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des combinaisons linéaires des coefficients de la série de Taylor
et qui peut converger non seulement a Pintérieur du cercle de
convergence de la série de Taylor mais méme au-dela.

Borel a aussi découvert un autre moyen de sortir du cercle
de convergence d’une série de Taylor. C’est en vue de ce moyen,
qu’ll avait créé la « sommation exponentielle absolue », définie
plus haut (p. 51). Celle-ci lui permet d’assigner une somme
généralisée a la série de Taylor, qui coincide avec la somme
ordinaire & l'intérieur du cercle de convergence mais qui existe
encore jusqu’a une certaine distance de ce cercle sur tout rayon
prolongée au-delad d’un point non singulier sur la circonférence
du cercle. Plus précisément, la somme généralisée existe & I'inté-
rieur du «polygone de sommabilité» de la série. Ce polygone
s’obtient en menant une tangente au cercle en tout point singu-
lier. (Ce polygone peut s’étendre dans certaines directions jusqu’a
Pinfini. Par exemple, pour la série Xz", le polygone de sommabilité
sera évidemment le demi-plan contenant le cercle |z | <1
et limité par la tangente au cercle au point z = 1).

Ce résultat important dépasse ceux de WEIERsTRAss. Car
Borel a formé des fonctions pour lesquelles il existe des régions
ou le prolongement a son sens, de la série de Taylor correspon-
dante, est possible alors qu’il ne I'est pas par la méthode de
Weierstrass du prolongement analytique.

EQUATIONS DIFFERENTIELLES ET AUX DERIVEES PARTIELLES

Borel a étudié les relations entre une équation différentielle
linéaire:

Lyl =LEx)yP+P®y" P+ . +T®y+UXy =0
et son équation adjointe:

My] = (L)@ —P) @ 1+ .. +(=1)" Uz = 0.

On savait déja, depuis LAGRANGE, que, par une suite d’inté-
gration par parties, on arrive a la relation:

Jz & [yldx—fyd[z]dx = A(x, p, ¥, ... y"" 1z, 2/, ... 2071

ou A dépend linéairement de y, y’, ... y" " Detde z,z', ... 271,



D’ou il résultait que, si 'on connait une solution z de I’équa-
tion adjointe, I'intégration de I’équation donnée est ramenée a
celle d’'une équation différentielle linéaire en y d’ordre n — 1.
Borel exprime géométriquement [S., p. 213] les relations entre
une équation et son adjointe. On peut faire correspondre &
% [y] = 0 une courbe de P'espace a n—1 dimensions en regar-
dant n intégrales distinctes de I’équation comme les coordonnées
homogénes d’un point de la courbe dépendant du parametre x.
On pourra, de méme, faire correspondre a ’équation adjointe,
une autre courbe. Il résulte des relations établies par DarBOUX
entre les solutions d’une équation et de son adjointe que les
courbes qui leur sont attachées se correspondent dualistiquement.
Borel observe qu’on pourrait prendre cette propriété géométrique
comme définition de I’équation adjointe et que cette définition
mettrait en évidence le fait que la relation entre les deux équa-
tions est réciproque. Mais il ajoute qu’il serait nécessaire de
préciser un peu cette définition; d’abord les points correspon-
dants des deux courbes devraient correspondre a la méme valeur
de z. Il faudrait ensuite multiplier les premiers membres des
équations qui correspondent aux courbes pour que ces équations
deviennent adjointes 'une de D'autre.

Borel cherche ensuite a quelle condition une équation est
équivalente a son adjointe (cas ou le recours aux solutions de
'adjointe pour intégrer 1’équation donnée devient inopérant).
Cette question a été d’abord étudiée par DARBOUX, qui a montré
quentre n intégrales distinctes y; (), ... y, (z), il doit exister,
alors, une relation quadratique:

¢ly] = Z;,(aik Yi() yp(x) =0

Darsoux avait montré que cette relation subsiste quand on y
remplace les y; () par leurs dérivées jusqu’a un certain ordre:

€ly] =0, €¢l[y'] =0, ..

Les considérations géométriques par lesquelles Borel retrouve
ce résultat, lui permettent, en outre, d’en démontrer la réciproque
et surtout de la généraliser. Il observe d’abord que si 223 fonc-
tions et leurs dérivées jusqu’a Pordre n inclusivement, vérifient
une méme relation quadratique homogéne & coefficients cons-
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tants, ce sont les solutions d’une équation d’ordre 2n-3 équi-
valente a son adjointe. Puis il généralise ce résultat, toujours
par ses méthodes géométriques.

Revenant ensuite au probleme posé, Borel montre que, dans
le cas ou % n'est pas identiquement nulle (et ou par suite les
équations cherchées doivent étre d’ordre impair), la recherche
des équations identiques & leur adjointe se ramene a celle des
lignes asymptotiques de la surface du second degré:

Y agx;x, = 0.
ik

I1 montre alors géométriquement comment les solutions de
Iéquation £ [y] = 0 s’expriment complétement sans signe de
quadrature. Il passe alors au cas des équations % [y] = 0 d’ordre
pair et montre qu’on peut suivre une méthode géométrique ana-
logue & celle suivie pour le cas de I’ordre impair en faisant jouer
aun complexe «linéaire » le role que jouait la quadrique € (y) =
Cependant on n’arrive pas a la détermination sans intégration
des courbes cherchées. La méthode permet cependant d’obtenir
tout au moins pour le sixieme ordre, des expressions renfermant
un seul signe de quadrature et relativement assez simples.

Borel a porté aussi son attention sur le mode de croissance
des solutions des équations différentielles. Il a obtenu, par
exemple, ce résultat d’une précision inattendue dans des cir-
constances si générales: Soit une équation différentielle dont on
suppose seulement qu’elle est du premier ordre, qu’elle est algé-
brique en z, y, ¥’ et que I'intégrale considérée, y, ne devient
infinie pour aucune valeur finie de x: on peut des lors affirmer
que y croit moins vite que e

L’invention de la sommabilité a permis & Borel d’obtenir
un théoréme remarquable qui a été depuis souvent utilisé par
divers auteurs pour déterminer exactement certaines solutions
irrégulieres de certaines équations différentielles. Cest le théo-
réme suivant: si une série absolument sommable vérifie formelle-
ment une équation différentielle, la somme généralisée de la
série est une intégrale de ’équation.

CAaucHY a montré que l'intégrale générale d’un systéme
d’équations aux dérivées partielles dépend de certaines fonc-
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tions arbitraires dépendant de certaines variables. Borel a pré-
cisé énormément ce résultat, dans le cas d’une seule équation,
en montrant que I'intégrale générale peut s’exprimer comme une
fonction déterminée d’une seule fonction arbitraire dépendant
d’une seule variable. |

On savait depuis longtemps que la nature analytique d’une
fonction dépendant d’un parametre peut dépendre considérable-
ment de la nature arithmétique de ce parametre. Tel est le cas
de la fonction de z, z° dont la nature change selon que le para-
meétre, a, est entier, fractionnaire ou irrationnel. Mais la fonc-
tion z° reste analytique.

Borel a étendu considérablement la portée de cette observa-
tion. Il a donné un exemple d’une équation aux dérivées par-
tielles tres simples:

> % *%E

axz —064 ayz - ‘/I(xay)

ou une intégrale périodique, généralement analytique, cesse de
Iétre pour certaines valeurs du paramétre «. On a ainsi un
exemple d’une fonction continue de deux variables réelles dont
toutes les dérivées sont continues, mais qui n’est analytique en
aucun point (z, y). Cet exemple est d’autant plus frappant qu’il
ne s’agit pas ici d’un cas pathologique mais d’un probléme fort
simple ou toutes les données sont supposées analytiques.

GEOMETRIE

Rappelons d’abord que la définition et 'étude des propriétés
de la mesure et de la raréfaction par Borel, si elles sont d’une
importance extréme en analyse, relévent cependant de la
géométrie.

De méme, Borel a étudié 1’équation adjointe dont il a été
question plus haut (p. 75) par des méthodes géométriques. Il y a
en particulier obtenu d’importantes propositions concernant les
«plans générateurs » des quadriques dans les espaces & n dimen-
sions (qui jouent le méme role que les génératrices des quadriques
classiques).
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