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Il pense évidemment aux prolongements de ses résultats.

Les diverses observations que nous avons faites plus haut
conduisent à penser qu'il y aurait d'abord lieu de reprendre l'exposé

de ses résultats en y introduisant les compléments qu'ils
réclament.

Il est regrettable que le souhait de Borel n'ait pas encore été

exaucé, malgré l'importance de la notion de raréfaction, des

définitions si originales de Borel et de leurs applications possibles.

(La notion de raréfaction est utile, entre autres, dans l'étude
des fonctions de variable complexe et dans le calcul des

probabilités).

Fonctions réelles (de variables réelles)

Borel a démontré [87, p. 37] que si rn (x) est le reste de rang n
d'une série de fonctions de #, mesurables, qui converge sur un
segment (a, è), la mesure de l'ensemble des points x où ] rn (x) j >e

tend vers zéro avec — pour toute valeur positive de s. Borel
n

a aussi démontré [133, 5, p. 158] que: étant donnée une fonction
F (#), bornée, définissable analytiquement sur un segment (a, b)

et deux nombres positifs, s, oc, on peut trouver un polynome P (x)
tel que la mesure B de l'ensemble des points x où | F (x) — P(x) |

> e soit inférieure à oc

En faisant tendre £ et a vers zéro, Borel en déduit qu'il y a

une suite de polynômes P1 (x), Pn (x), qui converge vers
F (x) presque partout (c'est-à-dire sauf, peut-être, sur un ensemble
de mesure nulle).

Borel conclut: «Les singularités des fonctions f (x) occupent
très peu de place; il est, par suite, possible, dans bien des

circonstances, d'opérer comme si elles n'existaient pas. »

C'est un de ses arguments pour écarter l'étude des fonctions
définies abstraitement et pour se restreindre à celle des fonctions
« calculables ».
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Intégration.

Borel déduit des résultats précédents une définition de l'intégrale,

totalement différente de celle de Lebesgue, quoiqu'elle lui
soit équivalente dans le cas où la fonction intégrée est bornée.

Par définition, si / (x) est bornée et définissable analytique-
ment sur un segment (a, b) et par suite s'il existe une suite de

polynômes Pn (x) qui converge presque partout vers / (x) sur
(a, è), l'intégrale de / (x) sur a, b sera la limite de la suite des

intégrales Pn (x) dx.
Cette définition semble plus simple que celle de Lebesgue.

Mais elle se prête moins à l'extension d'une définition de l'intégrale

au cas où la variable et la fonction sont deux éléments
de deux espaces de Banach, extension nécessaire dans le calcul
des probabilités et ailleurs.

Une polémique s'est élevée ensuite entre Borel et Lebesgue
sur la définition de l'intégrale, dans quatre articles ou notes des

Annales de l'Ecole Normale Supérieure, de 1918 à 1920. Dans la
première, Borel avait présenté sa définition, qu'il considérait
comme constructive, contrairement à celle de Lebesgue.

Lebesgue a réagi violemment. Dans sa réclamation, à côté
de remarques justes, on s'aperçoit qu'il interprète, à tort,
certaines remarques de Borel de la façon qui lui est la plus
défavorable (à lui, Lebesgue), et c'est ce qui lui permet, en partant
de là, d'en établir le mal-fondé. Cette attaque excessive a été
très pénible à Borel, qui rappelle en quels termes admiratifs
il a célébré les travaux de Lebesgue.

En résumé, la priorité de Lebesgue dans la définition de

l'intégrale est incontestable. Mais, d'une part, elle utilise de façon
essentielle la notion de mesure introduite par Borel, et, d'autre
part, elle n'enlève rien à l'intérêt de la définition, entièrement
différente, de Borel. Au reste, plus tard, F. Riesz et Haar,
en donnant chacun une définition différente.des précédentes,
témoignent eux-mêmes que leurs définitions, qui sont construc-
tives, ont suivi la voie tracée par Borel.

Séries dérivées.

Borel a prouvé qu'étant donnés des nombres réels arbitraires

a0, %, on peut toujours former une fonction de variable
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réelle, / (x), telle que pour x 0, par exemple, / (x) ait des

dérivées de tous les ordres et que pour x 0, / (x) et ses dérivées

successives aient respectivement les valeurs a0, âq, On peut
choisir en particulier a0, öq, de sorte que le développement
de / (x) en série de Taylor diverge plus rapidement qu'une série

entière donnée d'avance.
D'autre part, Borel a montré que toute fonction de variable

réelle cp (x), admettant des dérivées de tout ordre dans un intervalle

I donné, peut être mise sous la forme de la somme d'une
série de Taylor et d'une série de Fourier, ces séries et les dérivées
successives terme à terme de ces séries convergeant uniformément

dans I. Et leurs sommes respectives convergent vers les

dérivées correspondantes de cp (x).
Ces théorèmes importants ont été obtenus par Borel en faisant

usage d'une méthode ingénieuse et nouvelle pour la résolution
d'un système d'une infinité d'équations linéaires à une infinité
d'inconnues.

Avant lui, on avait cherché à résoudre un tel système en

utilisant l'analogie avec les systèmes finis comportant le même
nombre d'inconnues que d'équations. Borel, au contraire, observe

que, du moment qu'il y a une infinité d'inconnues, on peut
déterminer pour chaque équation autant d'inconnues que l'on
veut: on aura toujours un nombre suffisant d'indéterminées
dans les équations suivantes. De plus, Borel indique comment
procéder pour ces choix successifs de valeurs des inconnues.

Interpolation.

La formule d'interpolation de Lagrange permet de déterminer

le polynome Pq (x) de degré q qui est égal à une fonction
donnée f (x) pour </+1 valeurs données de x. D'autre part, on
sait, d'après Weierstrass, qu'on peut déterminer un polynome
aussi approché que l'on veut d'une fonction continue donnée.
Il est alors naturel de se demander si le polynome Pq (x) ne
pourrait fournir un tel polynome en l'égalant à / {x) pour un
grand nombre q de valeurs de x.

Sans savoir que Méray, puis Runge avaient déjà répondu
par la négative, Borel a d'abord formé [86] « un exemple d'une
fonction pour laquelle la formule de Lagrange, loin de donner
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une approximation indéfinie, diverge lorsque q augmente
indéfiniment ».

Ayant obtenu ce résultat négatif, Borel a cherché s'il ne
serait pas possible de préciser le théorème de Weierstrass d'une
autre façon. Il y a réussi au moyen de la formule remarquable

/(x) lim £ A(*)/(-)
q-+cc p \qj

P
où l'on suppose o < x < 1, où — est une valeur rationnelle de x

q

et où Mp q (x) est un polynôme déterminé de degré q qui est

indépendant de / (x). On peut d'ailleurs choisir parmi les expressions

possibles de Mpq (x). Serge Bernstein a montré qu'on
pouvait prendre l'expression particulièrement simple suivante:

Mm(x) Cq xp(l —x)q~p.

Fonctions complexes de variables complexes

Séries de Taylor

Borel a établi ce résultat inattendu qu'il pouvait y avoir une
influence de la nature arithmétique des coefficients d'une série
de Taylor sur la nature analytique de sa somme. En effet, en
utilisant une propriété des déterminants obtenue par M. Hada-
mard, Borel a pu prouver qu'une série de Taylor à coefficients
entiers ne peut représenter une fonction méromorphe que si

celle-ci est une fraction rationnelle1).
Borel a pu aussi compléter et étendre le théorème célèbre

de M. Hadamard, d'après lequel : si 9 (z) 2 an zn, ¥ (z) =1 bn zn,

f (z) I an bn zn et si a, ß sont deux points singuliers respectifs
de cp (z) et de ¥ (z), a ß est un point singulier de / (z). Par exemple,
d'après Borel: si cp (z) et ¥ {z) sont des fonctions uniformes à

singularités ponctuelles, il en est de même de / (z); en particulier,
si / (z) et W (z) sont méromorphes, il en est de même de / (z).

0 Dans sa Notice (146), Borel a oublié de mentionner ce cas d'exception, qu'il avait
pourtant signalé dans son mémoire original [11].
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