dx llf’(xj+h)f ey (37)

/
i

¥(x)

for a fixed A > 0. Pringsheim proves, that if lim ¢, (z) 1s > 1,

the integral (2) diverges, while this integral is convergent if
lim ¢, (x) < 1.

X — o0

In quoting this result in [7] and [8] Pringsheim says that
Ermakof’s result follows from his for ~ — 0. This 1is, of course,
not correct since in this passage to the limit something like the
uniform differentiability of ¥ (2) in the infinite interval (z, co)
has to be used. As a matter of fact, Pringsheim mentiones this
restriction in his first publication [6], while in [7] and [8] any
reference to this restriction is omitted.

42. We give in what follows a proof of Pringsheim’s criterion
in a generalized form, avoiding the assumption that
lim ¢, (x) exists. We prove:

X 00

If for a positive ¢ from an x = x; on we have
Pp(x) 21 +& (x2x), (38)

the integral (2) diverges, while this integral converges if we have
from an x = x, on:

Pp(x) =1 —¢ (x2xy). (39)
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Proof. From (38) follows obviously for a natural n:

0= 1% (xg+ (v—1)h) Y | f(x) dx

v=1 ¥ (xy+(v=—1)h)

n Y (x4 +vh)
1+¢< D § f(x)dx / no Y(xq+oh)

¥ (x{+nh)
x) dx Y (x;+nh)
= w(il) /¢ J  fxdx.

¥(xy)

If we replace in the numerator of the right hand quotient
¥ (z,) by ¥ (2,) £ ¥ (z,) this quotient is not decreased and we
have

¥ (xq+nh)
[ fx)dx [ v+m
b (xp) [ fdx 2l+e

W(x1)
Therefore the in_tegral (2) is divergent, because otherwise

the left hand quotient would tend to 1 with n — co.

43. Under the condition (39) we have again for a natural n:

'P(xl +nh)

f(x)dx | ¥(xg+nh)
l—&2 ‘P({cl) [ f(x) dx
V(xy)
¥(xy+nh)
= j f (x) dx ¥(x,+nh)
= ¥ [ f(x)dx.

Y(xy1)

Therefore the integral (2) must converge, since otherwise the
right hand quotient would tend to 1 with n - . Combining
this result with the Theorem 8 we obtain again criteria for the
convergence and divergence of (18).

44. Pringsheim derived in his paper [7] the “ Corollary ” from
Ermakof’s results, quoted above, in the following way.

If the function f (x) is defined for all integers ¢ = ¢,, define
the function ¢ (x) by

¢ (x) = f([x]) (xzvo). (40)
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Then we have for an integer » which is = than an integer ¢,

n+1 n
[ e@dx = ¥ f0), (41)

and conditions for the convergence or divergence of the series

(18) are obtained, applying to the integral | ¢ () do Ermakof’s
criteria. In this way we obtain corresponding criteria without
assuming anything about the monotony of f (z).

45. As a matter of fact Pringsheim formulates only the
condition

IOV AC
e F ([0 O]V ()

for the convergence and

limf([‘f’ ) ¥ _

oo S (L (O] Y (%)

for the divergence, where ¥ (z) and y (2) are assumed to tend
monotonically to co with & — oo and to satisfy ¥ () > ¥ ().
However, 1t 13 obvious, e.g. from the corresponding speciali-
sations of our Theorems 1 and 2 that we can use

QPO Y ) saf(Y DY (0, a <1 (42)

as convergence condition and

QP @D Y ) =z f([¥ @)Y () (43)

as that for divergence.
Incidently, it is clear that we have in these cases the same
degree of generality if we take y () = =.

46. Applying the same idea directly to the Theorems 1—3
we have the following three Theorems in which we assume that
Y (z) and ¥ (z) are totally continuous for z = ¢, and that
f (v) 1s defined and = O for all integers ¢ = v,.
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THEOREM 1. Assume that we have (4) for a sequence b, = ¢g
(v = 1,2,...). Then, if we have (42) for almost all x = ¢, and
for a positive o < 1 the series (18) is convergent.

Further, assuming that f(¢) is not = 0 for all sufficiently
great integers ¢, we have for all x = ¢g:

TugoreM 2. Assume that there exisis an a = ¢, and an
integer v, = 0o such that:

¥(a)>vy 2y (a), f(v) >0, (44)

and a sequence b, = v, (v = 1,2,...) such that we have (8). Then,

if (43) holds for almost all x = v,, the series (18) is divergent
and we have (10) for all x = a.

TuroreEM 3. Assume that there exists a constanty, 0 <y < 1,
and a sequence b, = ¢, such that (13) holds and further that
for a constant ¢ and for all integers v = v, we have:

vf(v) e (vzvy).

If then (42) holds for a certain o < 1 the series (18) is con-
vergent, and the relation ¥ (a) = ¥ (a) is for an a = v, only
possible, if {(¢) = 0 for all ¢ = [¥ (a)].

Observe that in applying the Theorems 1,2 and 3’ to ¢ the
transformation formula can be certainly applied since ]qo (:r)l 18
uniformly bounded.
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