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TROISIEME PARTIE

EXPOSE DES TRAVAUX SCIENTIFIQUES
D’EMILE BOREL

ORIENTATION GENERALE

Il faudrait plusieurs volumes pour seulement résumer tous
les travaux de Borel. Nous nous contenterons donc ici d’exposer
ses résultats les plus marquants.

Pour une étude plus compléte de ses ccuvres, on pourra
recourir d’abord & la liste bibliographique qui figure & la fin de
I'ouvrage «Selecta» imprimé chez Gauthier-Villars en 1940
(cette liste suit la reproduction des principaux mémoires de
Borel avec des commentaires dus a différents auteurs). On
trouvera & la fin de la présente Notice, une liste supplémentaire
allant de 1939 jusqu’a la mort de Borel en 1956.

Les recherches de Borel ont porté successivement sur deux
domaines différents. Depuis leur début jusqu’a la guerre de
1914-18, il §’est surtout occupé de la théorie des fonctions et des

‘domaines associés a cette théorie. Il signale lui-méme que ses

découvertes les plus importantes a cette époque ont été: les
définitions de la mesure, des fonctions monogenes et de la
sommabilité. Ces définitions ont été préparées par ’étude atten-
tive de cas particuliers et suivies des démonstrations, souvent
difficiles, des importantes propriétés qu’elles entrainent. Par ces
démonstrations, 1l s’égale aux plus habiles analystes. Mais,
souvent, ceux-cl épuisent un sujet déja posé avant eux et,
derriére eux, ’herbe ne repousse plus. Par ses définitions, au
contraire, Emile Borel ouvrait des domaines nouveaux, si riches
que, malgré ses propres apports, ils suscitérent de toutes parts
des contributions nouvelles. Vint la guerre. Pendant celle-ci,
Borel, apres avoir participé aux combats, s’occupa du reperage
du son, puis de questions variées concernant le service des in-
ventions intéressant la défense nationale, service dont il fut le
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principal organisateur. C’est sans doute son contact, a cette
époque, avec des problémes de physique mathématique et de
calcul des probabilités qui I'intéressa & ces questions et déter-
mina son orientation nouvelle.

(C’est a ces deux domaines qu’il va consacrer la plupart de
ses recherches a partir de 1920. Toutefois, deux correctifs doivent
étre apportés a cette répartition sommaire. Il n’y a pas eu
mutation brusque. Deés avant la guerre, on voit Borel s’inté-
resser de plus en plus aux questions de probabilités, en commen-
cant par une courte note de cinq pages en 1905. La probabilité
qu'un point aléatoire (dont la loi de probabilité sur le segment
(0,1) est uniforme) appartienne & un ensemble donné, est
évidemment égale a la mesure de cet ensemble. Les travaux de
Borel sur la mesure lui ont montré que certains énoncés, cer-
taines démonstrations concernant la mesure, deviennent plus
instructifs et plus simples dans le langage des probabilités. Cette
remarque n’est-elle pas a 'origine de 'intérét qu’il avait pris des
avant la guerre pour le calcul des probabilités?

Le second correctif consiste en ce qu’apres la guerre de 1914-
19, §’il ne s’est plus occupé exclusivement de théorie des fonc-
tions, 1l ne cessa pas cependant de s’y intéresser, pour prolonger,
soit ses propres recherches, soit celles qu’elles avaient suscitées.

Nous examinerons maintenant plus en détail ses recherches
dans les différents domaines.

Nous suivrons 'ordre chronologique seulement pour chaque
domaine scientifique pris i1solément et méme, dans ce cas, sans
nous y conformer toujours strictement.

ARITHMETIQUE

Nous parlerons plus loin de la théorie de la mesure de Borel.
En vertu de cette théorie, on est amené & considérer ’ensemble
des nombres rationnels comme moins serré que 'ensemble des
nombres irrationnels. Or on parvient par des démarches na-
turelles plus simplement aux premiers nombres qu’aux seconds.

On peut alors considérer comme une généralisation de cette
remarque, un résultat de Borel qu’il serait long d’énoncer de
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fagon précise mais qui peut s’interpréter comme suit: les nombres
les plus faciles & définir & partir des entiers sont les plus isolés les
uns des autres.

Dans une autre direction, Borel a donné, [50]1!), une
méthode pour résoudre le probleme suivant:

Etant donnés un polynome & une ou plusieurs variables, a
coefficients entiers et un nombre premier arbitraire p, trouver
la puissance la plus élevée p" de p qui divise le polynome pour
toutes les valeurs entiéres de la variable.

SERIES NUMERIQUES

I. Comparaison des convergences

Considérons deux séries convergentes & termes positifs
s = Xu,, t = X, et désignons par r, = s—S,, p, = t—t, leurs
restes de rang n. |

Borel dit que la série s converge plus rapidement que la

, - . P . .. A
série ¢ si — — oo avec n. Nous dirions plutot dans ce cas que
rn

s converge beaucoup plus rapidement que {. Et nous proposons
d’adoucir la condition de Borel en disant que s converge plus

rapidement que ¢ quand la plus petite limite de

est supé-
-

n
rieure a 'unité. (Notons cependant que la définition de Borel
lui a été tres utile dans I’étude des fonctions complexes).

Quand on change I'ordre des termes de Xu,, elle reste con-
vergente avec la méme somme. On voit facilement que la série,
Yu,, obtenue en rangeant les termes de Xu, par ordre de
grandeur non croissante, converge au moins aussi rapidement

que 2u,. Nous avons méme pu donner un exemple 2), ou en

1) Nous renverrons par des numéros entre crochets aux mémoires portant le méme
numéro, dans la liste bibliographique figurant a la fin de P'ouvrage intitulé Selecta,
publié en 1940 & P'occasion du Jubilé scientifique d’Emile Borel, ou dans le supplément
a cetle liste terminant la présente notice. Les renvois aux articles publiés dans le volume
Selecta mentionné plus haut, p. 2, se présenteront sous la forme (S, 201) pour (Selecta,
p. 201).

2) C. R. du 27 février 1961.
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changeant l'ordre des termes, on peut obtenir une série moins
rapidement convergente, méme au sens de Borel, que u,,.

Borel s’attache particulierement au cas ou les séries con-
sidérées ont une « convergence réguliére » parce que, d’apres lui,
ce sont les seules séries qui se rencontrent naturellement. Il
montre cependant qu’on peut «fabriquer» une convergence
irréguliere et, par exemple, construire une série ou les sommes
partielles s, sont, pour une suite de valeurs de n, voisines de e”
et pour une autre suite de valeurs de n, voisines de e*".

Représentons par la notation
Rap. s > Rap.?

le fait que la série s converge plus rapidement que la série ¢; on
voit facilement que cette notation est transitive. Nous avons
pu montrer par un exemple (voir la note ci-dessus) que la rela-
tion: Rap. s > Rap.? (exprimant qu’on n’a pas: Rap. ¢ > Rap. s)
nest pas transitive. Mais notre exemple est & convergence
irréguliére. Il serait intéressant de voir si la relation redevient
transitive quand on se borne aux convergences régulieres.

I1. Sommabilité d’'une série

Borel a obtenu ([5]) une condition suffisante pour qu’en
opérant un certain changement dans l'ordre des termes d’une
série semi-convergente, on n’altére pas sa somme: il suffit que
le produit du terme général (de rang m) par le déplacement

1
maximum des termes qui le précédent, tende vers zéro avec — .
m

Mais la contribution principale et trés remarquable de Borel
concernant les séries, c¢’est sa définition des séries divergentes
sommables, [19], [41], [42] et ’étude de leurs propriétés.

L’égalité:

1

= 14x4+...+x"+...
1—x

n’était traditionnellement valable que pour |z | < 1, ¢’est-a-dire
quand la série était convergente au sens classique.
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Mais quand |z|> 1, le premier nombre garde un sens
alors que le second n’en a plus aucun. Ne peut-on généraliser le
sens du mot somme de telle facon que, quand la série aurait une
somme au nouveau sens, cette somme soit précisément égale au
premier nombre. Avec d’autres, Borel a indiqué et étudié une
réponse étendue & cette question, mais il en a tiré de nouvelles
et importantes conséquences. Il précise d’abord les conditions
qu’il est naturel d’imposer & tout procédé de sommation.

1o Toute série convergente doit étre sommable avec la méme
somme généralisée.

20 Silon modifie un nombre fini de termes d’une série sommable,
Xu,, on obtient une série ¢, qui doit étre sommable et les
sommes généralisées ne doivent différer que de la facon qui
s'impose, c’est-a-dire d’un nombre égal & (u, + ... +u,)—
(¢,+...+v,) si le dernier terme modifié est de rang r.

30 Si 2w, est aussi une série sommable et si B, y sont deux nom-
bres réels quelconques, la série 2 (Bu,+yw,) doit étre aussi
sommable et sa somme généralisée doit étre égale-a Ps+yt
siset tsont les sommes généralisées de Zu, et Zw,.

Il impose encore deux autres conditions 4° et 5° que nous
énoncerons plus loin.

Si s, = u,+...4u, reste compris entre deux bornes quand
n varie, 1l est naturel d’imposer & la somme généralisée d’étre
aussi entre ces deux bornes. Dés lors, Borel observe:

1° qu'un moyen d’y parvenir est de prendre pour somme
généralisée une moyenne des s,,;

20 mais la somme généralisée devrait se rapprocher surtout
des s, de rangs élevés. Il y a donc lieu, pour le calcul de leur
moyenne, d’affecter les s, de poids d’autant plus grands que =
est plus grand. Pour réaliser cette condition au maximum, Borel
propose de faire dépendre les poids d’un paramétre o de facon
que la discrimination souhaitée s’accentue quand a augmente.
Plus précisément, il propose de prendre une moyenne de la forme:

CoSyt+ ... +c,a’s,+ ...

C,+eia+...+c,a + ...
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ou les ¢ sont des nombres > 0, le dénominateur # 0 et ou 'on
fait croitre a indéfiniment.
Borel abandonne alors ces généralités et choisit de prendre:

1
Cy, = —
" on!
de sorte que le poids de s, sera:
n
—a 4
e S
n!

et la somme généralisée sera la limite quand a — 40, de
Y

Il montre que cette définition vérifie les conditions 19, 20, 30,
ci-dessus.

On peut observer que ce dernier résultat peut étre obtenu
pour une sommation beaucoup plus générale.

Appelons P la suite de poids p, (a), ... p, (@) ... vérifiant na-
turellement les conditions classiques

pn(a)goa zpn(a) = 1.

a"s,

n!

Pour réaliser la condition supplémentaire désirée sur les
poids, nous supposerons, de plus, que pour chaque »n fixe:

lim p,(a) = 07
car les premiers des p, (a), ... p, (a), ... seront tres petits pour

a assez grand, alors que 2p, (a) restant égal & I'unité, les suivants
ne le seront que pour a beaucoup plus grand. En résumé, nous
dirons qu’une série Zu, est sommable P si:

A. La série
m(a) = s,p,(@)+ ... +s,p, (@) + ...

est convergente quel que soit @ (ou au moins pour a assez grand).

B. Quand @ — + o0, m (a) tend vers une limite finie, s.
Alors, s sera appelée la somme généralisée P de Zu,.
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Atitre d’exemples ou les conditions A, B, sont réalisées figurent
non seulement la sommation exponentielle de Borel, ou
n

pn(a)ze _’,ﬁ

mais aussi plusieurs définitions connues de la sommabilité, ou
P, (a) a des expressions différentes.
Par exemple, Cesaro prend dans sa définition (C, 1) @ entier et

1
— pour n < a
pn(a)“—" a

| 0 pour n>a.

Marcel Riesz prend, dans sa définition (C, d), a entier et

1\° a—1\°
m(a =u,+(1——)u +...+ (1 - Uy_q;
| a

a

done
Pa(@) = poey(a) = ... =0,

p.(a) = 1— (1——1> e po{a) = <1— A (1—- "+1>6,
a a a

pour n <a—1, et

Lindel6f prend
1
m(@) = u,+uy+ —u,+ ... + —u, + ...
2 n
2 — n—
a a
done
1 1 1
po(a) = O: pl(a) = 1- PN Pn(a) = - g eee
2 n n+1
— n— (m+1)
a a a

On peut démontrer que les propriétés 1°, 20, 30, sont vérifiées
pour la sommabilité P la plus générale, ce qui dispense de les

I’Enseignement mathém., t. XI, fasc. 1. 4
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démontrer successivement pour les quatre cas particuliers ci-
dessus ou pour les nombreuses autres sortes de sommabilité qui
ont été proposées.

Toeplitz et Schur ont obtenu une condition nécessaire et
suffisante pour que la condition 1° soit réalisée par un procédé
de sommation de la forme:

s = lim ) p,(a)s,.
a—>o hn

Quand cette condition de Toeplitz est réalisée, les conditions
20 et 3° sont aussi réalisées. La sommation de Toeplitz est un peu
plus générale que la sommation P. Mais elle n’est plus une
moyenne et perd ainsi le caractere intuitif de la sommation P.
(’est sans doute pourquoi la plupart des formules de sommation
proposées se trouvent étre des sommations P particulieres.

Ni les sommations de Toeplitz, ni les sommations P ne
suffisent, au contraire, a vérifier les conditions 4° et 5° posées
par Borel.

Occupons-nous d’abord de la condition 49.

49 Siune série 2u, est sommable, on doit pouvoir grouper en un
seul terme, un nombre fini quelconque, r, des premiers termes
de Xu,, sans modifier, ni sa sommabilité, ni sa somme généralisée.

Pour pouvoir traiter de cette condition 4°, rappelons qu’avant
de définir la sommabilité, Borel avait défini la limite généralisée
d’une suite: z,, z, ... x,, ... ; c’est la limite quand elle existe,
de e % z(a), quand @ — - o0 ol

an

x(a)=xy+xya+ ...+xnﬁ + ...

est supposée convergente quel que soit a.

En vue de 4°, Borel a cru d’abord [19] avoir démontré que
Sl Z,, Xy, ... L, ... a une limite généralisée, il en est de méme de la
suite xq, ... &, ... lLoutefois cette démonstration est inexacte,
comme 1’a signalé Hardy !) en donnant le trés simple exemple
suivant: z (a) = cos e, pour lequel la suite z,, z{, x,, ... a une
limite généralisée, mais non la suite zy, z,, ...

1) Voir The Quaterly Journal of Math., 35, 1903.
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Mais dans son ouvrage ultérieur Legons sur les séries di-
vergentes, Borel ne reproduit pas son erreur. Au contraire, il
s’exprime ainsi: « Mais 'étude des séries simplement sommables
présente des difficultés analogues & I’étude des séries qui sont
convergentes sans 1'étre absolument; nous la laisserons de coté,
pour nous occuper exclusivement des séries absolument som-
mables que nous allons définir. »

Observons cependant que I’on peut sauver le premier résultat
en imposant une condition supplémentaire. Plus précisément:
quand la série u, +u, -+ ... est sommable P (avec la somme
généralisée s), la condition nécessaire et suffisante pour que la
série u;-+uy,-+... soit sommable P, avec la somme généralisée
s—u,, est que la suite uy, u,, ... ait pour limite généralisée zéro.

Le cas de la condition 5° est plus compliqué encore. On sait
que si les séries Zu,, Z¢, sont absolument convergentes au sens
classique et ont pour sommes s et ¢, alors le produit st est égal
a la somme de la série (absolument convergente) Xw, ol

W, = Ug¥,+UVp_1+ ... +U, V.

Mais quand les séries s et ¢ sont convergentes sans étre
absolument convergentes, il peut arriver que la série Xw,
diverge. A fortiori, la propriété classique ne peut étre vérifiée par
la sommabilité P que si on impose & « cette sommabilité » une
nouvelle condition supplémentaire.

Nous n’essaierons pas de préciser cette condition. Car il est
déja tres difficile de la déterminer pour la sommabilité exponen-
tielle. Pour traiter cette question, il a fallu & Borel, déployer, en
dehors de ses dons d’invention, une trés grande habileté analy-
tique.

Il particularise encore plus la sommabilité P, non seulement

n
en prenant p,(a) = e”“}% , mais en exigeant de la série Zu,
qu’elle soit « absolument sommable », en ce sens que chacune
des trois intégrales suivantes doit avoir un sens 1).

1) La condition précédente: que e~ % x (a) ait une limite quand a — % est équiva-

o8}
lente & la condition que l’intégrale j e~ % u (a) da ait un sens.
o
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too + o + o
| e“u(a)da, [ e *|u(a)|da, | e *|u(a)]|da
o o o
et ceci quel que soit Pordre r de dérivation dans a‘” (a).

Ceci étant, Borel démontre ce que deviennent les propriétés
20, 30, 4°, 50 quand on y suppose les séries données absolument
sommables et quand on affirme que les séries qui en sont déduites
dans ces propriétés sont absolument sommables. La propriété 10
subsiste aussi sous la forme: toute série convergente est absolu-
ment sommable et sa somme est égale a sa somme généralisée.
De ces résultats, Borel déduit un théoréme tres général: si
Pon a un polynome & une ou plusieurs variables réelles, par
exemple, P (u, ¢, w), si 'on y remplace u, ¢, w par des séries
absolument sommables et si 'on développe formellement P (u,
¢, w) apres ce remplacement, on obtient une série absolument
sommable dont la somme généralisée est égale au résultat obtenu
enremplacant dans P (u, ¢, w), u, ¢, w par leurs sommes généralisés.

Mais c’est 'intervention des séries divergentes dans la théorie
des fonctions de variables complexes qui a incité Borel a les
rendre convergentes en un sens plus général et qui a fourni la
plus importante de ses applications (dont nous parlerons plus
loin), sa sommabilité exponentielle. Aprés les publications de
Borel sur ce sujet, le nombre des mémoires d’autres auteurs sur
les séries divergentes a décuplé.

THEORIE DES ENSEMBLES

Placons-nous dans un espace R a 1, 2, 3 ou un nombre fini
de dimensions. Borel appelle ensemble bien défini et on appelle
ensemble borélien (ou ensemble B) soit un ensemble élémentaire
(intervalle, rectangle, cube, etc ... ) soit un ensemble formé &
partir d’ensembles élémentaires par la répétition, un nombre
fini ou dénombrable de fois, des deux opérations suivantes:

I. Réunion d’une suite dénombrable finie ou infinie, d’en-
sembles disjoints déja définis.

II. Différence de deux ensembles déja définis dont I'un
contient 'autre.
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Borel démontre alors deux théorémes qui sont fondamentaux
pour la théorie des fonctions:

I. Si tous les points d’un ensemble borné et fermé sont in-
térieurs chacun a l'un au moins des ensembles élémentaires
F,, F, ..., ils sont intérieurs chacun & l'un au moins d’un
nombre fini fixe (F,, F,,, ... F,) des ensembles F,.

I1. Soit E un ensemble borélien et ¢ > 0. On peut rassembler
un nombre fini d’ensembles élémentaires Iy, ...I, tel que
I’ensemble des points de E qui n’appartiennent & aucun des I, et
des points des I, qui n’appartiennent pas & E soit compris a
l'intérieur de la réunion d’ensembles élémentaires en nombre
fini dont I’étendue totale est < «.

MESURE DES ENSEMBLES

La découverte d’une définition satisfaisante de la mesure
d’un ensemble a joué un role capital dans I’élaboration des
nouvelles théories développées par Borel et ses disciples ou
successeurs.

Aprés avoir exprimé la notion intuitive de la mesure par la
longueur d’un segment rectiligne, par I’aire d’un polygone, par
le volume d’un polyedre, etc. ..., les mathématiciens se sont
efforcés de traduire cette notion intuitive dans le cas plus
général de la mesure d’'un ensemble euclidien (en commencant
par le cas d’un ensemble linéaire). Des définitions a cet effet ont
été progressivement proposées, entre autres par Riemann,
Cantor, Darboux et Jordan. Un nouveau progres était néces-
saire.

Chaque progrés avait consisté a estimer la mesure d’un
ensemble £ au moyen de la longueur totale d’un ensemble
d’intervalles couvrant £. Mais on avait toujours pris ces inter-
valles parmi des intervalles choisis d’avance. Borel a écrit lui-
méme que son point de départ a été de prendre, pour chaque
ensemble, des intervalles non seulement couvrant ’ensemble
mais dépendant directement de cet ensemble. En prenant
comme intervalles ceux qu’on obtient en divisant un segment
en parties égales, Jordan arrivait & la conclusion que ’ensemble
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R des points d’abscisse rationnelle entre 0 et 1 avait pour
mesure l'unité. En attachant, avec Borel, & chaque point

: : &

d’abscisse rationnelle, r,, un segment de longueur — , on constate
' n

que R est couvert par un ensemble d’intervalles dont la longueur

1 L . :
totale est €2 — : sa mesure. devant intuitivement étre inférieure

)
n2

& ce total est aussi petite que I'on veut avec e. Borel arrivait
ainsi a cette conclusion qui, & ’époque, a paru surprenante, que
Iensemble des nombres rationnels, pourtant dense partout,
était de mesure nulle. C’est par cet exemple que Borel a été
conduit & la notion générale de mesure.

Les définitions actuellement en usage sont celles de Borel
et de Lebesgue. La mesure de Borel ne s’appliquerait qu’au cas
d’un ensemble dit mesurable B (on a défini plus haut, p. 52, les
ensembles boréliens).

La mesure d’un ensemble mesurable B s’obtient au moyen
des opérations mémes par lesquelles il a été défini plus haut, la
mesure d’un intervalle étant prise égale & sa longueur.

Lebesgue a donné une définition de la mesure d’un ensemble,
qui garde un sens, que ’ensemble soit ou non mesurable B.
Mais quand ’ensemble est mesurable B, il est aussi mesurable
au sens de Lebesgue et a méme mesure dans les deux sens.

En réalité, ce qu’il y a de curieux dans le cas de la définition
de la mesure, c’est que Borel a commencé son étude de la me-
sure, précisément en donnant une définition des ensembles de
mesure nulle 1), qui est valable pour des ensembles non mesura-
bles B. Tout ensemble mesurable au sens de Lebesgue étant la
réunion d’'un ensemble mesurable B et d’un ensemble de mesure
nulle, on peut dire que Borel avait donné implicitement d’avance,
une définition des ensembles mesurables au sens de Lebesgue,
équivalente a la définition de Lebesgue. On peut le voir méme
encore mieux et d’une facon plus directe. Car, d’aprés M. Denjoy,
Borel écrit en substance: Si un ensemble E contient un ensemble
mesurable B, E,, de mesure «, la mesure de £ est au moins égale

1) Rappelons qu'un ensemble linéaire est de mesure nulle quand pour tout £ > o,
tous ses points sont chacun intérieur & I'un au moins d’un ensemble de segments S,
So, ..., Sn ... dont la somme des longueurs est < e&.



IR T ey b o SRS T

By

4 «. Si E est contenu dans un ensemble FE,, mesurable B de
mesure B, la mesure de E est au plus égale & 8. Dans le cas ou
8 = «la mesure de E sera = o et < «. De 14, & dire que si § = o
la mesure de E vaut «, il n’y a qu’'un pas. Lebesgue le franchit.
On peut se demander pourquoi Borel n’a pas franchi ce pas lui-
méme. Nous pensons que cela tient & ce qu’il veut, trés consciem-
ment, éliminer les ensembles qui ne sont pas «bien définis »,
et que pour lui, les autres ne relevant pas d’une définition
constructive, sont sans existence réelle.

Nous avons dit plus haut que si les définitions constructives
sont, en effet, plus complétes, et sont nécessaires pour les appli-
cations, nous ne voyons pas de raison d’éliminer les définitions
descriptives qui rendent généralement plus simples les démon-
strations 1).

C’est a ce point de vue que, tout en attribuant a Borel
I'antériorité complete pour la notion de mesure, nous pensons
que la définition de Lebesgue, d’ailleurs donnée d’une fagon
différente et intéressante, a déterminé un nouveau progres.

Toutefois, 1l faut observer que les propriétés des ensembles
mesurables B se conservent dans toute homéomorphie, ce qui
n’est pas le cas des ensembles mesurables au sens de Lebesgue.

C’est pourquoi en Calcul des Probabilités, les ensembles
« probabilisables » sont les ensembles «boréliens» et non les
ensembles mesurables au sens de Lebesgue.

Ezxemples d’applications

I. Tout ensemble dénombrable est de mesure nulle.

II. La condition nécessaire et suffisante pour qu’'un ensemble
E soit de mesure nulle est qu’il existe une suite d’intervalles
distincts Iy, I, ... dont la série des longueurs est convergente et

telle que tout point de £ soit intérieur & une infinité des inter-
valles I,,.

1) 11 faut d’ailleurs noter que 'opposition de Borel aux définitions descriptives
n’a pas €té totale. On lit, par exemple, en note !) de la page 48, de la troisiéme édition
de ses Legons sur la Théorie des fonctions: « Le procédé que nous avons employé revient,
en réalité, a ceci: ... définir les éléments nouveaux qu’on introduit, 4 ’aide de leurs
propriétés essentielles, c’est-a-dire de celles qui sont strictement indispensables pour

les raisonnements qui vont suivre. » Il n’est fait ici aucune allusion & l1a « construction »
des éléments nouveaux.
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Soit alors /' I’ensemble des points qui sont chacun intérieurs
& une infinité des intervalles I,. F comprend E et appartient a
la fermeture E de E. En particulier, si E est fermé, E est iden-
tique & F.

ITI. On trouvera plus loin des applications trés nombreuses
de la notion de mesure dans la théorie de I'intégration, dans la
théorie des fonctions et dans le calcul des probabilités.

RAREFACTION D’UN ENSEMBLE DE MESURE NULLE

(C’est au cours de ses études des fonctions monogeénes que
Borel a senti la nécessité d’introduire la notion d’ensemble de
mesure nulle (avant d’avoir défini la mesure d’un ensemble).
Les mémes études lui ont fait voir qu’il faudrait distinguer entre
les différentes sortes de mesure nulle. Et cette nécessité s’est
présentée a nouveau en calcul des Probabilités. Il a alors intro-
duit la notion de « mesure asymptotique » d’un ensemble [169],
dont, beaucoup plus tard, i1l a légérement modifié la définition
sous le nom de «raréfaction » (d’un ensemble de mesure nulle).
Cette notion nouvelle a moins attiré ’attention que celle de
mesure. Et pourtant, nous sommes d’accord avec Borel pour
penser que I'importance de cette classification des ensembles de
mesure nulle « parait devoir étre comparable & celle de la notion
méme d’ensemble de mesure nulle. »

Mais s1 Borel a méme pu imaginer trois modes distincts de
classification, il n’en a pas établi les relations. Kt s’il a obtenu
des résultats importants, c’est en partant d’hypotheéses qui ne
sont pas toujours nécessaires et ne sont pas toujours suffisantes.
Avant donc de prolonger et d’appliquer la théorie de Borel, il y
aurait lieu de la revoir et de la compléter pour la rendre plus
cohérente.

Pour toutes ces raisons, nous serions heureux si ces quelques
lignes pouvaient inciter de jeunes chercheurs & entreprendre une
étude plus systématique et plus compléte de la raréfaction et a
en donner des applications.

La premiére idée de Borel, [S, p. 185] consiste & établir une
inégalité symbolique, (& définir), entre une sorte de « grandeur »
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d’un ensemble de mesure nulle, £, et la rapidité de convergence
d’une série convergente a termes positifs associée convenable-
ment 4 £. Nous avons vu qu’il existe au moins une suite dé-
nombrable d’intervalles I, qui « surcouvre » £ et dont la série
des longueurs 2/, est convergente.

Borel dit alors que « la mesure asymptotique de £ » est
«inférieure » ou égale » & Z1,. Il est revenu plus tard ala question
et a perfectionné son idée primitive. Au lieu de définir la « gran-
deur » d’un ensemble comme inférieure ou égale a la convergence
d’une série, notions qui sont des entités totalement différentes,
il compare directement entre eux deux ensembles £, F de mesure
nulle et raméne cette comparaison a celle des convergences de
séries. '

Une premiére fagon d’opérer serait la maniére suivante.
Disons provisoirement d’un ensemble dénombrable 9 d’inter-
valles qui « surcouvre » E et est de longueur totale finie, qu’il
«majore » E. Soient alors, de méme, % un ensemble dénombrable
d’intervalles qui majore F. On dira que E est plus raréfié que
F sila série V des longueurs des intervalles de J converge plus
rapidement (voir p. 45) que la série U analogue pour %.

Mais plusieurs difficultés se présentent. D’abord, le fait que
I’ensemble dénombrable d’intervalles J majore E est indé-
pendant de I’ordre de ces intervalles, tandis que la rapidité de la
convergence, de leurs longueurs peut en dépendre, comme nous
Pavons montré ailleurs (voir p. 45). Dans la définition précédente,
1l ne faut pas faire intervenir 7', mais une suite dans un ordre dé-
terminé des intervalles de . Borel suppose, plus loin, que 1'on
a rangé la suite par ordre de longueurs non croissante. D’autre
part, non seulement, il y a plusieurs suites formées avec I qui
majorent £, mais il n’y a pas un seul ensemble J qui majore E.

Borel fait face & cette difficulté en se placant dans le cas ou,
parmi les suites S d’intervalles qui majorent £, il y en a une,
S,, qui converge plus rapidement ') que toutes les autres. En
réalité, cela n’est pas possible, mais il suffit de supposer que S,
converge au moins aussi rapidement que tous les S. Quand il y a,
de méme, pour F, une suite ¢, d’intervalles majorant F qui con-

1) Expression abrégée pour dire que la série des longueurs des intervalles de Sg
converge plus rapidement que la série analogue pour S.
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verge au moins aussi rapidement que toute autre suite ¢ ana-
logue, on dira que E est plus raréfié que F si la suite S, converge
plus rapidement que é&,.

Borel écrit [285, p. 164] « nous discuterons plus loin les diffi-
cultés que peut présenter ce choix [celui de §,]; ce qui est cer-
tain, c’est qu’il y a de nombreux exemples ou ce choix s’impose
et ne peut étre modifié; les ensembles de mesure nulle corres-
pondants sont donc classés les uns par rapport aux autres sans
ambiguité ». |

Borel traite, en effet, de nombreux exemples d’ensembles de
mesure nulle auxquels il associe des suites majorantes déter-
minées. Ces assoclations sont naturelles d’'un point de vue
intuitif. Mais nous n’avons pas vu démontré par Borel que ces
suites majorent au moins aussi rapidement (au sens de sa propre
définition) que toutes les autres suites correspondantes: c’est,
par exemple, ce qu'on constate, aux 11¢ et 12¢ lignes de la p.
179 [285]. Tout se passe comme si1 Borel, dans ses exemples,
ignorait sa propre définition de 'inégalité de deux raréfactions
pour y substituer une définition intuitive. C’est encore ce qu’il
fait dans les pages 184 a 191 de son livre consacrées au « calcul
de la raréfaction ». Il y introduit un symbolisme trés ingénieux
de la raréfaction. Par exemple, la raréfaction d’un ensemble E
réduit & un point est symbolisée par ™', ot w est le premier
nombre transfini de Cantor. La raréfaction de ’ensemble F des
nombres décimaux qui n’utilisent pas un chiffre donné (par
exemple, 7) est symbolisée par o~ 7% ou :

log 9
B log 10

Mais si 1 —b est bien plus petit que 1, si 'on est tenté d’écrire
que o~ ! est plus petit que o~ 7% et d’en conclure que E est
plus raréfié que [, cette derniére conclusion n’est pas démontrée
par Borel quand on a recours & sa premiére définition.

D’autre part, Borel introduit deux autres limitations qui ne
nous paraissent pas indispensables. Il se restreint a ’étude des
ensembles boréliens (de mesure nulle) et au cas ou la convergence
des séries de longueurs qu’il considere est «réguliere». Or,
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comme nous I’avons montré (C. R. du 27 Février 1961), on peut
obtenir un certain nombre de propriétés de la raréfaction qui
subsistent quand on n’impose aucune de ces deux limitations.

Borel définit encore deux autres sortes de raréfaction. La
premiére est la «raréfaction logarithmique ». 1l considere un
ensemble £ de mesure nulle non dense, contenu dans (0 , 1) et
déterminé par la connaissance d’une infinité d’intervalles con-
tigus I; = a; b; de longueurs m;. 11 désigne par N (x) — 1 le
nombre des I; dont la longueur est = z et par P (z) la longueur
totale des IV (x) intervalles & Pintérieur desquels sont les points
de E (quand les I; n’ont pour extrémité ni 0, ni 1).

Quand z — 0, le rapport:

log N (x)
log N (x) —log P (x)

p(x) =

a une plus grande limite finie p que Borel appelle raréfaction

logarithmigue de E. A titre d’exemple, Borel considére 'ensemble

de mesure nulle constitué des points dont les abscisses entre

O et 1 ont un développement décimal n’utilisant que les nombres

2, 5, 8. Il trouve que sa raréfaction logarithmique a pour valeur:
log 3

p_logIO.

Or, il avait déja symbolisé la raréfaction de tels ensembles par
p

. : .
la notation — . Il y voit une rencontre et une confirmation de la
®

compatibilité de ces définitions. Mais aucun rapport n’est signalé
entre cette définition et sa définition primitive par comparaison
de rapidité de convergence des suites majorantes.

En application, Borel étudie la «somme vectorielle »
C = (A)+(B) de deux ensembles A, B compris dans (0, 1),
définie comme l’ensemble de ceux des points de (0, 1) dont
'abscisse est la somme des abscisses d’un point de 4 et d’un
point de B.

Il donne un exemple ol la somme des raréfactions logarith-

miques étant égale & 'unité, la somme vectorielle a pour mesure
I'unité:
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Apreés démonstration simplifiée d’un résultat did & Marshall
Hall, Borel donne une troisiéme définition de la raréfaction,
distincte des précédentes et qu’ il appelle la raréfaction relative
minimum ou plus briéevement la raréfaction R.

On considére un ensemble £ de mesure nulle, compris dans
(0 ; 1), comprenant les extrémités O et 1 mais dense nulle part.
On l'obtient en enlevant du segment (0 ; 1) des intervalles NV
contigus & £ et denses dans tout intervalle. On peut supposer
qu’on les place dans leur ordre de grandeur non croissante. Soit
b, la longueur du plus petit de n-+1 intervalles B: ceux qui
restent quand on a placé n intervalles NV, dont le plus petit est
de longueur a,. En posant:

b,
a,+b,

Hn =

Borel désigne par R le plus grand nombre inférieur a tous les u,.)
Dans le cas ou 'on a b, > «,, pour tout n, on aura

1
, donc R>—.

r, == 2

n

D[ =

Borel montre que: pour que la somme vectorielle de deux
ensembles £, £’ de raréfaction R et R’ renferme tous les points
de I'intervalle (0; 2), il suffit que 'on ait:

R+R" >1.

Plus généralement, la somme vectorielle de £, E’ a une
raréfaction R" telle que:

R"> R+R'.

Borel, toujours novateur, a ainsi défini trois sortes de raréfac-
tions. Mais il les a étudiées indépendamment, sans s’occuper
de savoir si les définitions de l'inégalité de raréfaction qui en
découlent sont compatibles.

Borel a écrit [285, p. 191]: « La théorie de la raréfaction qui
compléte celle de la mesure est un sujet d’étude assez vaste;
je souhaiterais qu’il tentat de jeunes chercheurs. »

o) Voir notre Note aux C. R. 1962.
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I pense évidemment aux prolongements de ses résultats.
Les diverses observations que nous avons faites plus haut con-
duisent & penser qu’il y aurait d’abord lieu de reprendre I'ex-
posé de ses résultats en y introduisant les compléments qu’ils
réclament.

I1 est regrettable que le souhait de Borel n’ait pas encore eté
exaucé, malgré l'importance de la notion de raréfaction, des
définitions si originales de Borel et de leurs applications possibles.

(La notion de raréfaction est utile, entre autres, dans 'étude
des fonctions de variable complexe et dans le calcul des pro-
babilités).

FoNCTIONS REELLES (DE VARIABLES REELLES)

Borel a démontré [87, p. 37] que sir, (z) est le reste de rang n
d’une série de fonctions de z, mesurables, qui converge sur un
segment (a, b), la mesure de 'ensemble des points x ot |r, (2)| >«

tend vers zéro avec — pour toute valeur positive de e. Borel
n

a aussi démontré [133, s, p. 158] que: étant donnée une fonction
F (z), bornée, définissable analytiquement sur un segment (a, b)
et deux nombres positifs, ¢, «, on peut trouver un polynome P (z)
tel que la mesure B de 'ensemble des points z ou | F () — P(x) |
> ¢ soit inférieure & « .

En faisant tendre ¢ et « vers zéro, Borel en déduit qu’il y a
une suite de polynomes P, (z), ... P, (z), ... qui converge vers
F (x) presque partout (¢’est-a-dire sauf, peut-étre, sur un ensemble
de mesure nulle).

Borel conclut: « Les singularités des fonctions f (z) occupent
trés peu de place; 1l est, par suite, possible, dans bien des cir-
constances, d’opérer comme si elles n’existaient pas. »

C’est un de ses arguments pour écarter I’étude des fonctions

définies abstraitement et pour se restreindre a celle des fonctions
« calculables ».




62 —

Intégration.

Borel déduit des résultats précédents une définition de I'inté-
grale, totalement différente de celle de Lebesgue, quoiqu’elle lui
soit équivalente dans le cas ou la fonction intégrée est bornée.

Par définition, si f (x) est bornée et définissable analytique-
ment sur un segment (e, b) et par suite s’il existe une suite de
polynomes P, (x) qui converge presque partout vers f(z) sur
(a, b), 'intégrale de f (z) sur a, b sera la limite de la suite des
intégrales o P, (z) dz.

Cette définition semble plus simple que celle de Lebesgue.
Mais elle se préte moins & I'extension d’une définition de 'inté-
grale au cas ou la variable et la fonction sont deux éléments
de deux espaces de Banach, extension nécessaire dans le calcul
des probabilités et ailleurs.

Une polémique s’est élevée ensuite entre Borel et Lebesgue
sur la deéfinition de I'intégrale, dans quatre articles ou notes des
Annales de I’ Ecole Normale Supérieure, de 1918 a 1920. Dans la
premiere, Borel avait présenté sa définition, qu’il considérait
comme constructive, contrairement & celle de Lebesgue.

Lebesgue a réagi violemment. Dans sa réclamation, a coté
de remarques justes, on s’apercoit qu’il interpréte, a tort, cer-
taines remarques de Borel de la facon qui lui est la plus défa-
vorable (a lui, Lebesgue), et c’est ce qui lul permet, en partant
de la, d’en établir le mal-fondé. Cette attaque excessive a été
trés pénible & Borel, qui rappelle en quels termes admiratifs
il a célébré les travaux de Lebesgue.

En résumé, la priorité de Lebesgue dans la définition de
Iintégrale est incontestable. Mais, d’une part, elle utilise de facon
essentielle la notion de mesure introduite par Borel, et, d’autre
part, elle n’enléve rien & l'intérét de la définition, entierement
différente, de Borel. Au reste, plus tard, F. Riesz et Haar,
en donnant chacun une définition différente .des .précédentes,
témoignent eux-mémes que leurs définitions, qui sont construc-
tives, ont suivi la voie tracée par Borel.

Séries dértvées.
Borel a prouvé qu’étant donnés des nombres réels arbitraires
dog, @y, ..., on peut toujours former une fonction de variable
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réelle, f (x), telle que pour z = 0, par exemple, f (z) ait des
dérivées de tous les ordres et que pour z = 0, f (x) et ses dérivées
successives aient respectivement les valeurs ao, ¢, ... . On peut
choisir en particulier ao, a;, ... de sorte que le développement
de f (z) en série de Taylor diverge plus rapidement qu’une série
entiéere donnée d’avance.

D’autre part, Borel a montré que toute fonction de variable
réelle ¢ (), admettant des dérivées de tout ordre dans un inter-
valle I donné, peut &tre mise sous la forme de la somme d’une
série de Taylor et d’une série de Fourier, ces séries et les dérivées
successives terme & terme de ces séries convergeant uniformé-
ment dans I. Et leurs sommes respectives convergent vers les
dérivées correspondantes de ¢ (x).

Ces théorémes importants ont été obtenus par Borel en faisant
usage d’une méthode ingénieuse et nouvelle pour la résolution
d’un systéme d’une infinité d’équations linéaires a une infinité
d’inconnues.

Avant lui, on avait cherché & résoudre un tel systéme en
utilisant I’analogie avec les systémes finis comportant le méme
nombre d’inconnues que d’équations. Borel, au contraire, observe
que, du moment qu’il y a une infinité d’inconnues, on peut
déterminer pour chaque équation autant d’inconnues que 1'on
veut: on aura toujours un nombre suffisant d’indéterminées
dans les équations suivantes. De plus, Borel indique comment
procéder pour ces choix successifs de valeurs des inconnues.

Interpolation.

La formule d’interpolation de Lagrange permet de déter-
miner le polynome P, (x) de degré ¢ qui est égal & une fonction
donnée f (z) pour ¢-+1 valeurs données de z. D’autre part, on
sait, d’aprés WEIERSTRASS, qu’on peut déterminer un polynome
aussl approché que 'on veut d’une-fonction continue donnée.
Il est alors naturel de se demander si le polynome P, (z) ne
pourrait fournir un tel polynome en 1I’égalant & f (x) pour un
grand nombre ¢ de valeurs de z.

Sans savoir que MERrAY, puis RuNce avaient déja répondu
par la négative, Borel a d’abord formé [86] « un exemple d’une
fonction pour laquelle la formule de Lagrange, loin de donner
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une approximation indéfinie, diverge lorsque ¢ augmente indé-
finiment ».

Ayant obtenu ce résultat négatif, Borel a cherché s’il ne
serait pas possible de préciser le théoréme de Weierstrass d’une
autre facon. Il y a réussi au moyen de la formule remarquable

fx) = lim Y M, ,(x) f(§>

q=>® p

ou I'on suppose 0 < z < 1, ot P est une valeur rationnelle de x
q

et ou M,  (z) est un polynéme déterminé de degré ¢ qui est

indépendant de f (). On peut d’ailleurs choisir parmi les expres-

sions possibles de M,, (x). Serge BERNSTEIN a montré qu’on

pouvalt prendre I'expression particulierement simple suivante:

M, (x) = C/xP(1-x)1"7.

FoNcTIONS COMPLEXES DE VARIABLES COMPLEXES

Séries de Taylor

Borel a établi ce résultat inattendu qu’il pouvait y avoir une
influence de la nature arithmétique des coefficients d’une série
de Taylor sur la nature analytique de sa somme. En effet, en
utilisant une propriété des déterminants obtenue par M. Hapa-
MARD, Borel a pu prouver qu'une série de Taylor a coefficients
entiers ne peut représenter une fonction méromorphe que si
celle-ci est une fraction rationnelle 1).

Borel a pu aussi compléter et étendre le théoréme célébre
de M. Hadamard, d’apreslequel:si ¢ (z) =2 a,2", ¥ (2) =2 b, 3",
f(z) =2a,b,z" et sia, p sont deux points singuliers respectifs
de ¢ (z) et de ¥ (z), « B est un point singulier de f (z). Par exemple,
d’aprés Borel: si ¢ (z) et ¥ (z) sont des fonctions uniformes &
singularités ponctuelles, il en est de méme de f (z); en particulier,
si f(z) et ¥ (z) sont méromorphes, il en est de méme de f(z).

1) Dans sa Notice (146), Borel a oublié de mentionner ce cas d’exception, qu’il avait
pourtant signalé dans son mémoire original [11].
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Dans une autre direction, Borel a démontré qu’en général
le cercle de convergence d’une série de Taylor est une coupure
de la fonction représentée par cette série. Ici, en général, peut
signifier: si les coefficients de la série sont des nombres aléatoires
indépendants.

Fonctions entiéres

Une fonction entiére étant une fonction analytique sans
point singulier, WEIERSTRASS avait démontré qu’elle peut se
mettre sous la forme:

ou ay, a, ... sont les zéros de la fonction F (z) considérée, ou

u u2 uk

e e N
P(u) = (1l—we ° ¢

2

dans lequel & est le plus petit nombre entier tel que la série

Zi—a——ll?ﬂ avec |ay| <lay| < ...

soit convergente et ou G (z) est une fonction entiere.

Dans le cas ou 1l n’existe pas de nombre £ et dans celui ou,
k existant, G (z) n’est pas un polynome, LAGUERRE dit que la
fonetion F (z) est de genre infini. Dans le cas contraire, LAGUERRE
appelle genre de F (z), le plus grand des deux nombres k et g,
g étant le degré de G (z). C’est le grand mérite de LAGUERRE
d’avoir vu que les propriétés de £ (z) dépendent de son genre
plus que de k ou de ¢ séparément.

Les résultats de LAGUERRE ont été rendus plus précis par
Borel au moyen de son introduction de «ordre » réel de F (z).

Il appelle ainsi le nombre p tel que, si 'on pose r, = | a, |, la
série:
1

soit convergente pour « > p et divergente pour « << p (elle peut
¢tre convergente ou divergente pour o = p). On voit qu’alors:

L’Enseignement mathém., t. XI, fasc. 1. 5
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k<<p<k+l.

Le renseignement donné par p étant plus précis que celui
donné par & (qui pour p non entier n’en est que sa partie entiére),
on cong¢oit que la connaissance de p ait permis & Borel d’obtenir
des propriétés plus précises que pour ses prédécesseurs.

(’est un nouvel exemple d’une notion introduite par Borel
qui lui permet d’obtenir des résultats nouveaux et d’ouvrir une
nouvelle voie & ses émules et & ses successeurs.

Ainst H. Poincarg avait prouvé que si la fonction entiere
F (z) est de genre p, on a

|F(z)]| < et
ou r = |z|, quel que soit le nombre positif «, pour r assez
grand. Borel démontre que si F (z) est d’ordre réel p, on a:

+ &

|F(z)] <e”
quel que soit ¢ > 0, pour |z | assez grand.

La série ¥ — peut étre convergente ou divergente; quand elle

Ty

est convergente, Borel montre qu'on a méme
P
|F(z)] < e

quel que soit « > 0, pour r assez grand.

H. PoincARE avait aussi limité supérieurement les modules
des coefficients A,, de la méme série de Taylor qui représente
une fonction entiére. Borel a exprimé ce résultat sous la forme
sulvante:

Si F (z) =X A, 27 est une fonction entiére de genre p,

1
PR : 1
A, (q)) tend vers zéro avec .

Soient M (r) le module maximum de F (z) pour |z|=r
et m (r) le module maximum des termes A, z* de la série de
Taylor de F (z) pour |z | =r. Borel démontre que:
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log M (r)

- log m(r) )

tend vers 1 lorsque r croit indéfiniment en restant en dehors
d’une suite d’intervalles tels que la longueur totale de ceux qui
sont compris entre R et k R soit infiniment petite par rapport
a R. (Plus tard G. Variron a démontré que si £ (z) est d’ordre
fini, le rapport (1) tend vers 1 quand r — oo de fagon quel-
conque).

M. HapaMARD avait prouvé les réciproques des deux résultats
de H. Poincaré; Borel a ensuite précisé aussi ces réciproques
au moyen de son introduction de I'ordre.

Emile Picarp avait démontré que si, pour une fonction
entiére F (z), il existe deux valeurs exceptionnelles: @ # b, qui
ne sont jamais prises par [ (z), £ (z) est une constante. La
démonstration faisait usage des « fonctions modulaires ». Pen-
dant plus de quinze ans, les mathématiciens avaient cherché
en vain & simplifier la démonstration de Picard. Borel a réussi
a démontrer cette importante propriété sans faire usage de ces
fonctions modulaires.

Emile PrcArp avait méme démontré un théoréme plus géné-
ral: §’il existe deux nombres distincts, a, b, tels que la fonction
entiere F (z) ne soit égale & chacun d’eux que pour un nombre
fini de valeurs distinctes de z, /' (z) est un polynéme. Borel a
démontré un théoreme un peu plus général encore: Soient P (z)
et Q (z) deux polynoémes différents. Si F (z) est une fonction
entiére de genre fini et si les équations F (z) = P (2), F (z) = Q (3)
n’ont chacune qu'un nombre limité de racines, F (z) est un poly-
nome. Le méme mode de démonstration lui permet de nom-
breuses généralisations. Par exemple, si F (z), G (z) sont des
fonctions entiéres de genre fini, alors quels que soient les poly-
nomes P (z), Q (2), R (z), 'équation P (z) F (z)+0Q (z) G (z) = R (z)
a nécessairement un nombre infini de racines, sauf le cas excep-
tionnel évident ou R (z) étant identiquement nul, ];LZ) serait

VA
une fraction rationnelle. D’aprés le second théoréme de Picard
cité ci-dessus, toute fonction entiére, F (z) non polynomiale,
prend une infinité de fois n’importe quelle valeur, sauf, peut-
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étre, une valeur exceptionnelle. Soit ¢, (r) le nombre des racines
de I’équation
F(z) =0,

dont les modules sont inférieurs & r. D’aprés un théoréme de
Picard, ¢, (r) tend vers l'infini avec r. Borel a aussi précisé ce
résultat [175, pp. 95-104].

La méthode employée par Borel pour donner une démonstra-
tion élémentaire du premier des théorémes de Picard cités ci-
dessus a été utilisée par Borel et par de nombreux auteurs
pour prolonger ces résultats dans des directions variées. C’est
en utilisant la démonstration de Borel mais en y précisant les
valeurs de certaines constantes que LanpAu a démontré un
résultat important et inattendu. A savoir que la connaissance
des deux premiers coefficients du développement en série de
Taylor d’une fonction entiére, suffit pour déterminer le rayon
d’un cercle a 'intérieur duquel la fonction prend certainement
les valeurs 0 et 1.

Borel attache beaucoup d’importance & ce qu’il appelle la
croissance réguliere.

Soit F' (z) une fonction entiére d’ordre fini et différent de zéro
et M (r) le maximum de | ' (z) | pour | z | = r. Borel a d’abord
démontré que le quotient:

log log M (r)
log r

(2)

reste compris entre deux nombres fixes quand r varie. Borel dit
alors que M (r) et I (z) sont & croissance réguliére si ce quotient
tend vers une limite quand r — oo .

Si ay, @, ... sont les zéros de F' (z), Borel dit que r, = | a, |
a un ordre d’infinitude déterminé, quand:

log n 3)

log 7,

‘tend vers une limite déterminée.
En combinant un théoréme de Poincaré et un théoréme de
‘M. Hadamard, Borel en déduit d’abord que si les deux quotients
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(2) et (3) ont chacun une limite, ces deux limites sont égales.
11 démontre ensuite que, si I'un de ces quotients a une limite,
Pautre a aussi une limite (alors égale & la premiere limite). Il
observe qu’ainsi, quand la fonction entiére F (z) est & croissance
réguliére, on peut obtenir I'expression asymptotique précise du
module de ses zéros en fonction de n. Ce résultat est d’autant
plus important que, d’aprés Borel, « toutes les fonctions entieres
rencontrées jusqu’ici en Analyse sont des fonctions & croissance
réguliére ». Cette affirmation s’est trouvée s’appliquer plus tard
aux fonctions entiéres nouvelles découvertes par Painlevé.

Ceci n’a pas empéché Borel d’indiquer des procédés varies
pour obtenir des fonctions entiéres & croissance irréguliere. Mais
il fait observer que le caractére artificiel de ces procédés ne fait
que confirmer I’assertion ci-dessus.

Fonctions monogénes

Nous arrivons maintenant & l'une des découvertes les plus
sensationnelles de Borel. Sa définition des fonctions monogenes
et les propriétés qu’elle entraine conduisent & un élargissement
considérable de la théorie des fonctions analytiques telle qu’elle
existait avant Borel.

Il explique lui-méme [146, p. 39] comment il a été conduit
a cet élargissement.

Digression. — Et c’est 1a 1'occasion, pour nous, de signaler
un trait commun aux cheminements de pensée qui ont conduit
Borel & des généralisations trés importantes dans des domaines
variés. C’est une fagon de penser trés différente de celles qui ont
conduit d’autres auteurs & d’autres généralisations.

Ces auteurs sont frappés de voir que certaines théories déve-
loppées dans des domaines différents, dans des langages diffé-
rents, offrent cependant de grandes similitudes. Ils cherchent,
et certains arrivent, a dépouiller ces théories semblables de ce
qu’elles ont de distinct et & les faire apparaitre comme des formes
particuliéres d’une théorie générale. C’est ainsi, par exemple,
qu’ont été créées I’Analyse vectorielle, la Théorie des ensembles,
celle des éléments aléatoires abstraits, etc...

Borel, lui, ne s’intéressait pas particuliérement aux généra-
lisations. Il semble méme, parfois, qu’il s’en défiait. C’est 1'étude
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attentive de problémes particuliers, ou il rencontre des sortes
de paradoxes, qui le contraint, pour ainsi dire, & modifier les
deéfinitions qui conduisent & ces paradoxes, afin d’éviter ces der-
niers. Et il découvre alors, presque malgré lui, que les définitions
auxquelles il arrive ont une portée plus générale.

Par exemple, dans la théorie de la mesure, il constatait que
I’ensemble des nombres entre 0 et 1, et celui des nombres ration-
nels compris entre 0 et 1, quoique ayant des puissances diffé-
rentes, avaient méme mesure (méme «étendue ») au sens de
Jordan. Ce résultat, qui lui paraissait paradoxal, le conduisait
a considérer ce second ensemble comme étant de mesure nulle. Et,
ce premier pas franchi, il arrivait & sa notion générale de mesure.

Il trouvait le méme genre de paradoxe, en constatant que
dans 'égalité |

1

=14+z+...4+2"4+ ...
1—2z

le premier membre gardait un sens quand z = 1, tandis que le
second n’en avait que pour |z | << 1. Il cherchait a éviter ce
paradoxe en attribuant une convergence généralisée et une
somme généralisée au second membre, pour z 7= 1. Et 1l arrivait
ainsi & sa sommation exponentielle des séries divergentes,
création d’une portée s’étendant infiniment au-delad de ce cas
particulier.

On pourrait citer d’autres exemples. Signalons au moins
celui de la théorie des fonctions monogenes.

Retour aux fonctions monogénes. — Borel dit lui-méme:
« Mes recherches sur les fonctions monogénes ont eu pour origine
I’étude approfondie d’une série signalée dans un mémoire... »
de Poincaré:

B oP Boy"
F(z)_g_ngz_pa+qb+rc (4)

P4+t

les entiers p, ¢, r prenant toutes les valeurs positives. Cette série
converge évidemment en dehors du triangle ABC dont les
sommets ont pour affixes a, b, ¢, et la somme y représente une
fonction analytique uniforme. GoursaT et PoiNCARE avaient
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montré que F (z) ne pouvait étre prolongée, au sens de WEIER-
sTRASS, 4 lintérieur du triangle quand p, ¢, r peuvent aussi
avoir des valeurs nulles (avec p+g-+r # 0).

Selon Borel, on n’apercoit d’abord aucune raison pour que,
si I'on execlut les valeurs nulles de p, ¢ et r et si la fonction
F (z) peut étre prolongée & l'intérieur du triangle 1), ses valeurs
vy aient un rapport quelconque avec la série qui définit F (z)
hors du triangle.

Il y avait évidemment une infinité de poéles de F (z) aussi
voisins que l'on veut de tout point & lintérieur du triangle.
On en avait conclu, un peu hétivement, & la divergence de la
série en tout point intérieur au triangle.

Borel montre, au contraire, que /' (z) non seulement converge
en certains points du triangle ABC, mais méme qu’il y a une
infinité de courbes traversant ABC sur lesquelles la série F (z)
converge uniformément ainsi que toutes les séries dérivées de
la série F' (z). Ainsi la somme de la série /' (z) représente sur ces
courbes une fonction continue admettant des dérivées continues
de tous les ordres. De plus, soit v un petit cercle intérieur a
ABC, Borel montre qu’il existe au moins un point M intérieur
a v tel qu’il existe au moins une droite de convergence de la
série ' (z) dans tout angle de sommet M. Puisque la dérivée de
F (z) sur chacune de ces droites est égale a la somme de la série
dérivée de [ (z), cette dérivée de la fonction F (z) est indépen-
dante de la droite de convergence considérée. La fonction sera
donc dite monogene au sens de Cauchy. L’intégrale de cette
fonction sur un contour intérieur a ABC, sur lequel la série
F (z) converge uniformément, sera égale, selon Borel, au pro-
duit par 2 nz de la somme des résidus des pdles intérieurs & ce
contour. On obtient ainsi une généralisation d’un des théorémes
les plus importants de Cauchy, pour cette fonction F (z).

Ayant obtenu ces résultats sur la fonection de Poincaré (4),
Borel retient des définitions qui leur ont donné naissance, tout
ce qui peut s’exprimer pour une fonction f (z), qu’elle soit repré-
sentable ou non sous la forme particuliére (4). Il arrive ainsi
a sa conception générale de fonction monogéne.

1) C’est-a-dire si la série n’a aucun pole formel sur les cotés du triangle ABC.
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I1 considére certaines suites d’ensembles parfaits C;, C,, ...,
chacun intérieur au suivant et leur réunion C. Il considére une
certaine classe (C) de tels ensembles C (ainsi nommés en 1’hon-
neur de Cauchy). Une fonction f (z) sera dite monogéne sur C si:

1. Elle est continue (et donc uniformément continue) sur
chacun des ensembles parfaits C,;
2. Elle admet en tout point z, de C une dérivée unique au
sens suwwant. z, appartient a une infinité des C,; soit 2’ un point

(2) = f(20)

de I'un de ces C,. On suppose que aune limite quand z’

. z _Zo .
tend vers z sur un de ces C,,. Si cette limite existe pour tous les C,
auxquels appartient z,, elle sera indépendante de p puisque C,

appartient & C,,,. Cest cette limite qu’on appellera la dérivée
de f (z) sur C.

La nouveauté apportée par Borel, c’est que la famille de ses
ensembles C est plus vaste que la famille des ensembles W sur
chacun desquels on peut prolonger une fonction analytique et
elle contient la famille des W. Ceci étant, toute fonction analy-
tique au sens de WEIERSTRASS est aussi une fonction monogéne
sur le méme ensemble, mais I'inverse n’a pas lieu.

(Pour arriver plus vite aux conséquences, nous reporterons
plus loin la définition des ensembles C' et C, qui est assez com-
pliquée.) '

Borel montre qu’en généralisant la notion de fonction analy-
tique, les fonctions monogenes conservent d’importantes pro-
priétés des fonctions analytiques, soit littéralement, soit sous
une forme un peu plus compliquée.

Par exemple, I’existence de la dérivée premiére (définie
comme plus haut) entraine, pour une fonction monogéne,
Pexistence des dérivées de tous les ordres; par exemple, encore:
deux fonctions monogeénes qui sont égales sur un arc de courbe
appartenant a leur domaine commun d’existence, soit A, sont
égales sur tout A [S., p. 42]. Tl en est de méme si, en un point
de C, les deux fonctions et toutes leurs dérivées sont respective-
ment égales, ¢’est-a-dire correspondent & la méme série de Taylor.

Revenons, pour mieux les caractériser, aux ensembles C.
Les ensembles W, sur lesquels WEIERSTRASs définissait une
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fonction analytique, étaient des domaines ouverts (c’est-a-dire
des ensembles d’un seul tenant et formés de points tous inté-
rieurs & 'ensemble W considéré). Nous avons déja dit que Borel
définit ses fonctions monogénes sur certains ensembles C plus
généraux que les W. Précisons que les (', (dont la réunion
constitue C) peuvent étre non denses quel que soit p et que I'en-
semble complémentaire de C, est formé de régions disjointes,
en nombre fini ou non, mais dont les frontiéres, y,, ont une
longueur totale finie L,. \

Soit I', 'ensemble des points x de C ou l'intégrale:

|dz |
le_x la+1

’p
est finie pour tout « > 0.Soit f(z), une fonction bornée sur
chaque (', et qui posséde une dérivée finie et continue relative-
ment a I',.
Borel montre que f (z) sera donnée dans I',, par
1 f(z)dz
f(x) = —

2in zZ—X
‘ ’p
et obtient ainsiune généralisation de la formule célébre de Cauchy.
Aprés que Borel eut créé et étudié la théorie des fonctions
monogenes, d’éminents mathématiciens comme CARLEMAN,
DEnjoY, MANDELBROJT, ..., ont approfondiet prolongé sa théorie.
Prolongements. — Borel avait démontré [57] qu’on peut

1
développer n en série de polynomes:

—Z

=Y a0
convergeant absolument en dehors de la demi-droite ou z est
réel et > 1. (’était un premier exemple de série de polynomes
permettant de sortir du cercle de convergence d'une série de
Taylor (ici Xz").

Borel généralise le résultat précédent. I1 montre qu’il est
possible de substituer a une série de Taylor ayant un rayon de
convergence fini, une série de polynémes ayant pour coefficients
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des combinaisons linéaires des coefficients de la série de Taylor
et qui peut converger non seulement a Pintérieur du cercle de
convergence de la série de Taylor mais méme au-dela.

Borel a aussi découvert un autre moyen de sortir du cercle
de convergence d’une série de Taylor. C’est en vue de ce moyen,
qu’ll avait créé la « sommation exponentielle absolue », définie
plus haut (p. 51). Celle-ci lui permet d’assigner une somme
généralisée a la série de Taylor, qui coincide avec la somme
ordinaire & l'intérieur du cercle de convergence mais qui existe
encore jusqu’a une certaine distance de ce cercle sur tout rayon
prolongée au-delad d’un point non singulier sur la circonférence
du cercle. Plus précisément, la somme généralisée existe & I'inté-
rieur du «polygone de sommabilité» de la série. Ce polygone
s’obtient en menant une tangente au cercle en tout point singu-
lier. (Ce polygone peut s’étendre dans certaines directions jusqu’a
Pinfini. Par exemple, pour la série Xz", le polygone de sommabilité
sera évidemment le demi-plan contenant le cercle |z | <1
et limité par la tangente au cercle au point z = 1).

Ce résultat important dépasse ceux de WEIERsTRAss. Car
Borel a formé des fonctions pour lesquelles il existe des régions
ou le prolongement a son sens, de la série de Taylor correspon-
dante, est possible alors qu’il ne I'est pas par la méthode de
Weierstrass du prolongement analytique.

EQUATIONS DIFFERENTIELLES ET AUX DERIVEES PARTIELLES

Borel a étudié les relations entre une équation différentielle
linéaire:

Lyl =LEx)yP+P®y" P+ . +T®y+UXy =0
et son équation adjointe:

My] = (L)@ —P) @ 1+ .. +(=1)" Uz = 0.

On savait déja, depuis LAGRANGE, que, par une suite d’inté-
gration par parties, on arrive a la relation:

Jz & [yldx—fyd[z]dx = A(x, p, ¥, ... y"" 1z, 2/, ... 2071

ou A dépend linéairement de y, y’, ... y" " Detde z,z', ... 271,



D’ou il résultait que, si 'on connait une solution z de I’équa-
tion adjointe, I'intégration de I’équation donnée est ramenée a
celle d’'une équation différentielle linéaire en y d’ordre n — 1.
Borel exprime géométriquement [S., p. 213] les relations entre
une équation et son adjointe. On peut faire correspondre &
% [y] = 0 une courbe de P'espace a n—1 dimensions en regar-
dant n intégrales distinctes de I’équation comme les coordonnées
homogénes d’un point de la courbe dépendant du parametre x.
On pourra, de méme, faire correspondre a ’équation adjointe,
une autre courbe. Il résulte des relations établies par DarBOUX
entre les solutions d’une équation et de son adjointe que les
courbes qui leur sont attachées se correspondent dualistiquement.
Borel observe qu’on pourrait prendre cette propriété géométrique
comme définition de I’équation adjointe et que cette définition
mettrait en évidence le fait que la relation entre les deux équa-
tions est réciproque. Mais il ajoute qu’il serait nécessaire de
préciser un peu cette définition; d’abord les points correspon-
dants des deux courbes devraient correspondre a la méme valeur
de z. Il faudrait ensuite multiplier les premiers membres des
équations qui correspondent aux courbes pour que ces équations
deviennent adjointes 'une de D'autre.

Borel cherche ensuite a quelle condition une équation est
équivalente a son adjointe (cas ou le recours aux solutions de
'adjointe pour intégrer 1’équation donnée devient inopérant).
Cette question a été d’abord étudiée par DARBOUX, qui a montré
quentre n intégrales distinctes y; (), ... y, (z), il doit exister,
alors, une relation quadratique:

¢ly] = Z;,(aik Yi() yp(x) =0

Darsoux avait montré que cette relation subsiste quand on y
remplace les y; () par leurs dérivées jusqu’a un certain ordre:

€ly] =0, €¢l[y'] =0, ..

Les considérations géométriques par lesquelles Borel retrouve
ce résultat, lui permettent, en outre, d’en démontrer la réciproque
et surtout de la généraliser. Il observe d’abord que si 223 fonc-
tions et leurs dérivées jusqu’a Pordre n inclusivement, vérifient
une méme relation quadratique homogéne & coefficients cons-
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tants, ce sont les solutions d’une équation d’ordre 2n-3 équi-
valente a son adjointe. Puis il généralise ce résultat, toujours
par ses méthodes géométriques.

Revenant ensuite au probleme posé, Borel montre que, dans
le cas ou % n'est pas identiquement nulle (et ou par suite les
équations cherchées doivent étre d’ordre impair), la recherche
des équations identiques & leur adjointe se ramene a celle des
lignes asymptotiques de la surface du second degré:

Y agx;x, = 0.
ik

I1 montre alors géométriquement comment les solutions de
Iéquation £ [y] = 0 s’expriment complétement sans signe de
quadrature. Il passe alors au cas des équations % [y] = 0 d’ordre
pair et montre qu’on peut suivre une méthode géométrique ana-
logue & celle suivie pour le cas de I’ordre impair en faisant jouer
aun complexe «linéaire » le role que jouait la quadrique € (y) =
Cependant on n’arrive pas a la détermination sans intégration
des courbes cherchées. La méthode permet cependant d’obtenir
tout au moins pour le sixieme ordre, des expressions renfermant
un seul signe de quadrature et relativement assez simples.

Borel a porté aussi son attention sur le mode de croissance
des solutions des équations différentielles. Il a obtenu, par
exemple, ce résultat d’une précision inattendue dans des cir-
constances si générales: Soit une équation différentielle dont on
suppose seulement qu’elle est du premier ordre, qu’elle est algé-
brique en z, y, ¥’ et que I'intégrale considérée, y, ne devient
infinie pour aucune valeur finie de x: on peut des lors affirmer
que y croit moins vite que e

L’invention de la sommabilité a permis & Borel d’obtenir
un théoréme remarquable qui a été depuis souvent utilisé par
divers auteurs pour déterminer exactement certaines solutions
irrégulieres de certaines équations différentielles. Cest le théo-
réme suivant: si une série absolument sommable vérifie formelle-
ment une équation différentielle, la somme généralisée de la
série est une intégrale de ’équation.

CAaucHY a montré que l'intégrale générale d’un systéme
d’équations aux dérivées partielles dépend de certaines fonc-
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tions arbitraires dépendant de certaines variables. Borel a pré-
cisé énormément ce résultat, dans le cas d’une seule équation,
en montrant que I'intégrale générale peut s’exprimer comme une
fonction déterminée d’une seule fonction arbitraire dépendant
d’une seule variable. |

On savait depuis longtemps que la nature analytique d’une
fonction dépendant d’un parametre peut dépendre considérable-
ment de la nature arithmétique de ce parametre. Tel est le cas
de la fonction de z, z° dont la nature change selon que le para-
meétre, a, est entier, fractionnaire ou irrationnel. Mais la fonc-
tion z° reste analytique.

Borel a étendu considérablement la portée de cette observa-
tion. Il a donné un exemple d’une équation aux dérivées par-
tielles tres simples:

> % *%E

axz —064 ayz - ‘/I(xay)

ou une intégrale périodique, généralement analytique, cesse de
Iétre pour certaines valeurs du paramétre «. On a ainsi un
exemple d’une fonction continue de deux variables réelles dont
toutes les dérivées sont continues, mais qui n’est analytique en
aucun point (z, y). Cet exemple est d’autant plus frappant qu’il
ne s’agit pas ici d’un cas pathologique mais d’un probléme fort
simple ou toutes les données sont supposées analytiques.

GEOMETRIE

Rappelons d’abord que la définition et 'étude des propriétés
de la mesure et de la raréfaction par Borel, si elles sont d’une
importance extréme en analyse, relévent cependant de la
géométrie.

De méme, Borel a étudié 1’équation adjointe dont il a été
question plus haut (p. 75) par des méthodes géométriques. Il y a
en particulier obtenu d’importantes propositions concernant les
«plans générateurs » des quadriques dans les espaces & n dimen-
sions (qui jouent le méme role que les génératrices des quadriques
classiques).
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Mais le travail le plus important réalisé par Borel en géomé-
trie est celui qui a fait I’objet d’une question mise au concours
par ’Académie des Sciences et dont Borel a obtenu le prix
correspondant.

I1 s’agit de I’étude des déplacements & trajectoires sphériques.
Avant Borel, des solutions particuliéres avaient été données.
Sans avoir obtenu la solution la plus générale, Borel a pu établir
une classification qui lui a permis, non seulement de retrouver
les solutions connues, mais d’obtenir de nombreuses solutions
nouvelles et de préparer des recherches complémentaires. Pour
arriver a cette classification, Borel observe que la condition
imposée aux déplacements envisagés se traduit par une équation
de la forme:

17

ZEiTi =0
i=1

ou chacun des 17 termes FE; est une « fonction de l'espace » et
chacun des 17 termes 7'; est une fonction du temps. Pour en
obtenir la solution, on est ramené & un probleme d’algébre
classique, qu’on résout en établissant & relations linéaires entre
les E;, d’ou résultent 17 — k relations linéaires entre les T;.
La discussion montre qu’on arrive a une classification ou les
solutions correspondent aux différents modes d’intersection d’un
certain nombre de quadriques.

Parmi les conséquences les plus frappantes, citons ces
deux-ci:

I. 11 existe un mouvement ou tous les points d’une cubique
plane rigide décrivent des courbes sphériques, huit points situés
hors du plan de la cubique décrivant aussi des courbes sphé-
riques.

I1. Etant donnés deux triangles rigides non semblables situés
dans deux plans paralléles, on peut relier leurs sommets par
des barres rigides et déplacer 'un des triangles de sorte que son
plan reste paralléle au plan de l'autre triangle. Dans ce mouve-
ment un quatriéme point fixe dans le premier plan, reste a
une distance invariable d’un quatriéme point fixe dans 'autre
plan.
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LES TRAVAUX DE MATHEMATIQUES APPLIQUEES

Nous avons expliqué plus haut, p. 17, que, si ¢’est aprés la
premiére guerre mondiale que Borel s’est particuliérement
occupé des mathématiques appliquées, il s’y était intéressé déja
auparavant en raison de leur connexion avec certains de ses
travaux de mathématiques pures.

Parmi les mathématiques appliquées, Borel a consacré surtout
son attention et ses recherches au calcul des probabilités et a la
physique mathématique.

I. Calcul des probabilités

La encore, Borel a été un initiateur en introduisant implicite-

ment la conception de convergence presque certaine, liée & une
généralisation remarquable du théoréme de Bernoulli et en
créant la théorie des jeux psychologiques.
Remarques. — L’idée a été émise que les idées les plus originales
de Borel ont été publiées avant la premiére guerre et concernent
toutes I’Analyse. Nous croyons que les deux sujets que nous
venons de mentionner sont d’une originalité aussi grande et ont
chacun donné lieu aussi a d’innombrables publications posté-
rieures, par ses contemporains et successeurs.

En sortant du calcul des probabilités, les quatre définitions
(non équivalentes) mentionnées plus haut, p. 58, de lararéfaction
d’un ensemble de mesure nulle, étaient tout & fait inattendues et
n’ont pourtant été développées par Borel qu’aprés la seconde
guerre mondiale.

Probabilités dénombrables.

I. Avant Borel, on avait étudié, comme lui, le cas d’une
infinité dénombrable d’épreuves. Mais on s’était limité aux pro-
priétés asymptotiques d’une probabilité dépendant d’un nombre
fini croissant d’épreuves. Avec Borel s’ouvre un domaine tout
nouveau dans le calcul des probabilités: celui des probabilités
«dénombrables ». Et Borel réussit & trouver les valeurs exactes
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des probabilités d’événements dont la réalisation dépend d’une
infinité d’épreuves.

Il commence par démontrer un théoréme fondamental et
assez nattendu [S., p. 163].

Soient E, E,, ... E, ... une suite d’événements indépendants
et py, Pgy .-+ Dy, ... leurs probabilités respectives. La probabilité
pour qu’'une infinité de ces événements se réalisent est égale & 0
si la série Xp, est convergente et 1 si elle est divergente.

En appelant A4, la probabilité pour que k des événements E,
se produisent, Borel a complété son théoreme en montrant que
si Xp, est convergente, les A, ne sont pas nulles (au contraire
de A,); st Xp, est divergente, les A, sont nulles (alors que
A, =1).

Enfin, dans un mémoire ultérieur, [S. p. 302], Borel a étendu
son théoréme au cas ou les £; ne sont pas indépendants, moyen-
nant certaines restrictions sur le sens a attribuer aux cas de
convergence et de divergence.

Dans le méme mémoire, Borel réalise un progres encore plus
grand. Mais, suivant une caractéristique de son esprit que nous
avons signalée plus haut, ce progrés est réalisé dans des cas
particuliers et il laisse au lecteur ou a ses successeurs le soin d’en
comprendre et d’en formuler la portée générale. Il s’agit, d’'une
part, d’un théoreme apportant une précision nouvelle et tres
importante au théoréme de Bernoulli et, d’autre part, de la con-
ception d’une nouvelle sorte de convergence: la convergence
presque certaine (dite aussi presque stre).

Borel ne considére explicitement que le cas ou l'on étudie la
fréquence @, ¥ d’un chiffre déterminé dans les n premiers chiffres
d’un nombre N pris au hasard (en supposant que la probabilité
de Vapparition d’un chiffre déterminé est indépendante de ce

1
chiffre et par suite, égale a E). Quand n croit, la convergence de

1

¢, Vvers 10 est un événement fortuit, Borel démontre que la pro-

babilité de cet événement est égale a I'unité. Mais le raisonne-

.y ) r .
1) La fréquence d’un événement dans n épreuves est le rapport 7—: ol rn est le
nombre de répétitions de I’événement dans les n épreuves.
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ment de Borel est général et permet d’énoncer explicitement le
résultat suivant:

Soient f, la fréquence de n épreuves indépendantes d’un
événement E de probabilité constante p. Alors la probabilité
que f, tende vers p est égale a I'unité.

On voit immédiatement qu'on a la un énoncé & la fois plus
frappant et plus précis que celui du théoréme de Bernoulli
D’aprés ce dernier, il est trés probable que | f, — p | soit petit
quand n est grand, mais il n’en résulte pas que f, tende vers p.
Au contraire, si 'on admet le théoréme de Borel, le théoreme
de Bernoulli en résulte, ¢’est-a-dire que si ¢ est un nombre positif
arbitraire, la probabilité pour que | f,—p | < & tend vers 'unité
quand n— oco. Le théoreme de Bernoulli est donc une simple
conséquence d’un théoréme plus général, celui de Borel et une
conséquence moins simple & saisir — et pour cette raison, souvent
mal interprétée — du théoréme de Borel.

On n’a malheureusement pas encore pris I’habitude de con-
sidérer le théoréme de Borel sous cet aspect. Avant Borel,
le théoréme de Bernoulli était un théoréme fondamental.
Apres Borel, c’est le théoréme de Borel qui doit lui étre
substitué.

La démonstration de Borel est analytique, mais il avait
indiqué qu’on pourrait donner aussi une démonstration géomé-
trique de son théoreme. Cette démonstration géométrique a été
explicitement obtenue, plus tard, par F. Hausdorff.

La démonstration analytique de Borel est assez compliquée.
Une démonstration a la fois plus simple et d’une portée plus
générale a été donnée plus tard par Cantelli. Mais on doit noter
que la démonstration de Borel a I’avantage de se préter mieux
a une étude plus précise du comportement de la fréquence.

Nous avons aussi signalé plus haut une autre caractéristique
du théoréme de Borel: c¢’est qu’il introduit (encore une fois
implicitement) une espéce nouvelle de convergence: «la con-
vergence presque certaine ».

Généralisant la circonstance qui se présente dans le théoréme
de Borel, on est partout convenu maintenant de dire quun
nombre aléatoire X, converge presque certainement vers un
nombre aléatoire X quand la convergence de X, X,, ... X

n o

L’Enseignement mathém., t. XI, fasc. 1. 6
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vers X est un événement presque certain, ¢’est-a-dire dont la
probabilité est égale & 'unité.

On peut dire que par la précision donnée au théoréme de
Bernoulli et par 'introduction de la convergence presque certaine,
Borel s’est placé au premier rang des successeurs de Laplace
et de Poincaré.

II. Poursuivant son étude des « probabilités dénombrables »,
Borel considere [S., p. 131] les lois de probabilité des quotients
incomplets, A,, de la fraction continue

1

X =
1

A +—
YA, +

représentant un nombre incommensurable X compris entre 0
et 1 et dont la loi de probabilité est uniforme.

En appelant ¢ (n) une fonction positive croissante de n,
Borel trouve que:

I sila série X —(—) est convergente, la probabilité pour que
o (n
I’on ait
A, <o)

a partir d’'un certain rang est égale & un;
IT si1 cette série est divergente, i1l y a une probabilité égale &
un pour que l'on ait
A, > ¢ (n)

a partir d’un certain rang.
En d’autres termes, il est infiniment probable que la croissance
asymptotique de A, est comprise entre celle de toute fonction

¢ (n) telle que la série 2 soit convergente et celle de toute

¢ (n)
fonction ¢ (n) telle que cette série soit divergente.

Dans le méme mémoire, Borel exprime une opinion qu’il a
souvent répétée, a savoir qu'une « probabilité nulle ou extréme-
ment petite doit étre considérée comme équivalent & I'impos-
sibilité ». C’est une opinion qui avait déja été formulée, longtemps
auparavant, par Buffon, puis par Cournot. Buffon et Borel ont
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méme chiffré, chacun de leur ¢oté, ce qu’ils appellent «extréme-
ment petite». Borel en a donné une image concréte tres frap-
pante, le « miracle des singes dactylographes ». Peut-on concevoir
que si un million de singes travaillaient dix heures par jour sur
un million de machines a écrire et si leur production était
successivement reliée en volumes, I’ensemble des volumes
obtenus au bout d’un an se trouverait renfermer la copie exacte
des livres de toute nature et de toutes les langues conservés dans
les plus riches bibliothéques du monde? Il n’est douteux pour
personne qu'un tel événement doit étre considéré comme im-
possible, bien que sa probabilité si elle est extraordinairement
petite, ne soit pas rigoureusement nulle.

Théorie des jeux stratégiques.

Sortant de la théorie pure pour aller vers les applications
(du calcul des probabilités), Borel s’est encore ici montré un
novateur dont les idées et les résultats ont donné lieu & un
nombre énorme de travaux. ‘

Jusqu’a lui — sauf dans des problémes trés particuliers dont
aucune géneralisation n’était entreprise — l’étude des jeux de
hasard en calcul des probabilités s’était bornée aux cas ou
chacun des événements considérés avait une probabilité déter-
minée: jeu de pile ou face, jeu de dés, etc. L’intelligence, le
caractere des joueurs n'y avaient aucune part. Il n’en est pour-
tant rien dans la plupart des jeux en usage: jeu de dames, jeu
d’échecs, jeu de bridge, etc. ... On doit alors admirer avant tout
que Borel ait eu ’audace de vouloir établir une théorie générale
des Jeux psychologiques et de concevoir la possibilité d’y par-
venir en appliquant le calcul des probabilités & des hypothéses
convenablement choisies. Il a choisi, & cet effet, des hypothéses
plausibles, et a pu déterminer dans des cas particuliers les con-
séquences de ces hypotheéses. Ce n’est pas tout; il a apercu, dés
sa premiére publication sur ce sujet, que le probléme posé par
lur avait des applications dans des domaines variés: économie.
politique, stratégie, psychologie, etc. ...

Pour éclairer ce qui précede, il nous faut, maintenant, pré-
ciser les hypotheses de Borel. Contrairement & certains esprits,
nous ne pensons pas que ces hypothéses soient inéluctables et.




d’ailleurs elles ont été discutées. Mais ce sont des hypothéses qui,
d’une part, sont plausibles et qui, d’autre part, se prétent & un
traitement mathématique du probléme, deux qualités qui sont
tres loin d’étre toujours conciliables. L’un des principaux
mérites de Borel est d’avoir montré qu'un tel choix d’hypothéses
est possible, méme si ’on n’admet pas qu’il soit nécessairement
le seul ni Ie meilleur possible.

Les hypothéses de Borel.

A chaque coup a jouer, un joueur se trouve dans une circons-
tance déterminée dont certains éléments lui sont connus; par
exemple, au jeu de cartes, I’ensemble des cartes qu’il a dans Ja
main et la suite des coups précédents. Sur la base de ces données
et sur I'hypothése qu’il fait sur la psychologie des autres joueurs,
il décide son coup. Borel élimine cette hypothése 1 et considére
I’ensemble des données et du choix du joueur. Il y a, dans la
plupart des jeux, un nombre fini, quoique trés grand, de tels
ensembles. Au cours d’un jeu, un joueur adopte successivement
un nombre fini de tels ensembles et caractérise ainsi sa « méthode
de jeu». Il y a un nombre fini de méthodes de jeu possibles:
C,, C,, ...C, et chaque joueur adopte nécessairement 1’une
d’elles a chaque coup. Mais il y a au début du jeu (par exemple,
quand on distribue les cartes) ou au cours du jeu, une intervention
du hasard. Si donc, en considérant le cas de deux joueurs, A et
B, le joueur A adopte la méthode de jeu C; et le joueur B la
méthode C,, c’est le calcul des probabilités qui permettra de
calculer la probabilité =, pour que A gagne finalement. On a
alors & chercher d’abord s’1l existe une méthode de jeu C; pour A,
telle que =, soit positif quel que soit & (c’est-a-dire quelle que
soit la méthode C, adoptée par B). Alors A aurait intérét a
adopter la méthode C; (ou I'une des méthodes C; pour lesquelles
7, est positif quel que soit k).

Borel se place dans le cas ou une telle méthode de jeu n’existe
pas et il se demande §’il n’est pas possible de jouer d’une maniére
avantageuse en variant son jeu. « Sil’on veut formuler une regle
précise pour varier le jeu, cette regle ne faisant intervenir que

1) Voir page suivante, la citation ou Borel énonce cette élimination, qui évidem-
ment, éloigne un peu la théorie de la réalité.
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les faits observés et non pas des remarques psychologiques sur
le joueur auquel on est opposé, cette régle équivaut forcément
a un énoncé tel que le suivant: la probabilité pour que, en un
moment donné du jeu, A adopte, pour fixer sa conduite a ce
moment, le code C; est p;; la probabilité analogue pour B pourra
étre désignée par g, et, en désignant par n le nombre de codes
qui subsistent, on a

2 b= 1, > 4 =1" (D
i=1 k=1
La probabilité de gain de A est donc

P = Z Z Tix Pidr -

i=l k=1

Borel se place alors, pour simplifier, dans ce qu’il appelle le cas
symétrique, caractérisé par l'égalité n;; = %, c’est-a-dire que
si les deux joueurs adoptent la meéme méthode de jeu, leurs
chances de gagner sont égales. Il observe que dans la plupart
des jeux de cartes ou 'un des joueurs joue le premier, ces deux
chances ne sont pas égales, mais qu’elles le deviennent si le jeu
consiste en deux parties ou 'un des joueurs commencera le jeu
dans la premiere et ’autre dans la seconde. Comme on a évidem-
ment

Ty + 7y = 1

ou

1 1
g = 5+ Oy, Ty = 5 T 0

2

avec a; + o; = 0, on aura

n i—1

avec o = Y, Zajk(PiQk"kaIi)-
i=1 k=1

Tout ce qui préceéde figure dans la premiere Note de Borel.
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Dans cette méme Note, Borel prouve que, dans le cas ou
n = 3, «1l est facile de trouver des nombres positifs p, po, P
vérifiant (1) et tels que « soit nul et donec P = % quels que soient
les nombres ¢4, ¢, ¢3. 11 est donc possible d’adopter une maniére
de jouer permettant de lutter avec des chances égales contre
tout joueur ».

Dans sa derniére Note sur les jeux, Borel procéde autrement
mais ramene au méme probléme mathématique. Au lieu de partir
de la probabilité pour le joueur A de gagner, il part du gain
moyen de A, soit g; quand A adopte le code C; et B le code (.
La symétrie du jeu entraine

gix + 9 = 0.

Quand les codes C; et ) ne sont adoptés par A et B qu’avec les
probabilités p; et ¢, le gain moyen de A sera

G = Zgikpiqk'

Par une méthode différente de la précédente, Borel montre alors
que, pour n = 3 et n = b, on peut trouver des probabilités ¢,
telles que G soit nul quels que soient les p;.

Le probléme de démontrer qu’il n’en est pas ainsi avait été
d’abord prouvé insoluble pour n = 3 par Borel. Dans ses
Notes successives, il lui avait paru d’abord soluble pour n = 5;
puis ayant pu prouver qu’il était insoluble pour n = 5, il avait
a ce moment pensé qu’il était soluble pour n = 7. Enfin, il
termine sa derniére Note en écrivant que ce méme probléme
«insoluble pour n = 3 et n = 5 me parait également insoluble
pour n = 7. 1l serait intéressant, soit de démontrer qu’il est
insoluble en général, soit d’en donner une solution particuliere ».

I1 est clair que I'évolution de sa pensée le conduit a croire
que, quel que soit le nombre n des maniéres de jouer, on peut
choisir les probabilités g, pour B de choisir les codes €} de sorte
que, quelles que soient les probabilités p; pour A de choisir les
codes C;, la moyenne du gain total de 4 et celle du gain total
de B soient toutes deux nulles.

Toutefois, on doit constater que Borel n’a pas démontré
qu’il en était ainsi quel que soit n et qu’il n’a méme pas,
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contrairement & son habitude, exposé en détail dans un mémoire,
les Notes qui résumaient ses résultats dans les C.R.

On peut trouver explication de ces faits dans I'évolution de
ses activités. Borel, pendant une certaine période, a, en effet,
été pris de plus en plus par son activité politique (voir p. 12).
D’abord maire de sa ville natale, puis conseiller général de son
département, il a été élu député en 1924 et I'est resté jusqu’en
1936. Dans lintervalle, il a méme été quelques mois, ministre
de la Marine et nous avons méme eu ’honneur de le remplacer
comme professeur et de le dispenser ainsi de faire ses cours & la
Faculté des Sciences. De sorte qu’apres avoir posé le probléme
et Pavoir résolu dans lescas les plus simples, Borel n’a plus eu le
temps d’étudier en détail le probléme mathématique qui restait
a résoudre. | |

C’est aprés la derniére Note (de 1927) de Borel que von
Neumann en 1928, adoptant exactement les mémes hypotheéses,
a réussi & démontrer un théoréme (dit du minimum — maxi-
morum) équivalent au théoreme de Borel, dans le cas général
de n quelconque. Puis, associé avec I’économiste Morgenstern,
il en a tiré une théorie économique générale.

La théorie de von Neumann-Morgenstern a eu un retentisse-
ment considérable, tandis que les Notes de Borel restaient
ignorées. C’est pourquoi nous avons décidé de rappeler I'anté-
riorité de Borel et nous avons publié dans « Econometrica » en
1953, une excellente traduction en anglais, réalisée par M. Savage
des trois Notes les plus importantes de Borel, avec un commen-
taire. Nous avions auparavant communiqué ce commentaire a
von Neumann dont la réponse a été publiée dans le méme
numéro d’Econometrica. Tout naturellement von Neumann a
réagi vigoureusement, alléguant que rien ne pouvait étre retenu
de la théorie de Borel, avant sa propre démonstration du théo-
reme général. D’apres lui «en 1921 et ultérieurement Borel
suppose que le théoréeme est ou risque d’étre faux ». Mais si cette
assertion est rigoureusement exacte, elle doit étre complétée par
la citation de Borel faite plus haut, montrant que Borel a fini
par pencher vers Uexactitude générale du théoréme.

Von Neumann ajoutait « j’avais moi-méme élaboré mes idées
sur le sujet avant d’avoir lu ses Notes (les Notes de Borel) ».
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Mais en tout cas, il en avait lu une avant de publier son premier
Mémoire (de 1928) ou 1l cite lui-méme cette Note de Borel.

Si notre publication dans Econometrica avait révélé a beau-
coup 'antériorité de Borel, elle n’avait pas atteint tous les in-
téressés. (est pourquoi, d’accord avec M. Guitton, rédacteur
de la Revue d’Economie politique, nous avons publié, dans
cette revue en 1959, & nouveau, mais cette fois en francais, dans
le texte original, les trois Notes de Borel et notre commentaire
ainsi que la traduction du commentaire en anglais de von
Neumann.

Dans les innombrables publications sur les jeux psycholo-
giques et sur leurs applications & 1’Econométrie, il ne sera plus
admissible d’ignorer l’antériorité de Borel.

Malheureusement, tel n’est pas encore le cas. En 1959, dans
une Notice, d’ailleurs tres intéressante sur le grand mathématicien
que fut von Neumann, I’auteur commence ainsi:

« Theory of games.

The essential ingredients of von Neumann’s theory of games are
already to be found in his 1928 paper . ..

The first application of game theory to an economic problem
was given in a 1937 paper ».

Et sur ces deux sujets, le nom de Borel n’est méme pas
mentionné. Or:

10 le premier mémoire de von Neumann sur la théorie des
jeux a été publié aprés la derniere Note de Borel sur le méme
sujet, et en connaissance de la théorie de Borel, qu’il cite. Les
hypotheses & la base de la théorie de von Neumann sont en outre
identiques a celles de Borel.

20 Borel, et non von Neumann, a été le premier & signaler
que la théorie des jeux est applicable, non seulement & I’Econo-
mie politique, mais aussi a I’art militaire, & la psychologie, ete.

Ceci dit, 1l faut reconnaitre que von Neumann et Morgenstern
ont tres bien développé 'application de la théorie des jeux a
I’Economie politique.
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I1. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la premiére guerre, — activités qui 'ont amené a étudier des
problémes concrets — ont conduit Borel & s’intéresser de plus en
plus & la Physique. Mais cet intérét s’était déja manifesté aupar-
avant et pour des raisons toutes différentes.

Dés 1906, Borel s’occupe de la théorie cinétique des gaz et de
la loi de Maxwell correspondante, aprés avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour
y apporter la rigueur [96], il prépare le lecteur en étudiant d’abord
la répartition des petites planetes et montrant la nécessité de
donner un sens aux positions antérieures du probléme. Dans le
cas des gaz, la discussion est un peu plus compliquée, mais elle
Pameéne encore a rejeter les formes du probléme antérieurement
admises et a leur substituer un probléme qui, aprés une réduc
tion que nous allons expliquer, prend la forme G énoncée
plus loin.

On part d’hypothéses précises sur les molécules du gaz, qui
conduisent & ramener I’étude du gaz a celui du mouvement de
n spheres égales se mouvant dans un certain domaine ou elles
peuvent se réfléchir & la suite d’un choe, soit sur les parois, soit
entre deux d’entre elles. Borel raméne le mouvement des n
centres des n spheres dans 'espace usuel & 3 dimensions au cas
du mouvement d’un point P dans un domaine D de l’espace
a 3 n dimensions, ou les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

Pénergie, la vitesse de P est constante. Soit OV le vecteur
d’origine fixe O, équipollent & cette vitesse. V se déplace sur
une sphére S. Borel énonce alors ainsi la forme finale, G, qu’il
donne au probléme.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le probleme est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dw de la surface de S

a une époque ¢t comprise entre des limites connues, que 'on fera
ensuite croitre indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est
proportionnelle & dw, c’est-a-dire que toutes les directions de
OV sont également probables (pour un temps suffisamment long).

En précisant le calcul, Borel rétrouve enfin la loi de Maxwell.
D’aprés lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini & I'infini en mathématique
et observe le parallélisme avec le probléme de savoir si la Nature
est discontinue ou continue, ce qui entraine la question de la
légitimité en Physique des théories moléculaires.

Borel note d’abord que c’est souvent « une simplification en
Mathématiques que de remplacer par 'infini un nombre fini trés
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit a constater « que le calcul des intégrales définies est
souvent plus simple que celui des formules sommatoires». Mais 1l
étudie aussi le passage inverse de I'infini au fini, qui correspond
en physique & 'introduction des théories moléculaires. 11 observe
alors que «les considérations basées sur ’existence des molécules
n’y jouent qu'un roéle auxiliaire ».

« Lla théorie moléculaire a donc été un guide précieux pour
Ianalyste en lui suggérant la marche a suivre pour étudier les
équations du probléeme, mais elle est éliminée de la solution
définitive ». |

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problemes
ou figuraient des variables continues en remplacant celles-ci
par des variables discontinues et passant a la limite. Comme
le dit Borel, cette facon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
I'existence et la forme d’une limite et c¢’était 14 souvent un
probleme tres difficile. Depuis lors, la tendance s’est faite jour,
de plus en plus, d’éviter cette difficulté en cherchant & préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,
que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi 4 une solution s’appliquant directement au probléme posé
dans le cas continu. C’est ainsi que I’étude des équations intégrales
symétriques faite par Hilbert en résolvant le probleme difficile
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d’un passage & la limite s’est révélée a la fois plus simple et plus
élégante dans I'étude directe de E. Schmidt. Un exemple ana-
logue est fourni par la démonstration de Fredholm de I’existence
d’une solution de son équation intégrale. Sa marche est analogue
a celle de la solution d’un systéme de n équations linéaires a n
inconnues; mais si elle s’est trouvée ainsi guidée par I'étude de
ce probléeme, & aucun moment sa démonstration ne fait inter-
venir le passage a la limite du cas d’un nombre fini de variables
a un nombre infini.

Borel revient au cas discontinu en observant qu’il « peut étre
intéressant de se proposer, au point de vue purement mathéma-
tique, I’étude directe de fonctions ou d’équations dépendant
d’un nombre fini de variables, mais trés grand ». Il se trouve
alors ramené a une question qui lui tient a coeur et qu’il a souvent
agitée sous différentes formes:

« La premiere difficulté qui se présente lorsqu’on veut étudier
des fonctions d’un trés grand nombre de variables, est la défini-
tion précise d’une telle fonction, j’entends par 1a une définition
individuelle, permettant de distinguer la fonction définie de
I'infinité des fonctions analogues». Borel se demande «si I'on
peut considérer comme donné » un ensemble de nombres dont
«la vie d’'un homme ne suffirait & en énumérer une faible partie ».
Pour lui, un tel ensemble peut étre considéré comme déterminé
«par la connaissance d'une formule assez simple pour &tre
effectivement écarté, tandis qu’il n’est pas possible d’écrire
effectivement autant de nombres distincts...» Il peut é&tre
aussi déterminé en considérant ’ensemble comme P'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de
probabilité est donnée. ‘

Ces considérations sont tout & fait justifiées quand il s’agit de
définitions et d’applications « constructives ». S’il s’agit de défi-
nitions et d’applications «descriptives», la situation est diffé-
rente. La démonstration, par exemple, que le terme général d’une
série convergente tend vers zéro quand son rang croit indéfini-
ment, nous parait correcte sans que ce terme général soit repré-
senté par une formule simple ou qu’il reléve du calcul des
probabilités et méme si la vie d’un homme ne suffisait pas a
enumerer une faible partie de la suite des termes de la série.
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Cette observation n’enléve rien a Uintérét de la distinction
que fait Borel des ellipsoides «trés irréguliers » parmi les ellip-
soides dans un espace a un trés grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatriemes puissances des longueurs des axes n’est pas du
méme ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D’aprés Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoides, d’exclure ces
ellipsoides tres irréguliers. « Lorsqu’un ellipsoide n’est pas treés
irrégulier, plusieurs de ses propriétés vermettent de I'assimiler a
une sphere ». . .

« Une figure qui dépend d’un nombre extrémement grand de
parametres ne peut étre considérée comme numériquement
déterminée que sises parametres sont définis au moyen de données
numériques assez peu nombreuses pour nous étre accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il con-
vient souvent de remplacer une variable ayant un nombre de
valeurs fini mais treés grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutdét que par une
variable continue comme on faisait en physique mathématique
classique ou l’on supposait la matiére continue.

Une autre des suggestions mathématiques qu’offrent les
théories moléculaires concerne les fonctions d’une variable com-
plexe. Pour le montrer, Borel considére le potentiel d’un systéme
formé d’une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d’un systeme plan et, par suite,
d’un potentiel dit logarithmique. Supposons, de plus, que les
masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais «l’hypothése que les
masses attirantes sont de simples points matériels sans dimen-
sion est difficile & accepter au point de vue physique. On est
ainsi conduit a disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel & 'extérieur de
ce cercle qu'on nommera le cercle d’action de son centre. On
répartit les masses et les densités de telle maniere que la densité
g’annule ainsi que ses dérivées sur le périmetre du cercle; elle est
ainsi non seulement finie mais continue ».
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Borel démontre que, par une répartition convenable de la
densité, on arrive & un résultat qui peut étonner. On aurait pu
craindre qu’il n’y etit pas de place libre entre des points matériels
tellement serrés par hypotheése. En fait, Borel démontre « qu’il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction poten-
tielle logarithmique satisfait a ’équation de Laplace ».

Borel passe alors a la situation correspondante dans la
théorie des fonctions d’une variable complexe. Soit une fonction
a pbles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée
ayant la méme valeur dans toutes les directions en chacun des
points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogénes résumée plus haut (p. 69),
mais reliée ic1 a une théorie physique moléculaire. C’est une
extension magnifique de la théorie des fonctions analytiques
grace a laquelle Borel a pu dépasser 'extension précédente due
a Welerstrass.

A la fin du méme mémoire, Borel survolant son sujet,
s’exprime ainsi: « G’est toujours au contact de la Nature que
I’Analyse mathématique s’est renouvelée, ce n’est que grace a ce
contact permanent qu’elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-méme ». On
ne saurait mieux dire, poarvu qu'on compléte cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés a
réaliser un travail interne, consistant en une refonte continuelle
de 'armature des mathématiques, pour les simplifier et les har-
moniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n’a pour but que de dégager l’essentiel et le commun dans les
problémes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables & de nouveaux pro-
blémes posés par la Nature.

L’irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées
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quand on change les signes des vitesses, ce qui revient & changer
le signe du temps. Ces équations ne permettent donc pas de
prévoir dans I'avenir une évolution différente de ce que serait
Iévolution en remontant vers le passé. Dés lors, il semble en
résulter que les phénomeénes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les
conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothése lui parait irréalisable. Cette exactitude
absolue devra laisser place & un certain flottement. Il en résulte
que l'avenir n’est pas entiérement déterminé, alors qu’on ne
peut parler d’une indétermination du passé. Il n’y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phéno-
menes presque réversibles, dans d’autres ils seront irréversibles.
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