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II. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la première guerre, — activités qui Font amené à étudier des

problèmes concrets — ont conduit Borel à s'intéresser de plus en

plus à la Physique. Mais cet intérêt s'était déjà manifesté auparavant

et pour des raisons toutes différentes.
Dès 1906, Borel s'occupe de la théorie cinétique des gaz et de

la loi de Maxwell correspondante, après avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour

y apporter la rigueur [96], il prépare le lecteur en étudiant d'abord
la répartition des petites planètes et montrant la nécessité de

donner un sens aux positions antérieures du problème. Dans le

cas des gaz, la discussion est un peu plus compliquée, mais elle

l'amène encore à rejeter les formes du problème antérieurement
admises et à leur substituer un problème qui, après une réduc
tion que nous allons expliquer, prend la forme G énoncée

plus loin.
On part d'hypothèses précises sur les molécules du gaz, qui

conduisent à ramener l'étude du gaz à celui du mouvement de

n sphères égales se mouvant dans un certain domaine où elles

peuvent se réfléchir à la suite d'un choc, soit sur les parois, soit
entre deux d'entre elles. Borel ramène le mouvement des n
centres des n sphères dans l'espace usuel à 3 dimensions au cas
du mouvement d'un point P dans un domaine D de l'espace
à 3 n dimensions, où les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

l'énergie, la vitesse de P est constante. Soit OV le vecteur
d'origine fixe 0, équipollent à cette vitesse. V se déplace sur
une sphère S. Borel énonce alors ainsi la forme finale, G, qu'il
donne au problème.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le problème est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dco de la surface de S
à une époque t comprise entre des limites connues, que l'on fera
ensuite croître indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est

proportionnelle à dœ, c'est-à-dire que toutes les directions de

OV sont également probables (pour un temps suffisamment long).
En précisant le calcul, Borel retrouve enfin la loi de Maxwell.

D'après lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini à l'infini en mathématique
et observe le parallélisme avec le problème de savoir si la Nature
est discontinue ou continue, ce qui entraîne la question de la

légitimité en Physique des théories moléculaires.
Borel note d'abord que c'est souvent «une simplification en

Mathématiques que de remplacer par l'infini un nombre fini très
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit à constater « que le calcul des intégrales définies est

souvent plus simple que celui des formules sommatoires». Mais il
étudie aussi le passage inverse de l'infini au fini, qui correspond
en physique à l'introduction des théories moléculaires. Il observe
alors que « les considérations basées sur l'existence des molécules

n'y jouent qu'un rôle auxiliaire ».

« La théorie moléculaire a donc été un guide précieux pour
l'analyste en lui suggérant la marche à suivre pour étudier les

équations du problème, mais elle est éliminée de la solution
définitive ».

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problèmes
où figuraient des variables continues en remplaçant celles-ci

par des variables discontinues et passant à la limite. Comme
le dit Borel, cette façon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
l'existence et la forme d'une limite et c'était là souvent un
problème très difficile. Depuis lors, la tendance s'est faite jour,
de plus en plus, d'éviter cette difficulté en cherchant à préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,

que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi à une solution s'appliquant directement au problème posé
dans le cas continu. C'est ainsi que l'étude des équations intégrales
symétriques faite par Hilbert en résolvant le problème difficile
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d'un passage à la limite s'est révélée à la fois plus simple et plus
élégante dans l'étude directe de E. Schmidt. Un exemple
analogue est fourni par la démonstration de Fredholm de l'existence
d'une solution de son équation intégrale. Sa marche est analogue
à celle de la solution d'un système de n équations linéaires à n
inconnues; mais si elle s'est trouvée ainsi guidée par l'étude de

ce problème, à aucun moment sa démonstration ne fait intervenir

le passage à la limite du cas d'un nombre fini de variables
à un nombre infini.

Borel revient au cas discontinu en observant qu'il « peut être
intéressant de se proposer, au point de vue purement mathématique,

l'étude directe de fonctions ou d'équations dépendant
d'un nombre fini de variables, mais très grand ». Il se trouve
alors ramené à une question qui lui tient à cœur et qu'il a souvent
agitée sous différentes formes:

« La première difficulté qui se présente lorsqu'on veut étudier
des fonctions d'un très grand nombre de variables, est la définition

précise d'une telle fonction, j'entends par là une définition
individuelle, permettant de distinguer la fonction définie de

l'infinité des fonctions analogues ». Borel se demande « si l'on
peut considérer comme donné » un ensemble de nombres dont
« la vie d'un homme ne suffirait à en énumérer une faible partie ».

Pour lui, un tel ensemble peut être considéré comme déterminé
« par la connaissance d'une formule assez simple pour être
effectivement écarté, tandis qu'il n'est pas possible d'écrire
effectivement autant de nombres distincts ». Il peut être
aussi déterminé en considérant l'ensemble comme l'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de

probabilité est donnée.
Ces considérations sont tout à fait justifiées quand il s'agit de

définitions et d'applications « constructives ». S'il s'agit de
définitions et d'applications « descriptives », la situation est
différente. La démonstration, par exemple, que le terme général d'une
série convergente tend vers zéro quand son rang croît indéfiniment,

nous paraît correcte sans que ce terme général soit représenté

par une formule simple ou qu'il relève du calcul des
probabilités et même si la vie d'un homme ne suffisait pas à
énumérer une faible partie de la suite des termes de la série.
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Cette observation n'enlève rien à l'intérêt de la distinction
que fait Borel des ellipsoïdes «très irréguliers» parmi les
ellipsoïdes dans un espace à un très grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatrièmes puissances des longueurs des axes n'est pas du
même ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D'après Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoïdes, d'exclure ces

ellipsoïdes très irréguliers. «Lorsqu'un ellipsoïde n'est pas très
irrégulier, plusieurs de ses propriétés nermettent de l'assimiler à

une sphère ».

« Une figure qui dépend d'un nombre extrêmement grand de

paramètres ne peut être considérée comme numériquement
déterminée que si ses paramètres sont définis au moyen de données

numériques assez peu nombreuses pour nous être accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il
convient souvent de remplacer une variable ayant un nombre de

valeurs fini mais très grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutôt que par une
variable continue comme on faisait en physique mathématique
classique où l'on supposait la matière continue.

Une autre des suggestions mathématiques qu'offrent les

théories moléculaires concerne les fonctions d'une variable
complexe. Pour le montrer, Borel considère le potentiel d'un système
formé d'une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d'un système plan et, par suite,
d'un potentiel dit logarithmique. Supposons, de plus, que les

masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais « l'hypothèse que les

masses attirantes sont de simples points matériels sans dimension

est difficile à accepter au point de vue physique. On est
ainsi conduit à disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel à l'extérieur de

ce cercle qu'on nommera le cercle d'action de son centre. On

répartit les masses et les densités de telle manière que la densité
s'annule ainsi que ses dérivées sur le périmètre du cercle; elle est
ainsi non seulement finie mais continue ».
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Borel démontre que, par une répartition convenable de la

densité, on arrive à un résultat qui peut étonner. On aurait pu
craindre qu'il n'y eût pas de place libre entre des points matériels
tellement serrés par hypothèse. En fait, Borel démontre « qu'il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction potentielle

logarithmique satisfait à l'équation de Laplace ».

Borel passe alors à la situation correspondante dans la
théorie des fonctions d'une variable complexe. Soit une fonction
à pôles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée

ayant la même valeur dans toutes les directions en chacun des

points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogènes résumée plus haut (p. 69),
mais reliée ici à une théorie physique moléculaire. C'est une
extension magnifique de la théorie des fonctions analytiques
grâce à laquelle Borel a pu dépasser l'extension précédente due
à Weierstrass.

A la fin du même mémoire, Borel survolant son sujet,
s'exprime ainsi: «C'est toujours au contact de la Nature que
l'Analyse mathématique s'est renouvelée, ce n'est que grâce à ce

contact permanent qu'elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-même ». On
ne saurait mieux dire, pourvu qu'on complète cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés à

réaliser un travail interne, consistant en une refonte continuelle
de l'armature des mathématiques, pour les simplifier et les
harmoniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n'a pour but que de dégager l'essentiel et le commun dans les

problèmes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables à de nouveaux
problèmes posés par la Nature.

V irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées
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quand on change les signes des vitesses, ce qui revient à changer
le signe du temps. Ces équations ne permettent donc pas de

prévoir dans l'avenir une évolution différente de ce que serait
l'évolution en remontant vers le passé. Dès lors, il semble en
résulter que les phénomènes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les

conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothèse lui parait irréalisable. Cette exactitude
absolue devra laisser place à un certain flottement. Il en résulte

que l'avenir n'est pas entièrement déterminé, alors qu'on ne

peut parler d'une indétermination du passé. Il n'y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phénomènes

presque réversibles, dans d'autres ils seront irréversibles.
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