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des combinaisons linéaires des coefficients de la série de Taylor
et qui peut converger non seulement à l'intérieur du cercle de

convergence de la série de Taylor mais même au-delà.
Borel a aussi découvert un autre moyen de sortir du cercle

de convergence d'une série de Taylor. C'est en vue de ce moyen,
qu'il avait créé la « sommation exponentielle absolue », définie
plus haut (p. 51). Celle-ci lui permet d'assigner une somme
généralisée à la série de Taylor, qui coïncide avec la somme
ordinaire à l'intérieur du cercle de convergence mais qui existe
encore jusqu'à une certaine distance de ce cercle sur tout rayon
prolongée au-delà d'un point non singulier sur la circonférence
du cercle. Plus précisément, la somme généralisée existe à l'intérieur

du «polygone de sommabilité» de la série. Ce polygone
s'obtient en menant une tangente au cercle en tout point singulier.

(Ce polygone peut s'étendre dans certaines directions jusqu'à
l'infini. Par exemple, pour la série 2zn, le polygone de sommabilité
sera évidemment le demi-plan contenant le cercle | z | < 1

et limité par la tangente au cercle au point z — 1).
Ce résultat important dépasse ceux de Weierstrass. Car

Borel a formé des fonctions pour lesquelles il existe des régions
où le prolongement a son sens, de la série de Taylor correspondante,

est possible alors qu'il ne l'est pas par la méthode de

Weierstrass du prolongement analytique.

Equations différentielles et aux dérivées partielles

Borel a étudié les relations entre une équation différentielle
linéaire :

S£[y\ L(x)y(n)+P(x)y(n~1) + + T(x)y,+ U (x) y 0

et son équation adjointe:

M\y\ s (Lz)(M)-(Pz)(n)~1+ ...+(- l)n Uz 0.

On savait déjà, depuis Lagrange, que, par une suite
d'intégration par parties, on arrive à la relation:

j z [y] dx — JyJ{ [z] dx — A (x, y, y', y"-1, z, z', z(n~1})

où A dépend linéairement de y, y', y(n-1) et de z, z', z(n_1).
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D'où il résultait que, si l'on connaît une solution z de l'équation

adjointe, l'intégration de l'équation donnée est ramenée à

celle d'une équation différentielle linéaire en y d'ordre n— 1.

Borel exprime géométriquement [S., p. 213] les relations entre

une équation et son adjointe. On peut faire correspondre à

& \y] 0 une courbe de l'espace à n—l dimensions en regardant

n intégrales distinctes de l'équation comme les coordonnées

homogènes d'un point de la courbe dépendant du paramètre x.
On pourra, de même, faire correspondre à l'équation adjointe,
une autre courbe. Il résulte des relations établies par Darboux
entre les solutions d'une équation et de son adjointe que les

courbes qui leur sont attachées se correspondent dualistiquement.
Borel observe qu'on pourrait prendre cette propriété géométrique
comme définition de l'équation adjointe et que cette définition
mettrait en évidence le fait que la relation entre les deux équations

est réciproque. Mais il ajoute qu'il serait nécessaire de

préciser un peu cette définition; d'abord les points correspondants

des deux courbes devraient correspondre à la même valeur
de x. Il faudrait ensuite multiplier les premiers membres des

équations qui correspondent aux courbes pour que ces équations
deviennent adjointes l'une de l'autre.

Borel cherche ensuite à quelle condition une équation est
équivalente à son adjointe (cas où le recours aux solutions de

l'adjointe pour intégrer l'équation donnée devient inopérant).
Cette question a été d'abord étudiée par Darboux, qui a montré
qu'entre n intégrales distinctes y1 (x), (z), il doit exister,
alors, une relation quadratique:

^[y] £ aik»äWo
i,k

Darboux avait montré que cette relation subsiste quand on y
remplace les yt (x) par leurs dérivées jusqu'à un certain ordre:

&[y] 0, <*?[/] 0

Les considérations géométriques par lesquelles Borel retrouve
ce résultat, lui permettent, en outre, d'en démontrer la réciproque
et surtout de la généraliser. Il observe d'abord que si +3 fonctions

et leurs dérivées jusqu'à l'ordre inclusivement, vérifient
une même relation quadratique homogène à coefficients cons-
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tants, ce sont les solutions d'une équation d'ordre 2^+3
équivalente à son adjointe. Puis il généralise ce résultat, toujours
par ses méthodes géométriques.

Revenant ensuite au problème posé, Borel montre que, dans
le cas où ^ n'est pas identiquement nulle (et où par suite les

équations cherchées doivent être d'ordre impair), la recherche
des équations identiques à leur adjointe se ramène à celle des

lignes asymptotiques de la surface du second degré:

Z atk xi o •

ik

Il montre alors géométriquement comment les solutions de

l'équation ££ [y] 0 s'expriment complètement sans signe de

quadrature. Il passe alors au cas des équations ££ [y] 0 d'ordre
pair et montre qu'on peut suivre une méthode géométrique
analogue à celle suivie pour le cas de l'ordre impair en faisant jouer
à un complexe «linéaire »le rôle que jouait la quadrique (y) 0

Cependant on n'arrive pas à la détermination sans intégration
des courbes cherchées. La méthode permet cependant d'obtenir
tout au moins pour le sixième ordre, des expressions renfermant
un seul signe de quadrature et relativement assez simples.

Borel a porté aussi son attention sur le mode de croissance
des solutions des équations différentielles. Il a obtenu, par
exemple, ce résultat d'une précision inattendue dans des

circonstances si générales: Soit une équation différentielle dont on

suppose seulement qu'elle est du premier ordre, qu'elle est

algébrique en x, y, y' et que l'intégrale considérée, y, ne devient
infinie pour aucune valeur finie de x: on peut dès lors affirmer

que y croît moins vite que éx.

L'invention de la sommabilité a permis à Borel d'obtenir
un théorème remarquable qui a été depuis souvent utilisé par
divers auteurs pour déterminer exactement certaines solutions
irrégulières de certaines équations différentielles. C'est le théorème

suivant : si une série absolument sommable vérifie formellement

une équation différentielle, la somme généralisée de la
série est une intégrale de l'équation.

Cauchy a montré que l'intégrale générale d'un système
d'équations aux dérivées partielles dépend de certaines fonc-
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tions arbitraires dépendant de certaines variables. Borel a précisé

énormément ce résultat, dans le cas d'une seule équation,
en montrant que l'intégrale générale peut s'exprimer comme une
fonction déterminée d'une seule fonction arbitraire dépendant
d'une seule variable.

On savait depuis longtemps que la nature analytique d'une
fonction dépendant d'un paramètre peut dépendre considérablement

de la nature arithmétique de ce paramètre. Tel est le cas
de la fonction de z, zfl, dont la nature change selon que le
paramètre, a, est entier, fractionnaire ou irrationnel. Mais la fonction

za reste analytique.
Borel a étendu considérablement la portée de cette observation.

Il a donné un exemple d'ùne équation aux dérivées
partielles très simples:

d2 V .d2ce
"x 2 ~a T~T tfay)dxz ôyz

où une intégrale périodique, généralement analytique, cesse de
l'être pour certaines valeurs du paramètre a. On a ainsi un
exemple d'une fonction continue de deux variables réelles dont
toutes les dérivées sont continues, mais qui n'est analytique en
aucun point (x, y). Cet exemple est d'autant plus frappant qu'il
ne s'agit pas ici d'un cas pathologique mais d'un problème fort
simple où toutes les données sont supposées analytiques.

Géométrie

Rappelons d'abord que la définition et l'étude des propriétés
de la mesure et de la raréfaction par Borel, si elles sont d'une
importance extrême en analyse, relèvent cependant de la
géométrie.

De même, Borel a étudié l'équation adjointe dont il a été
question plus haut (p. 75) par des méthodes géométriques. Il y a
en particulier obtenu d'importantes propositions concernant les
« plans générateurs » des quadriques dans les espaces à n dimensions

(qui jouent le même rôle que les génératrices des quadriques
classiques).
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