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I1. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la premiére guerre, — activités qui 'ont amené a étudier des
problémes concrets — ont conduit Borel & s’intéresser de plus en
plus & la Physique. Mais cet intérét s’était déja manifesté aupar-
avant et pour des raisons toutes différentes.

Dés 1906, Borel s’occupe de la théorie cinétique des gaz et de
la loi de Maxwell correspondante, aprés avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour
y apporter la rigueur [96], il prépare le lecteur en étudiant d’abord
la répartition des petites planetes et montrant la nécessité de
donner un sens aux positions antérieures du probléme. Dans le
cas des gaz, la discussion est un peu plus compliquée, mais elle
Pameéne encore a rejeter les formes du probléme antérieurement
admises et a leur substituer un probléme qui, aprés une réduc
tion que nous allons expliquer, prend la forme G énoncée
plus loin.

On part d’hypothéses précises sur les molécules du gaz, qui
conduisent & ramener I’étude du gaz a celui du mouvement de
n spheres égales se mouvant dans un certain domaine ou elles
peuvent se réfléchir & la suite d’un choe, soit sur les parois, soit
entre deux d’entre elles. Borel raméne le mouvement des n
centres des n spheres dans 'espace usuel & 3 dimensions au cas
du mouvement d’un point P dans un domaine D de l’espace
a 3 n dimensions, ou les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

Pénergie, la vitesse de P est constante. Soit OV le vecteur
d’origine fixe O, équipollent & cette vitesse. V se déplace sur
une sphére S. Borel énonce alors ainsi la forme finale, G, qu’il
donne au probléme.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le probleme est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dw de la surface de S

a une époque ¢t comprise entre des limites connues, que 'on fera
ensuite croitre indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est
proportionnelle & dw, c’est-a-dire que toutes les directions de
OV sont également probables (pour un temps suffisamment long).

En précisant le calcul, Borel rétrouve enfin la loi de Maxwell.
D’aprés lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini & I'infini en mathématique
et observe le parallélisme avec le probléme de savoir si la Nature
est discontinue ou continue, ce qui entraine la question de la
légitimité en Physique des théories moléculaires.

Borel note d’abord que c’est souvent « une simplification en
Mathématiques que de remplacer par 'infini un nombre fini trés
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit a constater « que le calcul des intégrales définies est
souvent plus simple que celui des formules sommatoires». Mais 1l
étudie aussi le passage inverse de I'infini au fini, qui correspond
en physique & 'introduction des théories moléculaires. 11 observe
alors que «les considérations basées sur ’existence des molécules
n’y jouent qu'un roéle auxiliaire ».

« Lla théorie moléculaire a donc été un guide précieux pour
Ianalyste en lui suggérant la marche a suivre pour étudier les
équations du probléeme, mais elle est éliminée de la solution
définitive ». |

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problemes
ou figuraient des variables continues en remplacant celles-ci
par des variables discontinues et passant a la limite. Comme
le dit Borel, cette facon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
I'existence et la forme d’une limite et c¢’était 14 souvent un
probleme tres difficile. Depuis lors, la tendance s’est faite jour,
de plus en plus, d’éviter cette difficulté en cherchant & préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,
que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi 4 une solution s’appliquant directement au probléme posé
dans le cas continu. C’est ainsi que I’étude des équations intégrales
symétriques faite par Hilbert en résolvant le probleme difficile
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d’un passage & la limite s’est révélée a la fois plus simple et plus
élégante dans I'étude directe de E. Schmidt. Un exemple ana-
logue est fourni par la démonstration de Fredholm de I’existence
d’une solution de son équation intégrale. Sa marche est analogue
a celle de la solution d’un systéme de n équations linéaires a n
inconnues; mais si elle s’est trouvée ainsi guidée par I'étude de
ce probléeme, & aucun moment sa démonstration ne fait inter-
venir le passage a la limite du cas d’un nombre fini de variables
a un nombre infini.

Borel revient au cas discontinu en observant qu’il « peut étre
intéressant de se proposer, au point de vue purement mathéma-
tique, I’étude directe de fonctions ou d’équations dépendant
d’un nombre fini de variables, mais trés grand ». Il se trouve
alors ramené a une question qui lui tient a coeur et qu’il a souvent
agitée sous différentes formes:

« La premiere difficulté qui se présente lorsqu’on veut étudier
des fonctions d’un trés grand nombre de variables, est la défini-
tion précise d’une telle fonction, j’entends par 1a une définition
individuelle, permettant de distinguer la fonction définie de
I'infinité des fonctions analogues». Borel se demande «si I'on
peut considérer comme donné » un ensemble de nombres dont
«la vie d’'un homme ne suffirait & en énumérer une faible partie ».
Pour lui, un tel ensemble peut étre considéré comme déterminé
«par la connaissance d'une formule assez simple pour &tre
effectivement écarté, tandis qu’il n’est pas possible d’écrire
effectivement autant de nombres distincts...» Il peut é&tre
aussi déterminé en considérant ’ensemble comme P'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de
probabilité est donnée. ‘

Ces considérations sont tout & fait justifiées quand il s’agit de
définitions et d’applications « constructives ». S’il s’agit de défi-
nitions et d’applications «descriptives», la situation est diffé-
rente. La démonstration, par exemple, que le terme général d’une
série convergente tend vers zéro quand son rang croit indéfini-
ment, nous parait correcte sans que ce terme général soit repré-
senté par une formule simple ou qu’il reléve du calcul des
probabilités et méme si la vie d’un homme ne suffisait pas a
enumerer une faible partie de la suite des termes de la série.
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Cette observation n’enléve rien a Uintérét de la distinction
que fait Borel des ellipsoides «trés irréguliers » parmi les ellip-
soides dans un espace a un trés grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatriemes puissances des longueurs des axes n’est pas du
méme ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D’aprés Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoides, d’exclure ces
ellipsoides tres irréguliers. « Lorsqu’un ellipsoide n’est pas treés
irrégulier, plusieurs de ses propriétés vermettent de I'assimiler a
une sphere ». . .

« Une figure qui dépend d’un nombre extrémement grand de
parametres ne peut étre considérée comme numériquement
déterminée que sises parametres sont définis au moyen de données
numériques assez peu nombreuses pour nous étre accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il con-
vient souvent de remplacer une variable ayant un nombre de
valeurs fini mais treés grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutdét que par une
variable continue comme on faisait en physique mathématique
classique ou l’on supposait la matiére continue.

Une autre des suggestions mathématiques qu’offrent les
théories moléculaires concerne les fonctions d’une variable com-
plexe. Pour le montrer, Borel considére le potentiel d’un systéme
formé d’une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d’un systeme plan et, par suite,
d’un potentiel dit logarithmique. Supposons, de plus, que les
masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais «l’hypothése que les
masses attirantes sont de simples points matériels sans dimen-
sion est difficile & accepter au point de vue physique. On est
ainsi conduit a disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel & 'extérieur de
ce cercle qu'on nommera le cercle d’action de son centre. On
répartit les masses et les densités de telle maniere que la densité
g’annule ainsi que ses dérivées sur le périmetre du cercle; elle est
ainsi non seulement finie mais continue ».
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Borel démontre que, par une répartition convenable de la
densité, on arrive & un résultat qui peut étonner. On aurait pu
craindre qu’il n’y etit pas de place libre entre des points matériels
tellement serrés par hypotheése. En fait, Borel démontre « qu’il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction poten-
tielle logarithmique satisfait a ’équation de Laplace ».

Borel passe alors a la situation correspondante dans la
théorie des fonctions d’une variable complexe. Soit une fonction
a pbles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée
ayant la méme valeur dans toutes les directions en chacun des
points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogénes résumée plus haut (p. 69),
mais reliée ic1 a une théorie physique moléculaire. C’est une
extension magnifique de la théorie des fonctions analytiques
grace a laquelle Borel a pu dépasser 'extension précédente due
a Welerstrass.

A la fin du méme mémoire, Borel survolant son sujet,
s’exprime ainsi: « G’est toujours au contact de la Nature que
I’Analyse mathématique s’est renouvelée, ce n’est que grace a ce
contact permanent qu’elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-méme ». On
ne saurait mieux dire, poarvu qu'on compléte cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés a
réaliser un travail interne, consistant en une refonte continuelle
de 'armature des mathématiques, pour les simplifier et les har-
moniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n’a pour but que de dégager l’essentiel et le commun dans les
problémes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables & de nouveaux pro-
blémes posés par la Nature.

L’irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées
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quand on change les signes des vitesses, ce qui revient & changer
le signe du temps. Ces équations ne permettent donc pas de
prévoir dans I'avenir une évolution différente de ce que serait
Iévolution en remontant vers le passé. Dés lors, il semble en
résulter que les phénomeénes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les
conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothése lui parait irréalisable. Cette exactitude
absolue devra laisser place & un certain flottement. Il en résulte
que l'avenir n’est pas entiérement déterminé, alors qu’on ne
peut parler d’une indétermination du passé. Il n’y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phéno-
menes presque réversibles, dans d’autres ils seront irréversibles.
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