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Les travaux de Mathématiques appliquées

Nous avons expliqué plus haut, p. 17, que, si c'est après la
première guerre mondiale que Borel s'est particulièrement
occupé des mathématiques appliquées, il s'y était intéressé déjà

auparavant en raison de leur connexion avec certains de ses

travaux de mathématiques pures.
Parmi les mathématiques appliquées, Borel a consacré surtout

son attention et ses recherches au calcul des probabilités et à la
physique mathématique.

/. Calcul des probabilités

Là encore, Borel a été un initiateur en introduisant implicitement

la conception de convergence presque certaine, liée à une
généralisation remarquable du théorème de Bernoulli et en
créant la théorie des jeux psychologiques.
Remarques. — L'idée a été émise que les idées les plus originales
de Borel ont été publiées avant la première guerre et concernent
toutes l'Analyse. Nous croyons que les deux sujets que nous
venons de mentionner sont d'une originalité aussi grande et ont
chacun donné lieu aussi à d'innombrables publications
postérieures, par ses contemporains et successeurs.

En sortant du calcul des probabilités, les quatre définitions
(non équivalentes) mentionnées plus haut, p. 58, de la raréfaction
d'un ensemble de mesure nulle, étaient tout à fait inattendues et
n'ont pourtant été développées par Borel qu'après la seconde

guerre mondiale.

Probabilités dénombrables.

I. Avant Borel, on avait étudié, comme lui, le cas d'une
infinité dénombrable d'épreuves. Mais on s'était limité aux
propriétés asymptotiques d'une probabilité dépendant d'un nombre
fini croissant d'épreuves. Avec Borel s'ouvre un domaine tout
nouveau dans le calcul des probabilités: celui des probabilités
« dénombrables ». Et Borel réussit à trouver les valeurs exactes
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des probabilités d'événements dont la réalisation dépend d'une
infinité d'épreuves.

Il commence par démontrer un théorème fondamental et
assez inattendu [S., p. 163].

Soient E1? E2, E„ une suite d'événements indépendants
et Pn p2, Pm leurs probabilités respectives. La probabilité
pour qu'une infinité de ces événements se réalisent est égale à 0

si la série Zpn est convergente et 1 si elle est divergente.
En appelant Ak la probabilité pour que k des événements Et

se produisent, Borel a complété son théorème en montrant que
si Zpk est convergente, les Ak ne sont pas nulles (au contraire
de ^4oo); si Zpk est divergente, les Ak sont nulles (alors que
Ao0 l).

Enfin, dans un mémoire ultérieur, [S. p. 302], Borel a étendu
son théorème au cas où les Et ne sont pas indépendants, moyennant

certaines restrictions sur le sens à attribuer aux cas de

convergence et de divergence.
Dans le même mémoire, Borel réalise un progrès encore plus

grand. Mais, suivant une caractéristique de son esprit que nous
avons signalée plus haut, ce progrès est réalisé dans des cas

particuliers et il laisse au lecteur ou à ses successeurs le soin d'en
comprendre et d'en formuler la portée générale. Il s'agit, d'une

part, d'un théorème apportant une précision nouvelle et très

importante au théorème de Bernoulli et, d'autre part, de la
conception d'une nouvelle sorte de convergence: la convergence
presque certaine (dite aussi presque sûre).

Borel ne considère explicitement que le cas où l'on étudie la
fréquence cpn

1} d'un chiffre déterminé dans les ^ premiers chiffres
d'un nombre N pris au hasard (en supposant que la probabilité
de l'apparition d'un chiffre déterminé est indépendante de ce

1
chiffre et par suite, égale à —). Quand n croît, la convergence de

1

cpn vers — est un événement fortuit, Borel démontre que la

probabilité de cet événement est égale à l'unité. Mais le raisonne-

i) La fréquence d'un événement dans n épreuves est le rapport — où rn est le

nombre de répétitions de l'événement dans les n épreuves.
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ment de Borel est général et permet d'énoncer explicitement le

résultat suivant:
Soient fn la fréquence de n épreuves indépendantes d'un

événement E de probabilité constante p. Alors la probabilité

que fn tende vers p est égale à l'unité.
On voit immédiatement qu'on a là un énoncé à la fois plus

frappant et plus précis que celui du théorème de Bernoulli.

D'après ce dernier, il est très probable que | fn — p | soit petit
quand n est grand, mais il n'en résulte pas que /„ tende vers p.
Au contraire, si l'on admet le théorème de Borel, le théorème
de Bernoulli en résulte, c'est-à-dire que si s est un nombre positif
arbitraire, la probabilité pour que | fn— p | < s tend vers l'unité
quand noo. Le théorème de Bernoulli est donc une simple
conséquence d'un théorème plus général, celui de Borel et une
conséquence moins simple à saisir — et pour cette raison, souvent
mal interprétée — du théorème de Borel.

On n'a malheureusement pas encore pris l'habitude de

considérer le théorème de Borel sous cet aspect. Avant Borel,
le théorème de Bernoulli était un théorème fondamental.
Après Borel, c'est le théorème de Borel qui doit lui être
substitué.

La démonstration de Borel est analytique, mais il avait
indiqué qu'on pourrait donner aussi une démonstration géométrique

de son théorème. Cette démonstration géométrique a été

explicitement obtenue, plus tard, par F. Hausdorff.
La démonstration analytique de Borel est assez compliquée.

Une démonstration à la fois plus simple et d'une portée plus
générale a été donnée plus tard par Cantelli. Mais on doit noter
que la démonstration de Borel a l'avantage de se prêter mieux
à une étude plus précise du comportement de la fréquence.

Nous avons aussi signalé plus haut une autre caractéristique
du théorème de Borel: c'est qu'il introduit (encore une fois
implicitement) une espèce nouvelle de convergence: «la
convergence presque certaine ».

Généralisant la circonstance qui se présente dans le théorème
de Borel, on est partout convenu maintenant de dire qu'un
nombre aléatoire Xn converge presque certainement vers un
nombre aléatoire A quand la convergence de X±, X2, Xn

L'Enseignement mathém., t. XI, fasc. 1.
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vers X est un événement presque certain, c'est-à-dire dont la
probabilité est égale à l'unité.

On peut dire que par la précision donnée au théorème de

Bernoulli et par l'introduction de la convergence presque certaine,
Borel s'est placé au premier rang des successeurs de Laplace
et de Poincaré.

II. Poursuivant son étude des «probabilités dénombrables »,

Borel considère [S., p. 131] les lois de probabilité des quotients
incomplets, An, de la fraction continue

1

X

représentant un nombre incommensurable X compris entre 0

et 1 et dont la loi de probabilité est uniforme.
En appelant <p (n) une fonction positive croissante de ji,

Borel trouve que:
1

I si la série 1 est convergente, la probabilité pour que
cp (n)

l'on ait
An <cp (h)

à partir d'un certain rang est égale à un;
II si cette série est divergente, il y a une probabilité égale à

un pour que l'on ait
An > (p (n)

à partir d'un certain rang.
En d'autres termes, il est infiniment probable que la croissance

asymptotique de An est comprise entre celle de toute fonction
1

cp (n) telle que la série I soit convergente et celle de toute
(p (n)

fonction (p (n) telle que cette série soit divergente.
Dans le même mémoire, Borel exprime une opinion qu'il a

souvent répétée, à savoir qu'une « probabilité nulle ou extrêmement

petite doit être considérée comme équivalent à l'impossibilité

». C'est une opinion qui avait déjà été formulée, longtemps
auparavant, par Bufîon, puis par Cournot. Bufïon et Borel ont
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même chiffré, chacun de leur côté, ce qu'ils appellent «extrêmement

petite ». Borel en a donné une image concrète très

frappante, le « miracle des singes dactylographes ». Peut-on concevoir

que si un million de singes travaillaient dix heures par jour sur

un million de machines à écrire et si leur production était
successivement reliée en volumes, l'ensemble des volumes
obtenus au bout d'un an se trouverait renfermer la copie exacte
des livres de toute nature et de toutes les langues conservés dans

les plus riches bibliothèques du monde? Il n'est douteux pour
personne qu'un tel événement doit être considéré comme
impossible, bien que sa probabilité si elle est extraordinairement
petite, ne soit pas rigoureusement nulle.

Théorie des jeux stratégiques.

Sortant de la théorie pure pour aller vers les applications
(du calcul des probabilités), Borel s'est encore ici montré un
novateur dont les idées et les résultats ont donné lieu à un
nombre énorme de travaux.

Jusqu'à lui — sauf dans des problèmes très particuliers dont
aucune généralisation n'était entreprise — l'étude des jeux de

hasard en calcul des probabilités s'était bornée aux cas où
chacun des événements considérés avait une probabilité
déterminée: jeu de pile ou face, jeu de dés, etc. L'intelligence, le
caractère des joueurs n'y avaient aucune part. Il n'en est pourtant

rien dans la plupart des jeux en usage: jeu de dames, jeu
d'échecs, jeu de bridge, etc. On doit alors admirer avant tout
que Borel ait eu l'audace de vouloir établir une théorie générale
des jeux psychologiques et de concevoir la possibilité d'y
parvenir en appliquant le calcul des probabilités à des hypothèses
convenablement choisies. Il a choisi, à cet effet, des hypothèses
plausibles, et a pu déterminer dans des cas particuliers les
conséquences de ces hypothèses. Ce n'est pas tout; il a aperçu, dès
sa première publication sur ce sujet, que le problème posé par
lui avait des applications dans des domaines variés: économie,
politique, stratégie, psychologie, etc.

Pour éclairer ce qui précède, il nous faut, maintenant,
préciser les hypothèses de Borel. Contrairement à certains esprits,
nous ne pensons pas que ces hypothèses soient inéluctables eh
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d'ailleurs elles ont été discutées. Mais ce sont des hypothèses qui,
d'une part, sont plausibles et qui, d'autre part, se prêtent à un
traitement mathématique du problème, deux qualités qui sont
très loin d'être toujours conciliables. L'un des principaux
mérites de Borel est d'avoir montré qu'un tel choix d'hypothèses
est possible, même si l'on n'admet pas qu'il soit nécessairement
le seul ni le meilleur possible.

Les hypothèses de Borel.

A chaque coup à jouer, un joueur se trouve dans une circonstance

déterminée dont certains éléments lui sont connus; par
exemple, au jeu de cartes, l'ensemble des cartes qu'il a dans la
main et la suite des coups précédents. Sur la base de ces données
et sur l'hypothèse qu'il fait sur la psychologie des autres joueurs,
il décide son coup. Borel élimine cette hypothèse 1 et considère
l'ensemble des données et du choix du joueur. Il y a, dans la
plupart des jeux, un nombre fini, quoique très grand, de tels
ensembles. Au cours d'un jeu, un joueur adopte successivement

un nombre fini de tels ensembles et caractérise ainsi sa « méthode
de jeu». Il y a un nombre fini de méthodes de jeu possibles:
<?!, C2, Cn et chaque joueur adopte nécessairement l'une
d'elles à chaque coup. Mais il y a au début du jeu (par exemple,
quand on distribue les cartes) ou au cours du jeu, une intervention
du hasard. Si donc, en considérant le cas de deux joueurs, A et
B, le joueur A adopte la méthode de jeu Ct et le joueur B la
méthode Cfc, c'est le calcul des probabilités qui permettra de

calculer la probabilité nik pour que A gagne finalement. On a
alors à chercher d'abord s'il existe une méthode de jeu Ct pour A,
telle que nik soit positif quel que soit k (c'est-à-dire quelle que
soit la méthode Ck adoptée par B). Alors A aurait intérêt à

adopter la méthode Ct (ou l'une des méthodes Ct pour lesquelles

7iik est positif quel que soit k).
Borel se place dans le cas où une telle méthode de jeu n'existe

pas et il se demande s'il n'est pas possible de jouer d'une manière

avantageuse en variant son jeu. « Si l'on veut formuler une règle
précise pour varier le jeu, cette règle ne faisant intervenir que

i) Voir page suivante, la citation 011 Borel énonce cette élimination, qui évidemment,

éloigne un peu la théorie de la réalité.
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les faits observés et non pas des remarques psychologiques sur

le joueur auquel on est opposé, cette règle équivaut forcément

à un énoncé tel que le suivant: la probabilité pour que, en un
moment donné du jeu, A adopte, pour fixer sa conduite à ce

moment, le code Ct est \ la probabilité analogue pour B pourra
être désignée par qk et, en désignant par n le nombre de codes

qui subsistent, on a

X Pi 1, Eft« 1" (1)
i=l k=l

La probabilité de gain de A est donc

n n

p£ E Pi Qk-
i=l k l

Borel se place alors, pour simplifier, dans ce qu'il appelle le cas

symétrique, caractérisé par l'égalité nH i, c'est-à-dire que
si les deux joueurs adoptent la même méthode de jeu, leurs
chances de gagner sont égales. Il observe que dans la plupart
des jeux de cartes où l'un des joueurs joue le premier, ces deux
chances ne sont pas égales, mais qu'elles le deviennent si le jeu
consiste en deux parties où l'un des joueurs commencera le jeu
dans la première et l'autre dans la seconde. Comme on a évidemment

^ik "h TT/ci 1

OU

1 1

nik — - + ccik nki - + ccki

avec ocik + aki 0, on aura

n i-l
avec a £ £ *jk(Pt<lk-Pk<h)

i l k l

Tout ce qui précède figure dans la première Note de Borel.
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Dans cette même Note, Borel prouve que, dans le cas où

n 3, «il est facile de trouver des nombres positifs pl5 p2, p3
vérifiant (1) et tels que a soit nul et donc P \ quels que soient
les nombres gx, g2, q3. Il est donc possible d'adopter une manière
de jouer permettant de lutter avec des chances égales contre
tout joueur ».

Dans sa dernière Note sur les jeux, Borel procède autrement
mais ramène au même problème mathématique. Au lieu de partir
de la probabilité pour le joueur A de gagner, il part du gain

moyen de A, soit gik quand A adopte le code Ct et B le code Ck.

La symétrie du jeu entraîne

9ik + Qu 0 •

Quand les codes Ct et Ck ne sont adoptés par A et B qu'avec les

probabilités pt et qk1 le gain moyen de A sera

G Z 9tk Pi 9k

Par une méthode différente de la précédente, Borel montre alors

que, pour n 3 et n 5, on peut trouver des probabilités qk

telles que G soit nul quels que soient les pt.
Le problème de démontrer qu'il n'en est pas ainsi avait été

d'abord prouvé insoluble pour n — 3 par Borel. Dans ses

Notes successives, il lui avait paru d'abord soluble pour n 5;
puis ayant pu prouver qu'il était insoluble pour n 5, il avait
à ce moment pensé qu'il était soluble pour n 7. Enfin, il
termine sa dernière Note en écrivant que ce même problème
« insoluble pour n 3 et n 5 me paraît également insoluble

pour n 7. Il serait intéressant, soit de démontrer qu'il est

insoluble en général, soit d'en donner une solution particulière ».

Il est clair que l'évolution de sa pensée le conduit à croire

que, quel que soit le nombre n des manières de jouer, on peut
choisir les probabilités qk pour B de choisir les codes Ck de sorte

que, quelles que soient les probabilités pt pour A de choisir les

codes Ch la moyenne du gain total de A et celle du gain total
de B soient toutes deux nulles.

Toutefois, on doit constater que Borel n'a pas démontré

qu'il en était ainsi quel que soit n et qu'il n'a même pas,
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contrairement à son habitude, exposé en détail dans un mémoire,

les Notes qui résumaient ses résultats dans les C.R.

On peut trouver l'explication de ces faits dans l'évolution de

ses activités. Borel, pendant une certaine période, a, en effet,

été pris de plus en plus par son activité politique (voir p. 12).

D'abord maire de sa ville natale, puis conseiller général de son

département, il a été élu député en 1924 et l'est resté jusqu'en
1936. Dans l'intervalle, il a même été quelques mois, ministre
de la Marine et nous avons même eu l'honneur de le remplacer
comme professeur et de le dispenser ainsi de faire ses cours à la
Faculté des Sciences. De sorte qu'après avoir posé le problème
et l'avoir résolu dans les cas les plus simples, Borel n'a plus eu le

temps d'étudier en détail le problème mathématique qui restait
à résoudre.

C'est après la dernière Note (de 1927) de Borel que von
Neumann en 1928, adoptant exactement les mêmes hypothèses,
a réussi à démontrer un théorème (dit du minimum — maxi-
morum) équivalent au théorème de Borel, dans le cas général
de n quelconque. Puis, associé avec l'économiste Morgenstern,
il en a tiré une théorie économique générale.

La théorie de von Neumann-Morgenstern a eu un retentissement

considérable, tandis que les Notes de Borel restaient
ignorées. C'est pourquoi nous avons décidé de rappeler l'antériorité

de Borel et nous avons publié dans « Econometrica » en

1953, une excellente traduction en anglais, réalisée par M. Savage
des trois Notes les plus importantes de Borel, avec un commentaire.

Nous avions auparavant communiqué ce commentaire à

von Neumann dont la réponse a été publiée dans le même
numéro d'Econometrica. Tout naturellement von Neumann a

réagi vigoureusement, alléguant que rien ne pouvait être retenu
de la théorie de Bore], avant sa propre démonstration du théorème

général. D'après lui « en 1921 et ultérieurement Borel
suppose que le théorème est ou risque d'être faux ». Mais si cette
assertion est rigoureusement exacte, elle doit être complétée par
la citation de Borel faite plus haut, montrant que Borel a fini
par pencher vers l'exactitude générale du théorème.

Von Neumann ajoutait «j'avais moi-même élaboré mes idées
sur le sujet avant d'avoir lu ses Notes (les Notes de Borel) ».
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Mais en tout cas, il en avait lu une avant de publier son premier
Mémoire (de 1928) où il cite lui-même cette Note de Borel.

Si notre publication dans Econometrica avait révélé à beaucoup

l'antériorité de Borel, elle n'avait pas atteint tous les
intéressés. C'est pourquoi, d'accord avec M. Guitton, rédacteur
de la Revue d'Economie politique, nous avons publié, dans
cette revue en 1959, à nouveau, mais cette fois en français, dans
le texte original, les trois Notes de Borel et notre commentaire
ainsi que la traduction du commentaire en anglais de von
Neumann.

Dans les innombrables publications sur les jeux psychologiques

et sur leurs applications à l'Econométrie, il ne sera plus
admissible d'ignorer l'antériorité de Borel.

Malheureusement, tel n'est pas encore le cas. En 1959, dans

une Notice, d'ailleurs très intéressante sur le grand mathématicien
que fut von Neumann, l'auteur commence ainsi:

« Theory of games.

The essential ingredients of von Neumann's theory of games are
already to be found in his 1928 paper

The first application of game theory to an economic problem
was given in a 1937 paper ».

Et sur ces deux sujets, le nom de Borel n'est même pas
mentionné. Or:

1° le premier mémoire de von Neumann sur la théorie des

jeux a été publié après la dernière Note de Borel sur le même

sujet, et en connaissance de la théorie de Borel, qu'il cite. Les

hypothèses à la base de la théorie de von Neumann sont en outre
identiques à celles de Borel.

2° Borel, et non von Neumann, a été le premier à signaler

que la théorie des jeux est applicable, non seulement à l'Economie

politique, mais aussi à l'art militaire, à la psychologie, etc.

Ceci dit, il faut reconnaître que von Neumann et Morgenstern
ont très bien développé l'application de la théorie des jeux à

l'Economie politique.



II. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la première guerre, — activités qui Font amené à étudier des

problèmes concrets — ont conduit Borel à s'intéresser de plus en

plus à la Physique. Mais cet intérêt s'était déjà manifesté auparavant

et pour des raisons toutes différentes.
Dès 1906, Borel s'occupe de la théorie cinétique des gaz et de

la loi de Maxwell correspondante, après avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour

y apporter la rigueur [96], il prépare le lecteur en étudiant d'abord
la répartition des petites planètes et montrant la nécessité de

donner un sens aux positions antérieures du problème. Dans le

cas des gaz, la discussion est un peu plus compliquée, mais elle

l'amène encore à rejeter les formes du problème antérieurement
admises et à leur substituer un problème qui, après une réduc
tion que nous allons expliquer, prend la forme G énoncée

plus loin.
On part d'hypothèses précises sur les molécules du gaz, qui

conduisent à ramener l'étude du gaz à celui du mouvement de

n sphères égales se mouvant dans un certain domaine où elles

peuvent se réfléchir à la suite d'un choc, soit sur les parois, soit
entre deux d'entre elles. Borel ramène le mouvement des n
centres des n sphères dans l'espace usuel à 3 dimensions au cas
du mouvement d'un point P dans un domaine D de l'espace
à 3 n dimensions, où les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

l'énergie, la vitesse de P est constante. Soit OV le vecteur
d'origine fixe 0, équipollent à cette vitesse. V se déplace sur
une sphère S. Borel énonce alors ainsi la forme finale, G, qu'il
donne au problème.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le problème est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dco de la surface de S
à une époque t comprise entre des limites connues, que l'on fera
ensuite croître indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est

proportionnelle à dœ, c'est-à-dire que toutes les directions de

OV sont également probables (pour un temps suffisamment long).
En précisant le calcul, Borel retrouve enfin la loi de Maxwell.

D'après lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini à l'infini en mathématique
et observe le parallélisme avec le problème de savoir si la Nature
est discontinue ou continue, ce qui entraîne la question de la

légitimité en Physique des théories moléculaires.
Borel note d'abord que c'est souvent «une simplification en

Mathématiques que de remplacer par l'infini un nombre fini très
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit à constater « que le calcul des intégrales définies est

souvent plus simple que celui des formules sommatoires». Mais il
étudie aussi le passage inverse de l'infini au fini, qui correspond
en physique à l'introduction des théories moléculaires. Il observe
alors que « les considérations basées sur l'existence des molécules

n'y jouent qu'un rôle auxiliaire ».

« La théorie moléculaire a donc été un guide précieux pour
l'analyste en lui suggérant la marche à suivre pour étudier les

équations du problème, mais elle est éliminée de la solution
définitive ».

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problèmes
où figuraient des variables continues en remplaçant celles-ci

par des variables discontinues et passant à la limite. Comme
le dit Borel, cette façon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
l'existence et la forme d'une limite et c'était là souvent un
problème très difficile. Depuis lors, la tendance s'est faite jour,
de plus en plus, d'éviter cette difficulté en cherchant à préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,

que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi à une solution s'appliquant directement au problème posé
dans le cas continu. C'est ainsi que l'étude des équations intégrales
symétriques faite par Hilbert en résolvant le problème difficile
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d'un passage à la limite s'est révélée à la fois plus simple et plus
élégante dans l'étude directe de E. Schmidt. Un exemple
analogue est fourni par la démonstration de Fredholm de l'existence
d'une solution de son équation intégrale. Sa marche est analogue
à celle de la solution d'un système de n équations linéaires à n
inconnues; mais si elle s'est trouvée ainsi guidée par l'étude de

ce problème, à aucun moment sa démonstration ne fait intervenir

le passage à la limite du cas d'un nombre fini de variables
à un nombre infini.

Borel revient au cas discontinu en observant qu'il « peut être
intéressant de se proposer, au point de vue purement mathématique,

l'étude directe de fonctions ou d'équations dépendant
d'un nombre fini de variables, mais très grand ». Il se trouve
alors ramené à une question qui lui tient à cœur et qu'il a souvent
agitée sous différentes formes:

« La première difficulté qui se présente lorsqu'on veut étudier
des fonctions d'un très grand nombre de variables, est la définition

précise d'une telle fonction, j'entends par là une définition
individuelle, permettant de distinguer la fonction définie de

l'infinité des fonctions analogues ». Borel se demande « si l'on
peut considérer comme donné » un ensemble de nombres dont
« la vie d'un homme ne suffirait à en énumérer une faible partie ».

Pour lui, un tel ensemble peut être considéré comme déterminé
« par la connaissance d'une formule assez simple pour être
effectivement écarté, tandis qu'il n'est pas possible d'écrire
effectivement autant de nombres distincts ». Il peut être
aussi déterminé en considérant l'ensemble comme l'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de

probabilité est donnée.
Ces considérations sont tout à fait justifiées quand il s'agit de

définitions et d'applications « constructives ». S'il s'agit de
définitions et d'applications « descriptives », la situation est
différente. La démonstration, par exemple, que le terme général d'une
série convergente tend vers zéro quand son rang croît indéfiniment,

nous paraît correcte sans que ce terme général soit représenté

par une formule simple ou qu'il relève du calcul des
probabilités et même si la vie d'un homme ne suffisait pas à
énumérer une faible partie de la suite des termes de la série.
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Cette observation n'enlève rien à l'intérêt de la distinction
que fait Borel des ellipsoïdes «très irréguliers» parmi les
ellipsoïdes dans un espace à un très grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatrièmes puissances des longueurs des axes n'est pas du
même ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D'après Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoïdes, d'exclure ces

ellipsoïdes très irréguliers. «Lorsqu'un ellipsoïde n'est pas très
irrégulier, plusieurs de ses propriétés nermettent de l'assimiler à

une sphère ».

« Une figure qui dépend d'un nombre extrêmement grand de

paramètres ne peut être considérée comme numériquement
déterminée que si ses paramètres sont définis au moyen de données

numériques assez peu nombreuses pour nous être accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il
convient souvent de remplacer une variable ayant un nombre de

valeurs fini mais très grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutôt que par une
variable continue comme on faisait en physique mathématique
classique où l'on supposait la matière continue.

Une autre des suggestions mathématiques qu'offrent les

théories moléculaires concerne les fonctions d'une variable
complexe. Pour le montrer, Borel considère le potentiel d'un système
formé d'une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d'un système plan et, par suite,
d'un potentiel dit logarithmique. Supposons, de plus, que les

masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais « l'hypothèse que les

masses attirantes sont de simples points matériels sans dimension

est difficile à accepter au point de vue physique. On est
ainsi conduit à disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel à l'extérieur de

ce cercle qu'on nommera le cercle d'action de son centre. On

répartit les masses et les densités de telle manière que la densité
s'annule ainsi que ses dérivées sur le périmètre du cercle; elle est
ainsi non seulement finie mais continue ».



— 93 —

Borel démontre que, par une répartition convenable de la

densité, on arrive à un résultat qui peut étonner. On aurait pu
craindre qu'il n'y eût pas de place libre entre des points matériels
tellement serrés par hypothèse. En fait, Borel démontre « qu'il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction potentielle

logarithmique satisfait à l'équation de Laplace ».

Borel passe alors à la situation correspondante dans la
théorie des fonctions d'une variable complexe. Soit une fonction
à pôles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée

ayant la même valeur dans toutes les directions en chacun des

points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogènes résumée plus haut (p. 69),
mais reliée ici à une théorie physique moléculaire. C'est une
extension magnifique de la théorie des fonctions analytiques
grâce à laquelle Borel a pu dépasser l'extension précédente due
à Weierstrass.

A la fin du même mémoire, Borel survolant son sujet,
s'exprime ainsi: «C'est toujours au contact de la Nature que
l'Analyse mathématique s'est renouvelée, ce n'est que grâce à ce

contact permanent qu'elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-même ». On
ne saurait mieux dire, pourvu qu'on complète cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés à

réaliser un travail interne, consistant en une refonte continuelle
de l'armature des mathématiques, pour les simplifier et les
harmoniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n'a pour but que de dégager l'essentiel et le commun dans les

problèmes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables à de nouveaux
problèmes posés par la Nature.

V irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées
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quand on change les signes des vitesses, ce qui revient à changer
le signe du temps. Ces équations ne permettent donc pas de

prévoir dans l'avenir une évolution différente de ce que serait
l'évolution en remontant vers le passé. Dès lors, il semble en
résulter que les phénomènes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les

conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothèse lui parait irréalisable. Cette exactitude
absolue devra laisser place à un certain flottement. Il en résulte

que l'avenir n'est pas entièrement déterminé, alors qu'on ne

peut parler d'une indétermination du passé. Il n'y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phénomènes

presque réversibles, dans d'autres ils seront irréversibles.
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