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LES TRAVAUX DE MATHEMATIQUES APPLIQUEES

Nous avons expliqué plus haut, p. 17, que, si ¢’est aprés la
premiére guerre mondiale que Borel s’est particuliérement
occupé des mathématiques appliquées, il s’y était intéressé déja
auparavant en raison de leur connexion avec certains de ses
travaux de mathématiques pures.

Parmi les mathématiques appliquées, Borel a consacré surtout
son attention et ses recherches au calcul des probabilités et a la
physique mathématique.

I. Calcul des probabilités

La encore, Borel a été un initiateur en introduisant implicite-

ment la conception de convergence presque certaine, liée & une
généralisation remarquable du théoréme de Bernoulli et en
créant la théorie des jeux psychologiques.
Remarques. — L’idée a été émise que les idées les plus originales
de Borel ont été publiées avant la premiére guerre et concernent
toutes I’Analyse. Nous croyons que les deux sujets que nous
venons de mentionner sont d’une originalité aussi grande et ont
chacun donné lieu aussi a d’innombrables publications posté-
rieures, par ses contemporains et successeurs.

En sortant du calcul des probabilités, les quatre définitions
(non équivalentes) mentionnées plus haut, p. 58, de lararéfaction
d’un ensemble de mesure nulle, étaient tout & fait inattendues et
n’ont pourtant été développées par Borel qu’aprés la seconde
guerre mondiale.

Probabilités dénombrables.

I. Avant Borel, on avait étudié, comme lui, le cas d’une
infinité dénombrable d’épreuves. Mais on s’était limité aux pro-
priétés asymptotiques d’une probabilité dépendant d’un nombre
fini croissant d’épreuves. Avec Borel s’ouvre un domaine tout
nouveau dans le calcul des probabilités: celui des probabilités
«dénombrables ». Et Borel réussit & trouver les valeurs exactes
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des probabilités d’événements dont la réalisation dépend d’une
infinité d’épreuves.

Il commence par démontrer un théoréme fondamental et
assez nattendu [S., p. 163].

Soient E, E,, ... E, ... une suite d’événements indépendants
et py, Pgy .-+ Dy, ... leurs probabilités respectives. La probabilité
pour qu’'une infinité de ces événements se réalisent est égale & 0
si la série Xp, est convergente et 1 si elle est divergente.

En appelant A4, la probabilité pour que k des événements E,
se produisent, Borel a complété son théoreme en montrant que
si Xp, est convergente, les A, ne sont pas nulles (au contraire
de A,); st Xp, est divergente, les A, sont nulles (alors que
A, =1).

Enfin, dans un mémoire ultérieur, [S. p. 302], Borel a étendu
son théoréme au cas ou les £; ne sont pas indépendants, moyen-
nant certaines restrictions sur le sens a attribuer aux cas de
convergence et de divergence.

Dans le méme mémoire, Borel réalise un progres encore plus
grand. Mais, suivant une caractéristique de son esprit que nous
avons signalée plus haut, ce progrés est réalisé dans des cas
particuliers et il laisse au lecteur ou a ses successeurs le soin d’en
comprendre et d’en formuler la portée générale. Il s’agit, d’'une
part, d’un théoreme apportant une précision nouvelle et tres
importante au théoréme de Bernoulli et, d’autre part, de la con-
ception d’une nouvelle sorte de convergence: la convergence
presque certaine (dite aussi presque stre).

Borel ne considére explicitement que le cas ou l'on étudie la
fréquence @, ¥ d’un chiffre déterminé dans les n premiers chiffres
d’un nombre N pris au hasard (en supposant que la probabilité
de Vapparition d’un chiffre déterminé est indépendante de ce

1
chiffre et par suite, égale a E). Quand n croit, la convergence de

1

¢, Vvers 10 est un événement fortuit, Borel démontre que la pro-

babilité de cet événement est égale a I'unité. Mais le raisonne-

.y ) r .
1) La fréquence d’un événement dans n épreuves est le rapport 7—: ol rn est le
nombre de répétitions de I’événement dans les n épreuves.
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ment de Borel est général et permet d’énoncer explicitement le
résultat suivant:

Soient f, la fréquence de n épreuves indépendantes d’un
événement E de probabilité constante p. Alors la probabilité
que f, tende vers p est égale a I'unité.

On voit immédiatement qu'on a la un énoncé & la fois plus
frappant et plus précis que celui du théoréme de Bernoulli
D’aprés ce dernier, il est trés probable que | f, — p | soit petit
quand n est grand, mais il n’en résulte pas que f, tende vers p.
Au contraire, si 'on admet le théoréme de Borel, le théoreme
de Bernoulli en résulte, ¢’est-a-dire que si ¢ est un nombre positif
arbitraire, la probabilité pour que | f,—p | < & tend vers 'unité
quand n— oco. Le théoreme de Bernoulli est donc une simple
conséquence d’un théoréme plus général, celui de Borel et une
conséquence moins simple & saisir — et pour cette raison, souvent
mal interprétée — du théoréme de Borel.

On n’a malheureusement pas encore pris I’habitude de con-
sidérer le théoréme de Borel sous cet aspect. Avant Borel,
le théoréme de Bernoulli était un théoréme fondamental.
Apres Borel, c’est le théoréme de Borel qui doit lui étre
substitué.

La démonstration de Borel est analytique, mais il avait
indiqué qu’on pourrait donner aussi une démonstration géomé-
trique de son théoreme. Cette démonstration géométrique a été
explicitement obtenue, plus tard, par F. Hausdorff.

La démonstration analytique de Borel est assez compliquée.
Une démonstration a la fois plus simple et d’une portée plus
générale a été donnée plus tard par Cantelli. Mais on doit noter
que la démonstration de Borel a I’avantage de se préter mieux
a une étude plus précise du comportement de la fréquence.

Nous avons aussi signalé plus haut une autre caractéristique
du théoréme de Borel: c¢’est qu’il introduit (encore une fois
implicitement) une espéce nouvelle de convergence: «la con-
vergence presque certaine ».

Généralisant la circonstance qui se présente dans le théoréme
de Borel, on est partout convenu maintenant de dire quun
nombre aléatoire X, converge presque certainement vers un
nombre aléatoire X quand la convergence de X, X,, ... X

n o

L’Enseignement mathém., t. XI, fasc. 1. 6
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vers X est un événement presque certain, ¢’est-a-dire dont la
probabilité est égale & 'unité.

On peut dire que par la précision donnée au théoréme de
Bernoulli et par 'introduction de la convergence presque certaine,
Borel s’est placé au premier rang des successeurs de Laplace
et de Poincaré.

II. Poursuivant son étude des « probabilités dénombrables »,
Borel considere [S., p. 131] les lois de probabilité des quotients
incomplets, A,, de la fraction continue

1

X =
1

A +—
YA, +

représentant un nombre incommensurable X compris entre 0
et 1 et dont la loi de probabilité est uniforme.

En appelant ¢ (n) une fonction positive croissante de n,
Borel trouve que:

I sila série X —(—) est convergente, la probabilité pour que
o (n
I’on ait
A, <o)

a partir d’'un certain rang est égale & un;
IT si1 cette série est divergente, i1l y a une probabilité égale &
un pour que l'on ait
A, > ¢ (n)

a partir d’un certain rang.
En d’autres termes, il est infiniment probable que la croissance
asymptotique de A, est comprise entre celle de toute fonction

¢ (n) telle que la série 2 soit convergente et celle de toute

¢ (n)
fonction ¢ (n) telle que cette série soit divergente.

Dans le méme mémoire, Borel exprime une opinion qu’il a
souvent répétée, a savoir qu'une « probabilité nulle ou extréme-
ment petite doit étre considérée comme équivalent & I'impos-
sibilité ». C’est une opinion qui avait déja été formulée, longtemps
auparavant, par Buffon, puis par Cournot. Buffon et Borel ont
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méme chiffré, chacun de leur ¢oté, ce qu’ils appellent «extréme-
ment petite». Borel en a donné une image concréte tres frap-
pante, le « miracle des singes dactylographes ». Peut-on concevoir
que si un million de singes travaillaient dix heures par jour sur
un million de machines a écrire et si leur production était
successivement reliée en volumes, I’ensemble des volumes
obtenus au bout d’un an se trouverait renfermer la copie exacte
des livres de toute nature et de toutes les langues conservés dans
les plus riches bibliothéques du monde? Il n’est douteux pour
personne qu'un tel événement doit étre considéré comme im-
possible, bien que sa probabilité si elle est extraordinairement
petite, ne soit pas rigoureusement nulle.

Théorie des jeux stratégiques.

Sortant de la théorie pure pour aller vers les applications
(du calcul des probabilités), Borel s’est encore ici montré un
novateur dont les idées et les résultats ont donné lieu & un
nombre énorme de travaux. ‘

Jusqu’a lui — sauf dans des problémes trés particuliers dont
aucune géneralisation n’était entreprise — l’étude des jeux de
hasard en calcul des probabilités s’était bornée aux cas ou
chacun des événements considérés avait une probabilité déter-
minée: jeu de pile ou face, jeu de dés, etc. L’intelligence, le
caractere des joueurs n'y avaient aucune part. Il n’en est pour-
tant rien dans la plupart des jeux en usage: jeu de dames, jeu
d’échecs, jeu de bridge, etc. ... On doit alors admirer avant tout
que Borel ait eu ’audace de vouloir établir une théorie générale
des Jeux psychologiques et de concevoir la possibilité d’y par-
venir en appliquant le calcul des probabilités & des hypothéses
convenablement choisies. Il a choisi, & cet effet, des hypothéses
plausibles, et a pu déterminer dans des cas particuliers les con-
séquences de ces hypotheéses. Ce n’est pas tout; il a apercu, dés
sa premiére publication sur ce sujet, que le probléme posé par
lur avait des applications dans des domaines variés: économie.
politique, stratégie, psychologie, etc. ...

Pour éclairer ce qui précede, il nous faut, maintenant, pré-
ciser les hypotheses de Borel. Contrairement & certains esprits,
nous ne pensons pas que ces hypothéses soient inéluctables et.




d’ailleurs elles ont été discutées. Mais ce sont des hypothéses qui,
d’une part, sont plausibles et qui, d’autre part, se prétent & un
traitement mathématique du probléme, deux qualités qui sont
tres loin d’étre toujours conciliables. L’un des principaux
mérites de Borel est d’avoir montré qu'un tel choix d’hypothéses
est possible, méme si ’on n’admet pas qu’il soit nécessairement
le seul ni Ie meilleur possible.

Les hypothéses de Borel.

A chaque coup a jouer, un joueur se trouve dans une circons-
tance déterminée dont certains éléments lui sont connus; par
exemple, au jeu de cartes, I’ensemble des cartes qu’il a dans Ja
main et la suite des coups précédents. Sur la base de ces données
et sur I'hypothése qu’il fait sur la psychologie des autres joueurs,
il décide son coup. Borel élimine cette hypothése 1 et considére
I’ensemble des données et du choix du joueur. Il y a, dans la
plupart des jeux, un nombre fini, quoique trés grand, de tels
ensembles. Au cours d’un jeu, un joueur adopte successivement
un nombre fini de tels ensembles et caractérise ainsi sa « méthode
de jeu». Il y a un nombre fini de méthodes de jeu possibles:
C,, C,, ...C, et chaque joueur adopte nécessairement 1’une
d’elles a chaque coup. Mais il y a au début du jeu (par exemple,
quand on distribue les cartes) ou au cours du jeu, une intervention
du hasard. Si donc, en considérant le cas de deux joueurs, A et
B, le joueur A adopte la méthode de jeu C; et le joueur B la
méthode C,, c’est le calcul des probabilités qui permettra de
calculer la probabilité =, pour que A gagne finalement. On a
alors & chercher d’abord s’1l existe une méthode de jeu C; pour A,
telle que =, soit positif quel que soit & (c’est-a-dire quelle que
soit la méthode C, adoptée par B). Alors A aurait intérét a
adopter la méthode C; (ou I'une des méthodes C; pour lesquelles
7, est positif quel que soit k).

Borel se place dans le cas ou une telle méthode de jeu n’existe
pas et il se demande §’il n’est pas possible de jouer d’une maniére
avantageuse en variant son jeu. « Sil’on veut formuler une regle
précise pour varier le jeu, cette regle ne faisant intervenir que

1) Voir page suivante, la citation ou Borel énonce cette élimination, qui évidem-
ment, éloigne un peu la théorie de la réalité.
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les faits observés et non pas des remarques psychologiques sur
le joueur auquel on est opposé, cette régle équivaut forcément
a un énoncé tel que le suivant: la probabilité pour que, en un
moment donné du jeu, A adopte, pour fixer sa conduite a ce
moment, le code C; est p;; la probabilité analogue pour B pourra
étre désignée par g, et, en désignant par n le nombre de codes
qui subsistent, on a

2 b= 1, > 4 =1" (D
i=1 k=1
La probabilité de gain de A est donc

P = Z Z Tix Pidr -

i=l k=1

Borel se place alors, pour simplifier, dans ce qu’il appelle le cas
symétrique, caractérisé par l'égalité n;; = %, c’est-a-dire que
si les deux joueurs adoptent la meéme méthode de jeu, leurs
chances de gagner sont égales. Il observe que dans la plupart
des jeux de cartes ou 'un des joueurs joue le premier, ces deux
chances ne sont pas égales, mais qu’elles le deviennent si le jeu
consiste en deux parties ou 'un des joueurs commencera le jeu
dans la premiere et ’autre dans la seconde. Comme on a évidem-
ment

Ty + 7y = 1

ou

1 1
g = 5+ Oy, Ty = 5 T 0

2

avec a; + o; = 0, on aura

n i—1

avec o = Y, Zajk(PiQk"kaIi)-
i=1 k=1

Tout ce qui préceéde figure dans la premiere Note de Borel.
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Dans cette méme Note, Borel prouve que, dans le cas ou
n = 3, «1l est facile de trouver des nombres positifs p, po, P
vérifiant (1) et tels que « soit nul et donec P = % quels que soient
les nombres ¢4, ¢, ¢3. 11 est donc possible d’adopter une maniére
de jouer permettant de lutter avec des chances égales contre
tout joueur ».

Dans sa derniére Note sur les jeux, Borel procéde autrement
mais ramene au méme probléme mathématique. Au lieu de partir
de la probabilité pour le joueur A de gagner, il part du gain
moyen de A, soit g; quand A adopte le code C; et B le code (.
La symétrie du jeu entraine

gix + 9 = 0.

Quand les codes C; et ) ne sont adoptés par A et B qu’avec les
probabilités p; et ¢, le gain moyen de A sera

G = Zgikpiqk'

Par une méthode différente de la précédente, Borel montre alors
que, pour n = 3 et n = b, on peut trouver des probabilités ¢,
telles que G soit nul quels que soient les p;.

Le probléme de démontrer qu’il n’en est pas ainsi avait été
d’abord prouvé insoluble pour n = 3 par Borel. Dans ses
Notes successives, il lui avait paru d’abord soluble pour n = 5;
puis ayant pu prouver qu’il était insoluble pour n = 5, il avait
a ce moment pensé qu’il était soluble pour n = 7. Enfin, il
termine sa derniére Note en écrivant que ce méme probléme
«insoluble pour n = 3 et n = 5 me parait également insoluble
pour n = 7. 1l serait intéressant, soit de démontrer qu’il est
insoluble en général, soit d’en donner une solution particuliere ».

I1 est clair que I'évolution de sa pensée le conduit a croire
que, quel que soit le nombre n des maniéres de jouer, on peut
choisir les probabilités g, pour B de choisir les codes €} de sorte
que, quelles que soient les probabilités p; pour A de choisir les
codes C;, la moyenne du gain total de 4 et celle du gain total
de B soient toutes deux nulles.

Toutefois, on doit constater que Borel n’a pas démontré
qu’il en était ainsi quel que soit n et qu’il n’a méme pas,
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contrairement & son habitude, exposé en détail dans un mémoire,
les Notes qui résumaient ses résultats dans les C.R.

On peut trouver explication de ces faits dans I'évolution de
ses activités. Borel, pendant une certaine période, a, en effet,
été pris de plus en plus par son activité politique (voir p. 12).
D’abord maire de sa ville natale, puis conseiller général de son
département, il a été élu député en 1924 et I'est resté jusqu’en
1936. Dans lintervalle, il a méme été quelques mois, ministre
de la Marine et nous avons méme eu ’honneur de le remplacer
comme professeur et de le dispenser ainsi de faire ses cours & la
Faculté des Sciences. De sorte qu’apres avoir posé le probléme
et Pavoir résolu dans lescas les plus simples, Borel n’a plus eu le
temps d’étudier en détail le probléme mathématique qui restait
a résoudre. | |

C’est aprés la derniére Note (de 1927) de Borel que von
Neumann en 1928, adoptant exactement les mémes hypotheéses,
a réussi & démontrer un théoréme (dit du minimum — maxi-
morum) équivalent au théoreme de Borel, dans le cas général
de n quelconque. Puis, associé avec I’économiste Morgenstern,
il en a tiré une théorie économique générale.

La théorie de von Neumann-Morgenstern a eu un retentisse-
ment considérable, tandis que les Notes de Borel restaient
ignorées. C’est pourquoi nous avons décidé de rappeler I'anté-
riorité de Borel et nous avons publié dans « Econometrica » en
1953, une excellente traduction en anglais, réalisée par M. Savage
des trois Notes les plus importantes de Borel, avec un commen-
taire. Nous avions auparavant communiqué ce commentaire a
von Neumann dont la réponse a été publiée dans le méme
numéro d’Econometrica. Tout naturellement von Neumann a
réagi vigoureusement, alléguant que rien ne pouvait étre retenu
de la théorie de Borel, avant sa propre démonstration du théo-
reme général. D’apres lui «en 1921 et ultérieurement Borel
suppose que le théoréeme est ou risque d’étre faux ». Mais si cette
assertion est rigoureusement exacte, elle doit étre complétée par
la citation de Borel faite plus haut, montrant que Borel a fini
par pencher vers Uexactitude générale du théoréme.

Von Neumann ajoutait « j’avais moi-méme élaboré mes idées
sur le sujet avant d’avoir lu ses Notes (les Notes de Borel) ».
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Mais en tout cas, il en avait lu une avant de publier son premier
Mémoire (de 1928) ou 1l cite lui-méme cette Note de Borel.

Si notre publication dans Econometrica avait révélé a beau-
coup 'antériorité de Borel, elle n’avait pas atteint tous les in-
téressés. (est pourquoi, d’accord avec M. Guitton, rédacteur
de la Revue d’Economie politique, nous avons publié, dans
cette revue en 1959, & nouveau, mais cette fois en francais, dans
le texte original, les trois Notes de Borel et notre commentaire
ainsi que la traduction du commentaire en anglais de von
Neumann.

Dans les innombrables publications sur les jeux psycholo-
giques et sur leurs applications & 1’Econométrie, il ne sera plus
admissible d’ignorer l’antériorité de Borel.

Malheureusement, tel n’est pas encore le cas. En 1959, dans
une Notice, d’ailleurs tres intéressante sur le grand mathématicien
que fut von Neumann, I’auteur commence ainsi:

« Theory of games.

The essential ingredients of von Neumann’s theory of games are
already to be found in his 1928 paper . ..

The first application of game theory to an economic problem
was given in a 1937 paper ».

Et sur ces deux sujets, le nom de Borel n’est méme pas
mentionné. Or:

10 le premier mémoire de von Neumann sur la théorie des
jeux a été publié aprés la derniere Note de Borel sur le méme
sujet, et en connaissance de la théorie de Borel, qu’il cite. Les
hypotheses & la base de la théorie de von Neumann sont en outre
identiques a celles de Borel.

20 Borel, et non von Neumann, a été le premier & signaler
que la théorie des jeux est applicable, non seulement & I’Econo-
mie politique, mais aussi a I’art militaire, & la psychologie, ete.

Ceci dit, 1l faut reconnaitre que von Neumann et Morgenstern
ont tres bien développé 'application de la théorie des jeux a
I’Economie politique.
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I1. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la premiére guerre, — activités qui 'ont amené a étudier des
problémes concrets — ont conduit Borel & s’intéresser de plus en
plus & la Physique. Mais cet intérét s’était déja manifesté aupar-
avant et pour des raisons toutes différentes.

Dés 1906, Borel s’occupe de la théorie cinétique des gaz et de
la loi de Maxwell correspondante, aprés avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour
y apporter la rigueur [96], il prépare le lecteur en étudiant d’abord
la répartition des petites planetes et montrant la nécessité de
donner un sens aux positions antérieures du probléme. Dans le
cas des gaz, la discussion est un peu plus compliquée, mais elle
Pameéne encore a rejeter les formes du probléme antérieurement
admises et a leur substituer un probléme qui, aprés une réduc
tion que nous allons expliquer, prend la forme G énoncée
plus loin.

On part d’hypothéses précises sur les molécules du gaz, qui
conduisent & ramener I’étude du gaz a celui du mouvement de
n spheres égales se mouvant dans un certain domaine ou elles
peuvent se réfléchir & la suite d’un choe, soit sur les parois, soit
entre deux d’entre elles. Borel raméne le mouvement des n
centres des n spheres dans 'espace usuel & 3 dimensions au cas
du mouvement d’un point P dans un domaine D de l’espace
a 3 n dimensions, ou les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

Pénergie, la vitesse de P est constante. Soit OV le vecteur
d’origine fixe O, équipollent & cette vitesse. V se déplace sur
une sphére S. Borel énonce alors ainsi la forme finale, G, qu’il
donne au probléme.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le probleme est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dw de la surface de S

a une époque ¢t comprise entre des limites connues, que 'on fera
ensuite croitre indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est
proportionnelle & dw, c’est-a-dire que toutes les directions de
OV sont également probables (pour un temps suffisamment long).

En précisant le calcul, Borel rétrouve enfin la loi de Maxwell.
D’aprés lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini & I'infini en mathématique
et observe le parallélisme avec le probléme de savoir si la Nature
est discontinue ou continue, ce qui entraine la question de la
légitimité en Physique des théories moléculaires.

Borel note d’abord que c’est souvent « une simplification en
Mathématiques que de remplacer par 'infini un nombre fini trés
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit a constater « que le calcul des intégrales définies est
souvent plus simple que celui des formules sommatoires». Mais 1l
étudie aussi le passage inverse de I'infini au fini, qui correspond
en physique & 'introduction des théories moléculaires. 11 observe
alors que «les considérations basées sur ’existence des molécules
n’y jouent qu'un roéle auxiliaire ».

« Lla théorie moléculaire a donc été un guide précieux pour
Ianalyste en lui suggérant la marche a suivre pour étudier les
équations du probléeme, mais elle est éliminée de la solution
définitive ». |

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problemes
ou figuraient des variables continues en remplacant celles-ci
par des variables discontinues et passant a la limite. Comme
le dit Borel, cette facon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
I'existence et la forme d’une limite et c¢’était 14 souvent un
probleme tres difficile. Depuis lors, la tendance s’est faite jour,
de plus en plus, d’éviter cette difficulté en cherchant & préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,
que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi 4 une solution s’appliquant directement au probléme posé
dans le cas continu. C’est ainsi que I’étude des équations intégrales
symétriques faite par Hilbert en résolvant le probleme difficile
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d’un passage & la limite s’est révélée a la fois plus simple et plus
élégante dans I'étude directe de E. Schmidt. Un exemple ana-
logue est fourni par la démonstration de Fredholm de I’existence
d’une solution de son équation intégrale. Sa marche est analogue
a celle de la solution d’un systéme de n équations linéaires a n
inconnues; mais si elle s’est trouvée ainsi guidée par I'étude de
ce probléeme, & aucun moment sa démonstration ne fait inter-
venir le passage a la limite du cas d’un nombre fini de variables
a un nombre infini.

Borel revient au cas discontinu en observant qu’il « peut étre
intéressant de se proposer, au point de vue purement mathéma-
tique, I’étude directe de fonctions ou d’équations dépendant
d’un nombre fini de variables, mais trés grand ». Il se trouve
alors ramené a une question qui lui tient a coeur et qu’il a souvent
agitée sous différentes formes:

« La premiere difficulté qui se présente lorsqu’on veut étudier
des fonctions d’un trés grand nombre de variables, est la défini-
tion précise d’une telle fonction, j’entends par 1a une définition
individuelle, permettant de distinguer la fonction définie de
I'infinité des fonctions analogues». Borel se demande «si I'on
peut considérer comme donné » un ensemble de nombres dont
«la vie d’'un homme ne suffirait & en énumérer une faible partie ».
Pour lui, un tel ensemble peut étre considéré comme déterminé
«par la connaissance d'une formule assez simple pour &tre
effectivement écarté, tandis qu’il n’est pas possible d’écrire
effectivement autant de nombres distincts...» Il peut é&tre
aussi déterminé en considérant ’ensemble comme P'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de
probabilité est donnée. ‘

Ces considérations sont tout & fait justifiées quand il s’agit de
définitions et d’applications « constructives ». S’il s’agit de défi-
nitions et d’applications «descriptives», la situation est diffé-
rente. La démonstration, par exemple, que le terme général d’une
série convergente tend vers zéro quand son rang croit indéfini-
ment, nous parait correcte sans que ce terme général soit repré-
senté par une formule simple ou qu’il reléve du calcul des
probabilités et méme si la vie d’un homme ne suffisait pas a
enumerer une faible partie de la suite des termes de la série.
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Cette observation n’enléve rien a Uintérét de la distinction
que fait Borel des ellipsoides «trés irréguliers » parmi les ellip-
soides dans un espace a un trés grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatriemes puissances des longueurs des axes n’est pas du
méme ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D’aprés Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoides, d’exclure ces
ellipsoides tres irréguliers. « Lorsqu’un ellipsoide n’est pas treés
irrégulier, plusieurs de ses propriétés vermettent de I'assimiler a
une sphere ». . .

« Une figure qui dépend d’un nombre extrémement grand de
parametres ne peut étre considérée comme numériquement
déterminée que sises parametres sont définis au moyen de données
numériques assez peu nombreuses pour nous étre accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il con-
vient souvent de remplacer une variable ayant un nombre de
valeurs fini mais treés grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutdét que par une
variable continue comme on faisait en physique mathématique
classique ou l’on supposait la matiére continue.

Une autre des suggestions mathématiques qu’offrent les
théories moléculaires concerne les fonctions d’une variable com-
plexe. Pour le montrer, Borel considére le potentiel d’un systéme
formé d’une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d’un systeme plan et, par suite,
d’un potentiel dit logarithmique. Supposons, de plus, que les
masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais «l’hypothése que les
masses attirantes sont de simples points matériels sans dimen-
sion est difficile & accepter au point de vue physique. On est
ainsi conduit a disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel & 'extérieur de
ce cercle qu'on nommera le cercle d’action de son centre. On
répartit les masses et les densités de telle maniere que la densité
g’annule ainsi que ses dérivées sur le périmetre du cercle; elle est
ainsi non seulement finie mais continue ».
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Borel démontre que, par une répartition convenable de la
densité, on arrive & un résultat qui peut étonner. On aurait pu
craindre qu’il n’y etit pas de place libre entre des points matériels
tellement serrés par hypotheése. En fait, Borel démontre « qu’il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction poten-
tielle logarithmique satisfait a ’équation de Laplace ».

Borel passe alors a la situation correspondante dans la
théorie des fonctions d’une variable complexe. Soit une fonction
a pbles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée
ayant la méme valeur dans toutes les directions en chacun des
points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogénes résumée plus haut (p. 69),
mais reliée ic1 a une théorie physique moléculaire. C’est une
extension magnifique de la théorie des fonctions analytiques
grace a laquelle Borel a pu dépasser 'extension précédente due
a Welerstrass.

A la fin du méme mémoire, Borel survolant son sujet,
s’exprime ainsi: « G’est toujours au contact de la Nature que
I’Analyse mathématique s’est renouvelée, ce n’est que grace a ce
contact permanent qu’elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-méme ». On
ne saurait mieux dire, poarvu qu'on compléte cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés a
réaliser un travail interne, consistant en une refonte continuelle
de 'armature des mathématiques, pour les simplifier et les har-
moniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n’a pour but que de dégager l’essentiel et le commun dans les
problémes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables & de nouveaux pro-
blémes posés par la Nature.

L’irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées
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quand on change les signes des vitesses, ce qui revient & changer
le signe du temps. Ces équations ne permettent donc pas de
prévoir dans I'avenir une évolution différente de ce que serait
Iévolution en remontant vers le passé. Dés lors, il semble en
résulter que les phénomeénes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les
conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothése lui parait irréalisable. Cette exactitude
absolue devra laisser place & un certain flottement. Il en résulte
que l'avenir n’est pas entiérement déterminé, alors qu’on ne
peut parler d’une indétermination du passé. Il n’y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phéno-
menes presque réversibles, dans d’autres ils seront irréversibles.
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