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une approximation indéfinie, diverge lorsque ¢ augmente indé-
finiment ».

Ayant obtenu ce résultat négatif, Borel a cherché s’il ne
serait pas possible de préciser le théoréme de Weierstrass d’une
autre facon. Il y a réussi au moyen de la formule remarquable

fx) = lim Y M, ,(x) f(§>

q=>® p

ou I'on suppose 0 < z < 1, ot P est une valeur rationnelle de x
q

et ou M,  (z) est un polynéme déterminé de degré ¢ qui est

indépendant de f (). On peut d’ailleurs choisir parmi les expres-

sions possibles de M,, (x). Serge BERNSTEIN a montré qu’on

pouvalt prendre I'expression particulierement simple suivante:

M, (x) = C/xP(1-x)1"7.

FoNcTIONS COMPLEXES DE VARIABLES COMPLEXES

Séries de Taylor

Borel a établi ce résultat inattendu qu’il pouvait y avoir une
influence de la nature arithmétique des coefficients d’une série
de Taylor sur la nature analytique de sa somme. En effet, en
utilisant une propriété des déterminants obtenue par M. Hapa-
MARD, Borel a pu prouver qu'une série de Taylor a coefficients
entiers ne peut représenter une fonction méromorphe que si
celle-ci est une fraction rationnelle 1).

Borel a pu aussi compléter et étendre le théoréme célébre
de M. Hadamard, d’apreslequel:si ¢ (z) =2 a,2", ¥ (2) =2 b, 3",
f(z) =2a,b,z" et sia, p sont deux points singuliers respectifs
de ¢ (z) et de ¥ (z), « B est un point singulier de f (z). Par exemple,
d’aprés Borel: si ¢ (z) et ¥ (z) sont des fonctions uniformes &
singularités ponctuelles, il en est de méme de f (z); en particulier,
si f(z) et ¥ (z) sont méromorphes, il en est de méme de f(z).

1) Dans sa Notice (146), Borel a oublié de mentionner ce cas d’exception, qu’il avait
pourtant signalé dans son mémoire original [11].
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Dans une autre direction, Borel a démontré qu’en général
le cercle de convergence d’une série de Taylor est une coupure
de la fonction représentée par cette série. Ici, en général, peut
signifier: si les coefficients de la série sont des nombres aléatoires
indépendants.

Fonctions entiéres

Une fonction entiére étant une fonction analytique sans
point singulier, WEIERSTRASS avait démontré qu’elle peut se
mettre sous la forme:

ou ay, a, ... sont les zéros de la fonction F (z) considérée, ou

u u2 uk

e e N
P(u) = (1l—we ° ¢

2

dans lequel & est le plus petit nombre entier tel que la série

Zi—a——ll?ﬂ avec |ay| <lay| < ...

soit convergente et ou G (z) est une fonction entiere.

Dans le cas ou 1l n’existe pas de nombre £ et dans celui ou,
k existant, G (z) n’est pas un polynome, LAGUERRE dit que la
fonetion F (z) est de genre infini. Dans le cas contraire, LAGUERRE
appelle genre de F (z), le plus grand des deux nombres k et g,
g étant le degré de G (z). C’est le grand mérite de LAGUERRE
d’avoir vu que les propriétés de £ (z) dépendent de son genre
plus que de k ou de ¢ séparément.

Les résultats de LAGUERRE ont été rendus plus précis par
Borel au moyen de son introduction de «ordre » réel de F (z).

Il appelle ainsi le nombre p tel que, si 'on pose r, = | a, |, la
série:
1

soit convergente pour « > p et divergente pour « << p (elle peut
¢tre convergente ou divergente pour o = p). On voit qu’alors:

L’Enseignement mathém., t. XI, fasc. 1. 5
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k<<p<k+l.

Le renseignement donné par p étant plus précis que celui
donné par & (qui pour p non entier n’en est que sa partie entiére),
on cong¢oit que la connaissance de p ait permis & Borel d’obtenir
des propriétés plus précises que pour ses prédécesseurs.

(’est un nouvel exemple d’une notion introduite par Borel
qui lui permet d’obtenir des résultats nouveaux et d’ouvrir une
nouvelle voie & ses émules et & ses successeurs.

Ainst H. Poincarg avait prouvé que si la fonction entiere
F (z) est de genre p, on a

|F(z)]| < et
ou r = |z|, quel que soit le nombre positif «, pour r assez
grand. Borel démontre que si F (z) est d’ordre réel p, on a:

+ &

|F(z)] <e”
quel que soit ¢ > 0, pour |z | assez grand.

La série ¥ — peut étre convergente ou divergente; quand elle

Ty

est convergente, Borel montre qu'on a méme
P
|F(z)] < e

quel que soit « > 0, pour r assez grand.

H. PoincARE avait aussi limité supérieurement les modules
des coefficients A,, de la méme série de Taylor qui représente
une fonction entiére. Borel a exprimé ce résultat sous la forme
sulvante:

Si F (z) =X A, 27 est une fonction entiére de genre p,

1
PR : 1
A, (q)) tend vers zéro avec .

Soient M (r) le module maximum de F (z) pour |z|=r
et m (r) le module maximum des termes A, z* de la série de
Taylor de F (z) pour |z | =r. Borel démontre que:
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log M (r)

- log m(r) )

tend vers 1 lorsque r croit indéfiniment en restant en dehors
d’une suite d’intervalles tels que la longueur totale de ceux qui
sont compris entre R et k R soit infiniment petite par rapport
a R. (Plus tard G. Variron a démontré que si £ (z) est d’ordre
fini, le rapport (1) tend vers 1 quand r — oo de fagon quel-
conque).

M. HapaMARD avait prouvé les réciproques des deux résultats
de H. Poincaré; Borel a ensuite précisé aussi ces réciproques
au moyen de son introduction de I'ordre.

Emile Picarp avait démontré que si, pour une fonction
entiére F (z), il existe deux valeurs exceptionnelles: @ # b, qui
ne sont jamais prises par [ (z), £ (z) est une constante. La
démonstration faisait usage des « fonctions modulaires ». Pen-
dant plus de quinze ans, les mathématiciens avaient cherché
en vain & simplifier la démonstration de Picard. Borel a réussi
a démontrer cette importante propriété sans faire usage de ces
fonctions modulaires.

Emile PrcArp avait méme démontré un théoréme plus géné-
ral: §’il existe deux nombres distincts, a, b, tels que la fonction
entiere F (z) ne soit égale & chacun d’eux que pour un nombre
fini de valeurs distinctes de z, /' (z) est un polynéme. Borel a
démontré un théoreme un peu plus général encore: Soient P (z)
et Q (z) deux polynoémes différents. Si F (z) est une fonction
entiére de genre fini et si les équations F (z) = P (2), F (z) = Q (3)
n’ont chacune qu'un nombre limité de racines, F (z) est un poly-
nome. Le méme mode de démonstration lui permet de nom-
breuses généralisations. Par exemple, si F (z), G (z) sont des
fonctions entiéres de genre fini, alors quels que soient les poly-
nomes P (z), Q (2), R (z), 'équation P (z) F (z)+0Q (z) G (z) = R (z)
a nécessairement un nombre infini de racines, sauf le cas excep-
tionnel évident ou R (z) étant identiquement nul, ];LZ) serait

VA
une fraction rationnelle. D’aprés le second théoréme de Picard
cité ci-dessus, toute fonction entiére, F (z) non polynomiale,
prend une infinité de fois n’importe quelle valeur, sauf, peut-
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étre, une valeur exceptionnelle. Soit ¢, (r) le nombre des racines
de I’équation
F(z) =0,

dont les modules sont inférieurs & r. D’aprés un théoréme de
Picard, ¢, (r) tend vers l'infini avec r. Borel a aussi précisé ce
résultat [175, pp. 95-104].

La méthode employée par Borel pour donner une démonstra-
tion élémentaire du premier des théorémes de Picard cités ci-
dessus a été utilisée par Borel et par de nombreux auteurs
pour prolonger ces résultats dans des directions variées. C’est
en utilisant la démonstration de Borel mais en y précisant les
valeurs de certaines constantes que LanpAu a démontré un
résultat important et inattendu. A savoir que la connaissance
des deux premiers coefficients du développement en série de
Taylor d’une fonction entiére, suffit pour déterminer le rayon
d’un cercle a 'intérieur duquel la fonction prend certainement
les valeurs 0 et 1.

Borel attache beaucoup d’importance & ce qu’il appelle la
croissance réguliere.

Soit F' (z) une fonction entiére d’ordre fini et différent de zéro
et M (r) le maximum de | ' (z) | pour | z | = r. Borel a d’abord
démontré que le quotient:

log log M (r)
log r

(2)

reste compris entre deux nombres fixes quand r varie. Borel dit
alors que M (r) et I (z) sont & croissance réguliére si ce quotient
tend vers une limite quand r — oo .

Si ay, @, ... sont les zéros de F' (z), Borel dit que r, = | a, |
a un ordre d’infinitude déterminé, quand:

log n 3)

log 7,

‘tend vers une limite déterminée.
En combinant un théoréme de Poincaré et un théoréme de
‘M. Hadamard, Borel en déduit d’abord que si les deux quotients



_ 69 —

(2) et (3) ont chacun une limite, ces deux limites sont égales.
11 démontre ensuite que, si I'un de ces quotients a une limite,
Pautre a aussi une limite (alors égale & la premiere limite). Il
observe qu’ainsi, quand la fonction entiére F (z) est & croissance
réguliére, on peut obtenir I'expression asymptotique précise du
module de ses zéros en fonction de n. Ce résultat est d’autant
plus important que, d’aprés Borel, « toutes les fonctions entieres
rencontrées jusqu’ici en Analyse sont des fonctions & croissance
réguliére ». Cette affirmation s’est trouvée s’appliquer plus tard
aux fonctions entiéres nouvelles découvertes par Painlevé.

Ceci n’a pas empéché Borel d’indiquer des procédés varies
pour obtenir des fonctions entiéres & croissance irréguliere. Mais
il fait observer que le caractére artificiel de ces procédés ne fait
que confirmer I’assertion ci-dessus.

Fonctions monogénes

Nous arrivons maintenant & l'une des découvertes les plus
sensationnelles de Borel. Sa définition des fonctions monogenes
et les propriétés qu’elle entraine conduisent & un élargissement
considérable de la théorie des fonctions analytiques telle qu’elle
existait avant Borel.

Il explique lui-méme [146, p. 39] comment il a été conduit
a cet élargissement.

Digression. — Et c’est 1a 1'occasion, pour nous, de signaler
un trait commun aux cheminements de pensée qui ont conduit
Borel & des généralisations trés importantes dans des domaines
variés. C’est une fagon de penser trés différente de celles qui ont
conduit d’autres auteurs & d’autres généralisations.

Ces auteurs sont frappés de voir que certaines théories déve-
loppées dans des domaines différents, dans des langages diffé-
rents, offrent cependant de grandes similitudes. Ils cherchent,
et certains arrivent, a dépouiller ces théories semblables de ce
qu’elles ont de distinct et & les faire apparaitre comme des formes
particuliéres d’une théorie générale. C’est ainsi, par exemple,
qu’ont été créées I’Analyse vectorielle, la Théorie des ensembles,
celle des éléments aléatoires abstraits, etc...

Borel, lui, ne s’intéressait pas particuliérement aux généra-
lisations. Il semble méme, parfois, qu’il s’en défiait. C’est 1'étude
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attentive de problémes particuliers, ou il rencontre des sortes
de paradoxes, qui le contraint, pour ainsi dire, & modifier les
deéfinitions qui conduisent & ces paradoxes, afin d’éviter ces der-
niers. Et il découvre alors, presque malgré lui, que les définitions
auxquelles il arrive ont une portée plus générale.

Par exemple, dans la théorie de la mesure, il constatait que
I’ensemble des nombres entre 0 et 1, et celui des nombres ration-
nels compris entre 0 et 1, quoique ayant des puissances diffé-
rentes, avaient méme mesure (méme «étendue ») au sens de
Jordan. Ce résultat, qui lui paraissait paradoxal, le conduisait
a considérer ce second ensemble comme étant de mesure nulle. Et,
ce premier pas franchi, il arrivait & sa notion générale de mesure.

Il trouvait le méme genre de paradoxe, en constatant que
dans 'égalité |

1

=14+z+...4+2"4+ ...
1—2z

le premier membre gardait un sens quand z = 1, tandis que le
second n’en avait que pour |z | << 1. Il cherchait a éviter ce
paradoxe en attribuant une convergence généralisée et une
somme généralisée au second membre, pour z 7= 1. Et 1l arrivait
ainsi & sa sommation exponentielle des séries divergentes,
création d’une portée s’étendant infiniment au-delad de ce cas
particulier.

On pourrait citer d’autres exemples. Signalons au moins
celui de la théorie des fonctions monogenes.

Retour aux fonctions monogénes. — Borel dit lui-méme:
« Mes recherches sur les fonctions monogénes ont eu pour origine
I’étude approfondie d’une série signalée dans un mémoire... »
de Poincaré:

B oP Boy"
F(z)_g_ngz_pa+qb+rc (4)

P4+t

les entiers p, ¢, r prenant toutes les valeurs positives. Cette série
converge évidemment en dehors du triangle ABC dont les
sommets ont pour affixes a, b, ¢, et la somme y représente une
fonction analytique uniforme. GoursaT et PoiNCARE avaient
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montré que F (z) ne pouvait étre prolongée, au sens de WEIER-
sTRASS, 4 lintérieur du triangle quand p, ¢, r peuvent aussi
avoir des valeurs nulles (avec p+g-+r # 0).

Selon Borel, on n’apercoit d’abord aucune raison pour que,
si I'on execlut les valeurs nulles de p, ¢ et r et si la fonction
F (z) peut étre prolongée & l'intérieur du triangle 1), ses valeurs
vy aient un rapport quelconque avec la série qui définit F (z)
hors du triangle.

Il y avait évidemment une infinité de poéles de F (z) aussi
voisins que l'on veut de tout point & lintérieur du triangle.
On en avait conclu, un peu hétivement, & la divergence de la
série en tout point intérieur au triangle.

Borel montre, au contraire, que /' (z) non seulement converge
en certains points du triangle ABC, mais méme qu’il y a une
infinité de courbes traversant ABC sur lesquelles la série F (z)
converge uniformément ainsi que toutes les séries dérivées de
la série F' (z). Ainsi la somme de la série /' (z) représente sur ces
courbes une fonction continue admettant des dérivées continues
de tous les ordres. De plus, soit v un petit cercle intérieur a
ABC, Borel montre qu’il existe au moins un point M intérieur
a v tel qu’il existe au moins une droite de convergence de la
série ' (z) dans tout angle de sommet M. Puisque la dérivée de
F (z) sur chacune de ces droites est égale a la somme de la série
dérivée de [ (z), cette dérivée de la fonction F (z) est indépen-
dante de la droite de convergence considérée. La fonction sera
donc dite monogene au sens de Cauchy. L’intégrale de cette
fonction sur un contour intérieur a ABC, sur lequel la série
F (z) converge uniformément, sera égale, selon Borel, au pro-
duit par 2 nz de la somme des résidus des pdles intérieurs & ce
contour. On obtient ainsi une généralisation d’un des théorémes
les plus importants de Cauchy, pour cette fonction F (z).

Ayant obtenu ces résultats sur la fonection de Poincaré (4),
Borel retient des définitions qui leur ont donné naissance, tout
ce qui peut s’exprimer pour une fonction f (z), qu’elle soit repré-
sentable ou non sous la forme particuliére (4). Il arrive ainsi
a sa conception générale de fonction monogéne.

1) C’est-a-dire si la série n’a aucun pole formel sur les cotés du triangle ABC.
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I1 considére certaines suites d’ensembles parfaits C;, C,, ...,
chacun intérieur au suivant et leur réunion C. Il considére une
certaine classe (C) de tels ensembles C (ainsi nommés en 1’hon-
neur de Cauchy). Une fonction f (z) sera dite monogéne sur C si:

1. Elle est continue (et donc uniformément continue) sur
chacun des ensembles parfaits C,;
2. Elle admet en tout point z, de C une dérivée unique au
sens suwwant. z, appartient a une infinité des C,; soit 2’ un point

(2) = f(20)

de I'un de ces C,. On suppose que aune limite quand z’

. z _Zo .
tend vers z sur un de ces C,,. Si cette limite existe pour tous les C,
auxquels appartient z,, elle sera indépendante de p puisque C,

appartient & C,,,. Cest cette limite qu’on appellera la dérivée
de f (z) sur C.

La nouveauté apportée par Borel, c’est que la famille de ses
ensembles C est plus vaste que la famille des ensembles W sur
chacun desquels on peut prolonger une fonction analytique et
elle contient la famille des W. Ceci étant, toute fonction analy-
tique au sens de WEIERSTRASS est aussi une fonction monogéne
sur le méme ensemble, mais I'inverse n’a pas lieu.

(Pour arriver plus vite aux conséquences, nous reporterons
plus loin la définition des ensembles C' et C, qui est assez com-
pliquée.) '

Borel montre qu’en généralisant la notion de fonction analy-
tique, les fonctions monogenes conservent d’importantes pro-
priétés des fonctions analytiques, soit littéralement, soit sous
une forme un peu plus compliquée.

Par exemple, I’existence de la dérivée premiére (définie
comme plus haut) entraine, pour une fonction monogéne,
Pexistence des dérivées de tous les ordres; par exemple, encore:
deux fonctions monogeénes qui sont égales sur un arc de courbe
appartenant a leur domaine commun d’existence, soit A, sont
égales sur tout A [S., p. 42]. Tl en est de méme si, en un point
de C, les deux fonctions et toutes leurs dérivées sont respective-
ment égales, ¢’est-a-dire correspondent & la méme série de Taylor.

Revenons, pour mieux les caractériser, aux ensembles C.
Les ensembles W, sur lesquels WEIERSTRASs définissait une
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fonction analytique, étaient des domaines ouverts (c’est-a-dire
des ensembles d’un seul tenant et formés de points tous inté-
rieurs & 'ensemble W considéré). Nous avons déja dit que Borel
définit ses fonctions monogénes sur certains ensembles C plus
généraux que les W. Précisons que les (', (dont la réunion
constitue C) peuvent étre non denses quel que soit p et que I'en-
semble complémentaire de C, est formé de régions disjointes,
en nombre fini ou non, mais dont les frontiéres, y,, ont une
longueur totale finie L,. \

Soit I', 'ensemble des points x de C ou l'intégrale:

|dz |
le_x la+1

’p
est finie pour tout « > 0.Soit f(z), une fonction bornée sur
chaque (', et qui posséde une dérivée finie et continue relative-
ment a I',.
Borel montre que f (z) sera donnée dans I',, par
1 f(z)dz
f(x) = —

2in zZ—X
‘ ’p
et obtient ainsiune généralisation de la formule célébre de Cauchy.
Aprés que Borel eut créé et étudié la théorie des fonctions
monogenes, d’éminents mathématiciens comme CARLEMAN,
DEnjoY, MANDELBROJT, ..., ont approfondiet prolongé sa théorie.
Prolongements. — Borel avait démontré [57] qu’on peut

1
développer n en série de polynomes:

—Z

=Y a0
convergeant absolument en dehors de la demi-droite ou z est
réel et > 1. (’était un premier exemple de série de polynomes
permettant de sortir du cercle de convergence d'une série de
Taylor (ici Xz").

Borel généralise le résultat précédent. I1 montre qu’il est
possible de substituer a une série de Taylor ayant un rayon de
convergence fini, une série de polynémes ayant pour coefficients
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des combinaisons linéaires des coefficients de la série de Taylor
et qui peut converger non seulement a Pintérieur du cercle de
convergence de la série de Taylor mais méme au-dela.

Borel a aussi découvert un autre moyen de sortir du cercle
de convergence d’une série de Taylor. C’est en vue de ce moyen,
qu’ll avait créé la « sommation exponentielle absolue », définie
plus haut (p. 51). Celle-ci lui permet d’assigner une somme
généralisée a la série de Taylor, qui coincide avec la somme
ordinaire & l'intérieur du cercle de convergence mais qui existe
encore jusqu’a une certaine distance de ce cercle sur tout rayon
prolongée au-delad d’un point non singulier sur la circonférence
du cercle. Plus précisément, la somme généralisée existe & I'inté-
rieur du «polygone de sommabilité» de la série. Ce polygone
s’obtient en menant une tangente au cercle en tout point singu-
lier. (Ce polygone peut s’étendre dans certaines directions jusqu’a
Pinfini. Par exemple, pour la série Xz", le polygone de sommabilité
sera évidemment le demi-plan contenant le cercle |z | <1
et limité par la tangente au cercle au point z = 1).

Ce résultat important dépasse ceux de WEIERsTRAss. Car
Borel a formé des fonctions pour lesquelles il existe des régions
ou le prolongement a son sens, de la série de Taylor correspon-
dante, est possible alors qu’il ne I'est pas par la méthode de
Weierstrass du prolongement analytique.

EQUATIONS DIFFERENTIELLES ET AUX DERIVEES PARTIELLES

Borel a étudié les relations entre une équation différentielle
linéaire:

Lyl =LEx)yP+P®y" P+ . +T®y+UXy =0
et son équation adjointe:

My] = (L)@ —P) @ 1+ .. +(=1)" Uz = 0.

On savait déja, depuis LAGRANGE, que, par une suite d’inté-
gration par parties, on arrive a la relation:

Jz & [yldx—fyd[z]dx = A(x, p, ¥, ... y"" 1z, 2/, ... 2071

ou A dépend linéairement de y, y’, ... y" " Detde z,z', ... 271,
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