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I pense évidemment aux prolongements de ses résultats.
Les diverses observations que nous avons faites plus haut con-
duisent & penser qu’il y aurait d’abord lieu de reprendre I'ex-
posé de ses résultats en y introduisant les compléments qu’ils
réclament.

I1 est regrettable que le souhait de Borel n’ait pas encore eté
exaucé, malgré l'importance de la notion de raréfaction, des
définitions si originales de Borel et de leurs applications possibles.

(La notion de raréfaction est utile, entre autres, dans 'étude
des fonctions de variable complexe et dans le calcul des pro-
babilités).

FoNCTIONS REELLES (DE VARIABLES REELLES)

Borel a démontré [87, p. 37] que sir, (z) est le reste de rang n
d’une série de fonctions de z, mesurables, qui converge sur un
segment (a, b), la mesure de 'ensemble des points x ot |r, (2)| >«

tend vers zéro avec — pour toute valeur positive de e. Borel
n

a aussi démontré [133, s, p. 158] que: étant donnée une fonction
F (z), bornée, définissable analytiquement sur un segment (a, b)
et deux nombres positifs, ¢, «, on peut trouver un polynome P (z)
tel que la mesure B de 'ensemble des points z ou | F () — P(x) |
> ¢ soit inférieure & « .

En faisant tendre ¢ et « vers zéro, Borel en déduit qu’il y a
une suite de polynomes P, (z), ... P, (z), ... qui converge vers
F (x) presque partout (¢’est-a-dire sauf, peut-étre, sur un ensemble
de mesure nulle).

Borel conclut: « Les singularités des fonctions f (z) occupent
trés peu de place; 1l est, par suite, possible, dans bien des cir-
constances, d’opérer comme si elles n’existaient pas. »

C’est un de ses arguments pour écarter I’étude des fonctions

définies abstraitement et pour se restreindre a celle des fonctions
« calculables ».
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Intégration.

Borel déduit des résultats précédents une définition de I'inté-
grale, totalement différente de celle de Lebesgue, quoiqu’elle lui
soit équivalente dans le cas ou la fonction intégrée est bornée.

Par définition, si f (x) est bornée et définissable analytique-
ment sur un segment (e, b) et par suite s’il existe une suite de
polynomes P, (x) qui converge presque partout vers f(z) sur
(a, b), 'intégrale de f (z) sur a, b sera la limite de la suite des
intégrales o P, (z) dz.

Cette définition semble plus simple que celle de Lebesgue.
Mais elle se préte moins & I'extension d’une définition de 'inté-
grale au cas ou la variable et la fonction sont deux éléments
de deux espaces de Banach, extension nécessaire dans le calcul
des probabilités et ailleurs.

Une polémique s’est élevée ensuite entre Borel et Lebesgue
sur la deéfinition de I'intégrale, dans quatre articles ou notes des
Annales de I’ Ecole Normale Supérieure, de 1918 a 1920. Dans la
premiere, Borel avait présenté sa définition, qu’il considérait
comme constructive, contrairement & celle de Lebesgue.

Lebesgue a réagi violemment. Dans sa réclamation, a coté
de remarques justes, on s’apercoit qu’il interpréte, a tort, cer-
taines remarques de Borel de la facon qui lui est la plus défa-
vorable (a lui, Lebesgue), et c’est ce qui lul permet, en partant
de la, d’en établir le mal-fondé. Cette attaque excessive a été
trés pénible & Borel, qui rappelle en quels termes admiratifs
il a célébré les travaux de Lebesgue.

En résumé, la priorité de Lebesgue dans la définition de
Iintégrale est incontestable. Mais, d’une part, elle utilise de facon
essentielle la notion de mesure introduite par Borel, et, d’autre
part, elle n’enléve rien & l'intérét de la définition, entierement
différente, de Borel. Au reste, plus tard, F. Riesz et Haar,
en donnant chacun une définition différente .des .précédentes,
témoignent eux-mémes que leurs définitions, qui sont construc-
tives, ont suivi la voie tracée par Borel.

Séries dértvées.
Borel a prouvé qu’étant donnés des nombres réels arbitraires
dog, @y, ..., on peut toujours former une fonction de variable
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réelle, f (x), telle que pour z = 0, par exemple, f (z) ait des
dérivées de tous les ordres et que pour z = 0, f (x) et ses dérivées
successives aient respectivement les valeurs ao, ¢, ... . On peut
choisir en particulier ao, a;, ... de sorte que le développement
de f (z) en série de Taylor diverge plus rapidement qu’une série
entiéere donnée d’avance.

D’autre part, Borel a montré que toute fonction de variable
réelle ¢ (), admettant des dérivées de tout ordre dans un inter-
valle I donné, peut &tre mise sous la forme de la somme d’une
série de Taylor et d’une série de Fourier, ces séries et les dérivées
successives terme & terme de ces séries convergeant uniformé-
ment dans I. Et leurs sommes respectives convergent vers les
dérivées correspondantes de ¢ (x).

Ces théorémes importants ont été obtenus par Borel en faisant
usage d’une méthode ingénieuse et nouvelle pour la résolution
d’un systéme d’une infinité d’équations linéaires a une infinité
d’inconnues.

Avant lui, on avait cherché & résoudre un tel systéme en
utilisant I’analogie avec les systémes finis comportant le méme
nombre d’inconnues que d’équations. Borel, au contraire, observe
que, du moment qu’il y a une infinité d’inconnues, on peut
déterminer pour chaque équation autant d’inconnues que 1'on
veut: on aura toujours un nombre suffisant d’indéterminées
dans les équations suivantes. De plus, Borel indique comment
procéder pour ces choix successifs de valeurs des inconnues.

Interpolation.

La formule d’interpolation de Lagrange permet de déter-
miner le polynome P, (x) de degré ¢ qui est égal & une fonction
donnée f (z) pour ¢-+1 valeurs données de z. D’autre part, on
sait, d’aprés WEIERSTRASS, qu’on peut déterminer un polynome
aussl approché que 'on veut d’une-fonction continue donnée.
Il est alors naturel de se demander si le polynome P, (z) ne
pourrait fournir un tel polynome en 1I’égalant & f (x) pour un
grand nombre ¢ de valeurs de z.

Sans savoir que MERrAY, puis RuNce avaient déja répondu
par la négative, Borel a d’abord formé [86] « un exemple d’une
fonction pour laquelle la formule de Lagrange, loin de donner
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une approximation indéfinie, diverge lorsque ¢ augmente indé-
finiment ».

Ayant obtenu ce résultat négatif, Borel a cherché s’il ne
serait pas possible de préciser le théoréme de Weierstrass d’une
autre facon. Il y a réussi au moyen de la formule remarquable

fx) = lim Y M, ,(x) f(§>

q=>® p

ou I'on suppose 0 < z < 1, ot P est une valeur rationnelle de x
q

et ou M,  (z) est un polynéme déterminé de degré ¢ qui est

indépendant de f (). On peut d’ailleurs choisir parmi les expres-

sions possibles de M,, (x). Serge BERNSTEIN a montré qu’on

pouvalt prendre I'expression particulierement simple suivante:

M, (x) = C/xP(1-x)1"7.

FoNcTIONS COMPLEXES DE VARIABLES COMPLEXES

Séries de Taylor

Borel a établi ce résultat inattendu qu’il pouvait y avoir une
influence de la nature arithmétique des coefficients d’une série
de Taylor sur la nature analytique de sa somme. En effet, en
utilisant une propriété des déterminants obtenue par M. Hapa-
MARD, Borel a pu prouver qu'une série de Taylor a coefficients
entiers ne peut représenter une fonction méromorphe que si
celle-ci est une fraction rationnelle 1).

Borel a pu aussi compléter et étendre le théoréme célébre
de M. Hadamard, d’apreslequel:si ¢ (z) =2 a,2", ¥ (2) =2 b, 3",
f(z) =2a,b,z" et sia, p sont deux points singuliers respectifs
de ¢ (z) et de ¥ (z), « B est un point singulier de f (z). Par exemple,
d’aprés Borel: si ¢ (z) et ¥ (z) sont des fonctions uniformes &
singularités ponctuelles, il en est de méme de f (z); en particulier,
si f(z) et ¥ (z) sont méromorphes, il en est de méme de f(z).

1) Dans sa Notice (146), Borel a oublié de mentionner ce cas d’exception, qu’il avait
pourtant signalé dans son mémoire original [11].
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