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TROISIÈME PARTIE

EXPOSÉ DES TRAVAUX SCIENTIFIQUES

D'ÉMILE BOREL

Orientation générale

Il faudrait plusieurs volumes pour seulement résumer tous
les travaux de Borel. Nous nous contenterons donc ici d'exposer
ses résultats les plus marquants.

Pour une étude plus complète de ses œuvres, on pourra
recourir d'abord à la liste bibliographique qui figure à la fin de

l'ouvrage « Selecta » imprimé chez Gauthier-Villars en 1940

(cette liste suit la reproduction des principaux mémoires de

Rorel avec des commentaires, dus à différents auteurs). On

trouvera à la fin de la présente Notice, une liste supplémentaire
allant de 1939 jusqu'à la mort de Borel en 1956.

Les recherches de Borel ont porté successivement sur deux
domaines différents. Depuis leur début jusqu'à la guerre de

1914-18, il s'est surtout occupé de la théorie des fonctions et des

domaines associés à cette théorie. Il signale lui-même que ses

découvertes les plus importantes à cette époque ont été: les

définitions de la mesure, des fonctions monogènes et de la
sommabilité. Ces définitions ont été préparées par l'étude attentive

de cas particuliers et suivies des. démonstrations, souvent
difficiles, des importantes propriétés qu'elles entraînent. Par ces

démonstrations, il s'égale aux plus habiles analystes. Mais,
souvent, ceux-ci épuisent un sujet déjà posé avant eux et,
derrière eux, l'herbe ne repousse plus. Par ses définitions, au
contraire, Emile Borel ouvrait des domaines nouveaux, si riches

que, malgré ses propres apports, ils suscitèrent de toutes parts
des contributions nouvelles. Vint la guerre. Pendant celle-ci,
Borel, après avoir participé aux combats, s'occupa du repérage
du son, puis de questions variées concernant le service des
inventions intéressant la défense nationale, service dont il fut le
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principal organisateur. C'est sans doute son contact, à cette
époque, avec des problèmes de physique mathématique et de

calcul des probabilités qui l'intéressa à ces questions et détermina

son orientation nouvelle.
C'est à ces deux domaines qu'il va consacrer la plupart de

ses recherches à partir de 1920. Toutefois, deux correctifs doivent
être apportés à cette répartition sommaire. Il n'y a pas eu
mutation brusque. Dès avant la guerre, on voit Borel s'intéresser

de plus en plus aux questions de probabilités, en commençant

par une courte note de cinq pages en 1905. La probabilité
qu'un point aléatoire (dont la loi de probabilité sur le segment
(0,1) est uniforme) appartienne à un ensemble donné, est
évidemment égale à la mesure de cet ensemble. Les travaux de

Borel sur la mesure lui ont montré que certains énoncés,
certaines démonstrations concernant la mesure, deviennent plus
instructifs et plus simples dans le langage des probabilités. Cette

remarque n'est-elle pas à l'origine de l'intérêt qu'il avait pris dès

avant la guerre pour le calcul des probabilités?
Le second correctif consiste en ce qu'après la guerre de 1914-

19, s'il ne s'est plus occupé exclusivement de théorie des

fonctions, il ne cessa pas cependant de s'y intéresser, pour prolonger,
soit ses propres recherches, soit celles qu'elles avaient suscitées.

Nous examinerons maintenant plus en détail ses recherches
dans les différents domaines.

Nous suivrons l'ordre chronologique seulement pour chaque
domaine scientifique pris isolément et même, dans ce cas, sans

nous y conformer toujours strictement.

Arithmétique

Nous parlerons plus loin de la théorie de la mesure de Borel.
En vertu de cette théorie, on est amené à considérer l'ensemble
des nombres rationnels comme moins serré que l'ensemble des

nombres irrationnels. Or on parvient par des démarches
naturelles plus simplement aux premiers nombres qu'aux seconds.

On peut alors considérer comme une généralisation de cette

remarque, un résultat de Borel qu'il serait long d'énoncer de
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façon précise mais qui peut s'interpréter comme suit: les nombres

les plus faciles à définir à partir des entiers sont les plus isolés les

uns des autres.
Dans une autre direction, Borel a donné, [50] Q, une

méthode pour résoudre le problème suivant:
Etant donnés un polynome à une ou plusieurs variables, à

coefficients entiers et un nombre premier arbitraire p, trouver
la puissance la plus élevée pn de p qui divise le polynome pour
toutes les valeurs entières de la variable.

Séries Numériques

I. Comparaison des convergences

Considérons deux séries convergentes à termes positifs
s S/2,,, t et désignons par rn s—sn, pn t—tn leurs
restes de rang n.

Borel dit que la série s converge plus rapidement que la
Pn

série t si > oo avec n. Nous dirions plutôt dans ce cas que
rn

s converge beaucoup plus rapidement que t. Et nous proposons
d'adoucir la condition de Borel en disant que s converge plus

rapidement que t quand la plus petite limite de — est supé-
' n

rieure à l'unité. (Notons cependant que la définition de Borel
lui a été très utile dans l'étude des fonctions complexes).

Quand on change l'ordre des termes de %um elle reste
convergente avec la même somme. On voit facilement que la série,

obtenue en rangeant les termes de I\un par ordre de

grandeur non croissante, converge au moins aussi rapidement
que Nous avons même pu donner un exemple 2), où en

0 Nous renverrons par des numéros entre crochets aux mémoires portant le même
numéro, dans la liste bibliographique figurant à la fin de l'ouvrage intitulé Selecta,
publié en 1940 à l'occasion du Jubilé scientifique d'Emile Borel, ou dans le supplément
à cette liste terminant la présente notice. Les renvois aux articles publiés dans le volume
Selecta mentionné plus haut, p. 2, se présenteront sous la forme (S, 201) pour (Selecta,
p. 201).

2) C. R. du 27 février 1961.
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changeant Tordre des termes, on peut obtenir une série moins
rapidement convergente, même au sens de Borel, que Hun.

Borel s'attache particulièrement au cas où les séries
considérées ont une « convergence régulière » parce que, d'après lui,
ce sont les seules séries qui se rencontrent naturellement. Il
montre cependant qu'on peut « fabriquer » une convergence
irrégulière et, par exemple, construire une série où les sommes
partielles sn sont, pour une suite de valeurs de n, voisines de en

et pour une autre suite de valeurs de n, voisines de eeU.

Représentons par la notation

Rap. s > Rap. t

le fait que la série s converge plus rapidement que la série t; on
voit facilement que cette notation est transitive. Nous avons

pu montrer par un exemple (voir la note ci-dessus) que la relation

: Rap. s > Rap. t (exprimant qu'on n'a pas : Rap. t > Rap. s)

n'est pas transitive. Mais notre exemple est à convergence
irrégulière. Il serait intéressant de voir si la relation redevient
transitive quand on se borne aux convergences régulières.

II. Sommabilité d'une série

Borel a obtenu ([5]) une condition suffisante pour qu'en
opérant un certain changement dans l'ordre des termes d'une
série semi-convergente, on n'altère pas sa somme: il suffit que
le produit du terme général (de rang m) par le déplacement

maximum des termes qui le précédent, tende vers zéro avec —
m

Mais la contribution principale et très remarquable de Borel
concernant les séries, c'est sa définition des séries divergentes
sommables, [19], [41], [42] et l'étude de leurs propriétés.

L'égalité:
1

1 +x+ +xn+
1 —x

n'était traditionnellement valable que pour \x \ < 1, c'est-à-dire

quand la série était convergente au sens classique.
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Mais quand \x \ > 1, le premier nombre garde un sens

alors que le second n'en a plus aucun. Ne peut-on généraliser le

sens du mot somme de telle façon que, quand la série aurait une

somme au nouveau sens, cette somme soit précisément égale au

premier nombre. Avec d'autres, Borel a indiqué et étudié une

réponse étendue à cette question, mais il en a tiré de nouvelles
et importantes conséquences. Il précise d'abord les conditions

qu'il est naturel d'imposer à tout procédé de sommation.

1° Toute série convergente doit être sommable avec la même

somme généralisée.

2° Si l'on modifie un nombre fini de termes d'une série sommable,
Zunl on obtient une série 2en qui doit être sommable et les

sommes généralisées ne doivent différer que de la façon qui
s'impose, c'est-à-dire d'un nombre égal à (ua -(-... +ur) —

(c0 + ...+cr) si le dernier terme modifié est de rang r.

3° Si Zwn est aussi une série sommable et si ß, y sont deux nombres

réels quelconques, la série 2 (ß^-f-ywj doit être aussi
sommable et sa somme généralisée doit être égale à ßs+y£
si s et t sont les sommes généralisées de Zun et Zwn.

Il impose encore deux autres conditions 4° et 5° que nous
énoncerons plus loin.

Si sn u0Jr...Jrun reste compris entre deux bornes quand
n varie, il est naturel d'imposer à la somme généralisée d'être
aussi entre ces deux bornes. Dès lors, Borel observe:

1° qu'un moyen d'y parvenir est de prendre pour somme
généralisée une moyenne des sn ;

2° mais la somme généralisée devrait se rapprocher surtout
des sn de rangs élevés. Il y a donc lieu, pour le calcul de leur
moyenne, d'affecter les sn de poids d'autant plus grands que n
est plus grand. Pour réaliser cette condition au maximum, Borel
propose de faire dépendre les poids d'un paramètre a de façon
que la discrimination souhaitée s'accentue quand a augmente.
Plus précisément, il propose de prendre une moyenne de la forme :

^0 T •. • T cn ci sn H-

c0 + c1 a + + cn an +
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où les c sont des nombres > 0, le dénominateur ^ 0 et où l'on
fait croître a indéfiniment.

Borel abandonne alors ces généralités et choisit de prendre:

1

1ni

de sorte que le poids de sn sera:

an
e'a~

ni

et la somme généralisée sera la limite quand a -> + oo, de

Il montre que cette définition vérifie les conditions 1°, 2°, 3°,
ci-dessus.

On peut observer que ce dernier résultat peut être obtenu

pour une sommation beaucoup plus générale.
Appelons P la suite de poids p0 (a), pn (a) vérifiant

naturellement les conditions classiques

P„(a)^0 £ p„ 1

n

Pour réaliser la condition supplémentaire désirée sur les

poids, nous supposerons, de plus, que pour chaque n fixe:

lim pn(a) 0,
a-+ oo

car les premiers des p0 (a), pn (a), seront très petits pour
a assez grand, alors que T*pn (a) restant égal à l'unité, les suivants
ne le seront que pour a beaucoup plus grand. En résumé, nous
dirons qu'une série Hun est sommable P si:

A. La série

m(a) s0p0(à)+ +snpn(a) +

est convergente quel que soit a (ou au moins pour a assez grand).

B. Quand a -» + °o, m {a) tend vers une limite finie, s.

Alors, s sera appelée la somme généralisée P de Iun.
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A titre d'exemples où les conditions A, B, sont réalisées figurent
non seulement la sommation exponentielle de Borel, où

pn(a) e a-
n\

mais aussi plusieurs définitions connues de la sommabilité, où

pn (a) a des expressions différentes.
Par exemple, Cesaro prend dans sa définition (C, 1) a entier et

Pn (à)

1

— pour n < a
a

0 pour n > a

Marcel Riesz prend, dans sa définition (C, S), a entier et

1 a — 1

donc

ttl (d) — U0Jr 1— — U i + + 1 —
al a

Pa(à) Pa+l(à) - 0,

"fl-lî

p0(a) 1-1 ,-Pn(a)= 1 1- n +1

pour n < a — 1 et

Pa-i(à) 1
a — 1

Lindelöf prend

1 1

m (a) u0+u1 + —- u2 + + un+
o

2 n
2 — riet

a
donc

1
p0(a) 0, Pi (a) 1 -, ...Pn (a)

„ ^ n 1
2 - — (n +1)

a a a

On peut démontrer que les propriétés 1°, 2°, 3°, sont vérifiées
pour la sommabilité P la plus générale, ce qui dispense de les

L'Enseignement mathém., t. XI, fasc. 1.
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démontrer successivement pour les quatre cas particuliers ci-
dessus ou pour les nombreuses autres sortes de sommabilité qui
ont été proposées.

Toeplitz et Schur ont obtenu une condition nécessaire et
suffisante pour que la condition 1° soit réalisée par un procédé
de sommation de la forme:

s lim X Vn (a) sn •

oo n

Quand cette condition de Toeplitz est réalisée, les conditions
2° et 3° sont aussi réalisées. La sommation de Toeplitz est un peu
plus générale que la sommation P. Mais elle n'est plus une
moyenne et perd ainsi le caractère intuitif de la sommation P.
C'est sans doute pourquoi la plupart des formules de sommation
proposées se trouvent être des sommations P particulières.

Ni les sommations de Toeplitz, ni les sommations P ne

suffisent, au contraire, à vérifier les conditions 4° et 5° posées

par Borel.
Occupons-nous d'abord de la condition 4°.

4° Si une série Hun est sommable, on doit pouvoir grouper en un
seul terme, un nombre fini quelconque, r, des premiers termes
de sans modifier, ni sa sommabilité, ni sa somme généralisée.

Pour pouvoir traiter de cette condition 4°, rappelons qu'avant
de définir la sommabilité, Borel avait défini la limite généralisée
d'une suite: x0, x1 xm ; c'est la limite quand elle existe,
de e~a x(a), quand a -> + oo où

an
x (a) x0 +xx a + +xn — +...

ni

est supposée convergente quel que soit a.

En vue de 4°, Borel a cru d'abord [19] avoir démontré que
si xor xn a une limite généralisée, il en est de même de la
suite x1^...xn... Toutefois cette démonstration est inexacte,
comme l'a signalé Hardy x) en donnant le très simple exemple
suivant: x (a) cos ea, pour lequel la suite x0, xu x2r... a une
limite généralisée, mais non la suite %, x2l

Voir The Quaterly Journal of Math., 35, 1903.
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Mais dans son ouvrage ultérieur Leçons sur les séries

divergentes, Borel ne reproduit pas son erreur. Au contraire, il
s'exprime ainsi: «Mais l'étude des séries simplement sommables

présente des difficultés analogues à l'étude des séries qui sont

convergentes sans l'être absolument; nous la laisserons de côté,

pour nous occuper exclusivement des séries absolument som-
mables que nous allons définir. »

Observons cependant que l'on peut sauver le premier résultat
en imposant une condition supplémentaire. Plus précisément:
quand la série u0 Jru1Jr... est sommable P (avec la somme
généralisée s), la condition nécessaire et suffisante pour que la
série u1Jru2Jr-" soit sommable P, avec la somme généralisée

s~u0, est que la suite %, u2, ait pour limite généralisée zéro.
Le cas de la condition 5° est plus compliqué encore. On sait

que si les séries sont absolument convergentes au sens

classique et ont pour sommes s et t, alors le produit st est égal
à la somme de la série (absolument convergente) où

w» u0vn + u1vn-1 + +unv0.

Mais quand les séries 5 et t sont convergentes sans être
absolument convergentes, il peut arriver que la série Hwn
diverge. A fortiori, la propriété classique ne peut être vérifiée par
la sommabilité P que si l'on impose à « cette sommabilité » une
nouvelle condition supplémentaire.

Nous n'essaierons pas de préciser cette condition. Car il est
déjà très difficile de la déterminer pour la sommabilité exponentielle.

Pour traiter cette question, il a fallu à Borel, déployer, en
dehors de ses dons d'invention, une très grande habileté analytique.

Il particularise encore plus la sommabilité P, non seulement
an

en prenant pn(a) e mais en exigeant de la série Zunni n

qu'elle soit « absolument sommable », en ce sens que chacune
des trois intégrales suivantes doit avoir un sens 1).

O La condition précédente: que e a x (a) ait une limite quand a oo est
lante

a la condition que l'intégrale f e au (a) da ait un sens.



+ 00 + 00 + 00

f e~a u (a) da J" e~a | w (a) | da J | idr)(a) | da
0 0 o

et ceci quel que soit l'ordre r de dérivation dans u(r) (a).
Ceci étant, Borel démontre ce que deviennent les propriétés

2°, 3°, 4°, 5° quand on y suppose les séries données absolument
sommables et quand on affirme que les séries qui en sont déduites
dans ces propriétés sont absolument sommables. La propriété 1°

subsiste aussi sous la forme: toute série convergente est absolument

sommable et sa somme est égale à sa somme généralisée.
De ces résultats, Borel déduit un théorème très général: si
l'on a un polynome à une ou plusieurs variables réelles, par
exemple, P (m, e, w), si l'on y remplace u, e, w par des séries

absolument sommables et si l'on développe formellement P (u,
e, w) après ce remplacement, on obtient une série absolument
sommable dont la somme généralisée est égale au résultat obtenu
en remplaçant dans P (m, e, w), e, w par leurs sommes généralisés.

Mais c'est l'intervention des séries divergentes dans la théorie
des fonctions de variables complexes qui a incité Borel à les

rendre convergentes en un sens plus général et qui a fourni la
plus importante de ses applications (dont nous parlerons plus
loin), sa sommabilité exponentielle. Après les publications de

Borel sur ce sujet, le nombre des mémoires d'autres auteurs sur
les séries divergentes a décuplé.

Théorie des ensembles

Plaçons-nous dans un espace R à 1, 2, 3 ou un nombre fini
de dimensions. Borel appelle ensemble bien défini et on appelle
ensemble borélien (ou ensemble B) soit un ensemble élémentaire

(intervalle, rectangle, cube, etc soit un ensemble formé à

partir d'ensembles élémentaires par la répétition, un nombre
fini ou dénombrable de fois, des deux opérations suivantes:

I. Réunion d'une suite dénombrable finie ou infinie,
d'ensembles disjoints déjà définis.

II. Différence de deux ensembles déjà définis dont l'un
contient l'autre.
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Borel démontre alors deux théorèmes qui sont fondamentaux

pour la théorie des fonctions :

I. Si tous les points d'un ensemble borné et fermé sont

intérieurs chacun à l'un au moins des ensembles élémentaires

Fx, Fg, ils sont intérieurs chacun à l'un au moins d'un
nombre fini fixe (Fr%,Fr^ --Fr) des ensembles Fn.

II. Soit E un ensemble borélien et s > o. On peut rassembler

un nombre fini d'ensembles élémentaires I1:...In tel que
l'ensemble des points de E qui n'appartiennent à aucun des Ir et
des points des Ir qui n'appartiennent pas à E soit compris à

l'intérieur de la réunion d'ensembles élémentaires en nombre

fini dont l'étendue totale est < s.

Mesure des ensembles

La découverte d'une définition satisfaisante de la mesure
d'un ensemble a joué un rôle capital dans l'élaboration des

nouvelles théories développées par Borel et ses disciples ou
successeurs.

Après avoir exprimé la notion intuitive de la mesure par la
longueur d'un segment rectiligne, par l'aire d'un polygone, par
le volume d'un polyèdre, etc. les mathématiciens se sont
efforcés de traduire cette notion intuitive dans le cas plus
général de la mesure d'un ensemble euclidien (en commençant
par le cas d'un ensemble linéaire). Des définitions à cet effet ont
été progressivement proposées, entre autres par Riemann,
Cantor, Darboux et Jordan. Un nouveau progrès était néces-

| saire.
•j Chaque progrès avait consisté à estimer la mesure d'un

ensemble E au moyen de la longueur totale d'un ensemble
d'intervalles couvrant E. Mais on avait toujours pris ces
intervalles parmi des intervalles choisis d'avance. Borel a écrit lui-
même que son point de départ a été de prendre, pour chaque
ensemble, des intervalles non seulement couvrant l'ensemble
mais dépendant directement de cet ensemble. En prenant

; comme intervalles ceux qu'on obtient en divisant un segment
en parties égales, Jordan arrivait à la conclusion que l'ensemble
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R des points d'abscisse rationnelle entre 0 et 1 avait pour
mesure l'unité. En attachant, avec Borel, à chaque point

g
d'abscisse rationnelle, r„, un segment de longueur—r on constate

n

que R est couvert par un ensemble d'intervalles dont la longueur

totale est el -y ; sa mesure devant intuitivement être inférieure

à ce total est aussi petite que l'on veut avec s. Borel arrivait
ainsi à cette conclusion qui, à l'époque, a paru surprenante, que
l'ensemble des nombres rationnels, pourtant dense partout,
était de mesure nulle. C'est par cet exemple que Borel a été
conduit à la notion générale de mesure.

Les définitions actuellement en usage sont celles de Borel
et de Lebesgue. La mesure de Borel ne s'appliquerait qu'au cas
d'un ensemble dit mesurable B (on a défini plus haut, p. 52, les

ensembles boréliens).
La mesure d'un ensemble mesurable B s'obtient au moyen

des opérations mêmes par lesquelles il a été défini plus haut, la
mesure d'un intervalle étant prise égale à sa longueur.

Lebesgue a donné une définition de la mesure d'un ensemble,
qui garde un sens, que l'ensemble soit ou non mesurable B.
Mais quand l'ensemble est mesurable 5, il est aussi mesurable
au sens de Lebesgue et a même mesure dans les deux sens.

En réalité, ce qu'il y a de curieux dans le cas de la définition
de la mesure, c'est que Borel a commencé son étude de la
mesure, précisément en donnant une définition des ensembles de

mesure nulle 1), qui est valable pour des ensembles non mesurables

B. Tout ensemble mesurable au sens de Lebesgue étant la
réunion d'un ensemble mesurable B et d'un ensemble de mesure
nulle, on peut dire que Borel avait donné implicitement dû avance,
une définition des ensembles mesurables au sens de Lebesgue,
équivalente à la définition de Lebesgue. On peut le voir même

encore mieux et d'une façon plus directe. Car, d'après M. Denjoy,
Borel écrit en substance: Si un ensemble E contient un ensemble
mesurable B, E2, de mesure a, la mesure de E est au moins égale

Rappelons qu'un ensemble linéaire est de mesure nulle quand pour tout e > o,
tous ses points sont chacun intérieur à l'un au moins d'un ensemble de segments Si,
S2, Sn dont la somme des longueurs est < e.
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à a. Si E est contenu dans un ensemble E2l mesurable B de

mesure ß, la mesure de E est au plus égale à ß. Dans le cas où

ß a la mesure de E sera ^ a et ^ a. De là, à dire que si ß a
la mesure de E vaut a, il n'y a qu'un pas. Lebesgue le franchit.
On peut se demander pourquoi Borel n'a pas franchi ce pas lui-
même. Nous pensons que cela tient à ce qu'il veut, très consciemment,

éliminer les ensembles qui ne sont pas « bien définis »,

et que pour lui, les autres ne relevant pas d'une définition
constructive, sont sans existence réelle.

Nous avons dit plus haut que si les définitions constructives

sont, en effet, plus complètes, et sont nécessaires pour les

applications, nous ne voyons pas de raison d'éliminer les définitions
descriptives qui rendent généralement plus simples les
démonstrations 1).

C'est à ce point de vue que, tout en attribuant à Borel
l'antériorité complète pour la notion de mesure, nous pensons
que la définition de Lebesgue, d'ailleurs donnée d'une façon
différente et intéressante, a déterminé un nouveau progrès.

Toutefois, il faut observer que les propriétés des ensembles
mesurables B se conservent dans toute homéomorphie, ce qui
n'est pas le cas des ensembles mesurables au sens de Lebesgue.

C'est pourquoi en Calcul des Probabilités, les ensembles
« probabilisables » sont les ensembles « boréliens » et non les
ensembles mesurables au sens de Lebesgue.

Exemples d?applications

I. Tout ensemble dénombrable est de mesure nulle.

II. La condition nécessaire et suffisante pour qu'un ensemble
E soit de mesure nulle est qu'il existe une suite d'intervalles
distincts /x, J2, dont la série des longueurs est convergente et
telle que tout point de E soit intérieur à une infinité des intervalles

In.

i) Il faut d'ailleurs noter que l'opposition de Borel aux définitions descriptives
n'a pas été totale. On lit, par exemple, en note x) de la page 48, de la troisième édition
de ses Leçons sur la Théorie des fonctions: « Le procédé que nous avons employé revient,
en réalité, à ceci: définir les éléments nouveaux qu'on introduit, à l'aide de leurs
propriétés essentielles, c'est-à-dire de celles qui sont strictement indispensables pour
les raisonnements qui vont suivre. » Il n'est fait ici aucune allusion à la « construction »

des éléments nouveaux.
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Soit alors F l'ensemble des points qui sont chacun intérieurs
à une infinité des intervalles In. F comprend E et appartient à

la fermeture E de E. En particulier, si E est fermé, E est
identique à F.

III. On trouvera plus loin des applications très nombreuses
de la notion de mesure dans la théorie de l'intégration, dans la
théorie des fonctions et dans le calcul des probabilités.

Raréfaction d'un ensemble de mesure nulle

C'est au cours de ses études des fonctions monogènes que
Borel a senti la nécessité d'introduire la notion d'ensemble de

mesure nulle (avant d'avoir défini la mesure d'un ensemble).
Les mêmes études lui ont fait voir qu'il faudrait distinguer entre
les différentes sortes de mesure nulle. Et cette nécessité s'est

présentée à nouveau en calcul des Probabilités. Il a alors introduit

la notion de « mesure asymptotique » d'un ensemble [169],
dont, beaucoup plus tard, il a légèrement modifié la définition
sous le nom de «raréfaction » (d'un ensemble de mesure nulle).
Cette notion nouvelle a moins attiré l'attention que celle de

mesure. Et pourtant, nous sommes d'accord avec Borel pour
penser que l'importance de cette classification des ensembles de

mesure nulle « paraît devoir être comparable à celle de la notion
même d'ensemble de mesure nulle. »

Mais si Borel a même pu imaginer trois modes distincts de

classification, il n'en a pas établi les relations. Et s'il a obtenu
des résultats importants, c'est en partant d'hypothèses qui ne
sont pas toujours nécessaires et ne sont pas toujours suffisantes.
Avant donc de prolonger et d'appliquer la théorie de Borel, il y
aurait lieu de la revoir et de la compléter pour la rendre plus
cohérente.

Pour toutes ces raisons, nous serions heureux si ces quelques
lignes pouvaient inciter de jeunes chercheurs à entreprendre une
étude plus systématique et plus complète de la raréfaction et à

en donner des applications.
La première idée de Borel, [5, p. 185] consiste à établir une

inégalité symbolique, (à définir), entre une sorte de « grandeur »
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d'un ensemble de mesure nulle, E, et la rapidité de convergence
d'une série convergente à termes positifs associée convenablement

à E. Nous avons vu qu'il existe au moins une suite dé-

nombrable d'intervalles I„ qui « surcouvre » E et dont la série

des longueurs EZW est convergente.
Borel dit alors que « la mesure asymptotique de E » est

« inférieure » ou égale » à Iln. Il est revenu plus tard à la question
et a perfectionné son idée primitive. Au lieu de définir la « grandeur

» d'un ensemble comme inférieure ou égale à la convergence
d'une série, notions qui sont des entités totalement différentes,
il compare directement entre eux deux ensembles .E, F de mesure
nulle et ramène cette comparaison à celle des convergences de

séries.

Une première façon d'opérer serait la manière suivante.
Disons provisoirement d'un ensemble dénombrable d'intervalles

qui « surcouvre » E et est de longueur totale finie, qu'il
« majore » E. Soient alors, de même, % un ensemble dénombrable
d'intervalles qui majore F. On dira que E est plus raréfié que
F si la série V des longueurs des intervalles de 2T converge plus
rapidement (voir p. 45) que la série U analogue pour °ll.

Mais plusieurs difficultés se présentent. D'abord, le fait que
l'ensemble dénombrable d'intervalles 2T majore E est
indépendant de l'ordre de ces intervalles, tandis que la rapidité de la

convergence, de leurs longueurs peut en dépendre, comme nous
l'avons montré ailleurs (voir p. 45). Dans la définition précédente,
il ne faut pas faire intervenir T, mais une suite dans un ordre
déterminé des intervalles de Borel suppose, plus loin, que l'on
a rangé la suite par ordre de longueurs non croissante. D'autre
part, non seulement, il y a plusieurs suites formées avec 3T qui
majorent E, mais il n'y a pas un seul ensemble ZT qui majore E.

Borel fait face à cette difficulté en se plaçant dans le cas où,
parmi les suites S d'intervalles qui majorent i?, il y en a une,
S0, qui converge plus rapidement1) que toutes les autres. En
réalité, cela n'est pas possible, mais il suffît de supposer que S0

converge au moins aussi rapidement que tous les S. Quand il y a,
de même, pour F, une suite s0 d'intervalles majorant F qui con-

i) Expression abrégée pour dire que la série des longueurs des intervalles de S0
converge plus rapidement que la série analogue pour S.
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verge au moins aussi rapidement que toute autre suite s

analogue, on dira que E est plus raréfié que F si la suite S0 converge
plus rapidement que s0.

Borel écrit [285, p. 164] « nous discuterons plus loin les
difficultés que peut présenter ce choix [celui de S0]; ce qui est
certain, c'est qu'il y a de nombreux exemples où ce choix s'impose
et ne peut être modifié; les ensembles de mesure nulle
correspondants sont donc classés les uns par rapport aux autres sans

ambiguïté ».

Borel traite, en effet, de nombreux exemples d'ensembles de

mesure nulle auxquels il associe des suites majorantes
déterminées. Ces associations sont naturelles d'un point de vue
intuitif. Mais nous n'avons pas vu démontré par Borel que ces

suites majorent au moins aussi rapidement (au sens de sa propre
définition) que toutes les autres suites correspondantes: c'est,

par exemple, ce qu'on constate, aux 11e et 12e lignes de la p.
179 [285]. Tout se passe comme si Borel, dans ses exemples,
ignorait sa propre définition de l'inégalité de deux raréfactions

pour y substituer une définition intuitive. C'est encore ce qu'il
fait dans les pages 184 à 191 de son livre consacrées au « calcul
de la raréfaction ». Il y introduit un symbolisme très ingénieux
de la raréfaction. Par exemple, la raréfaction d'un ensemble E
réduit à un point est symbolisée par œ~11 où co est le premier
nombre transfmi de Cantor. La raréfaction de l'ensemble F des

nombres décimaux qui n'utilisent pas un chiffre donné (par
exemple, 7) est symbolisée par co~(1~è) où :

log 9
b •

log 10

Mais si 1—b est bien plus petit que 1, si l'on est tenté d'écrire

que co-1 est plus petit que et d'en conclure que E est

plus raréfié que F, cette dernière conclusion n'est pas démontrée

par Borel quand on a recours à sa première définition.
D'autre part, Borel introduit deux autres limitations qui ne

nous paraissent pas indispensables. Il se restreint à l'étude des

ensembles boréliens (de mesure nulle) et au cas où la convergence
des séries de longueurs qu'il considère est « régulière ». Or,
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comme nous l'avons montré (C. R. du 27 Février 1961), on peut
obtenir un certain nombre de propriétés de la raréfaction qui
subsistent quand on n'impose aucune de ces deux limitations.

Borel définit encore deux autres sortes de raréfaction. La
première est la « raréfaction logarithmique ». 11 considère un
ensemble E de mesure nulle non dense, contenu dans (0 1) et
déterminé par la connaissance d'une infinité d'intervalles con-

tigus Ii atbi de longueurs Il désigne par N (x) — 1 le

nombre des It dont la longueur est ^ x et par P (x) la longueur
totale des N (x) intervalles à l'intérieur desquels sont les points
de E (quand les It n'ont pour extrémité ni 0, ni 1).

Quand x 0, le rapport:

log IV (x)
p(x)

log N (x) — log P (x)

a une plus grande limite finie p que Borel appelle raréfaction
logarithmique de E. A titre d'exemple, Borel considère l'ensemble
de mesure nulle constitué des points dont les abscisses entre
0 et 1 ont un développement décimal n'utilisant que les nombres
2, 5, 8. Il trouve que sa raréfaction logarithmique a pour valeur:

- log 3

P
log 10

Or, il avait déjà symbolisé la raréfaction de tels ensembles par
œP

la notation — Il y voit une rencontre et une confirmation de la
oo

compatibilité de ces définitions. Mais aucun rapport n'est signalé
entre cette définition et sa définition primitive par comparaison
de rapidité de convergence des suites majorantes.

En application, Borel étudie la « somme vectorielle »

C (A) +(B) de deux ensembles A, B compris dans (0, 1),
définie comme l'ensemble de ceux des points de (0, 1) dont
l'abscisse est la somme des abscisses d'un point de A et d'un
point de B.

Il donne un exemple où la somme des raréfactions logarithmiques

étant égale à l'unité, la somme vectorielle a pour mesure
l'unité:
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Après démonstration simplifiée d'un résultat dû à Marshall
Hall, Borel donne une troisième définition de la raréfaction,
distincte des précédentes et qu' il appelle la raréfaction relative
minimum ou plus brièvement la raréfaction R.

On considère un ensemble E de mesure nulle, compris dans
(0 ; 1), comprenant les extrémités 0 et 1 mais dense nulle part.
On l'obtient en enlevant du segment (0 ; 1) des intervalles N
contigus à E et denses dans tout intervalle. On peut supposer
qu'on les place dans leur ordre de grandeur non croissante. Soit
bn la longueur du plus petit de n-\-1 intervalles B: ceux qui
restent quand on a placé n intervalles TV, dont le plus petit est
de longueur an. En posant:

K
an + b„

Borel désigne par R le plus grand nombre inférieur à tous les nnd)
Dans le cas où l'on a èn > an, pour tout n, on aura

1 1

rn > — donc R > —n 2 2

Borel montre que: pour que la somme vectorielle de deux
ensembles E, E' de raréfaction R et R' renferme tous les points
de l'intervalle (0; 2), il suffit que l'on ait:

R+Rr > 1

Plus généralement, la somme vectorielle de £, E' a une
raréfaction R" telle que:

R" >R + R'

Borel, toujours novateur, a ainsi défini trois sortes de raréfactions.

Mais il les a étudiées indépendamment, sans s'occuper
de savoir si les définitions de l'inégalité de raréfaction qui en
découlent sont compatibles.

Borel a écrit [285, p. 191]: « La théorie de la raréfaction qui
complète celle de la mesure est un sujet d'étude assez vaste;
je souhaiterais qu'il tentât de jeunes chercheurs. »

°) Voir notre Note aux C. R. 1962.
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Il pense évidemment aux prolongements de ses résultats.

Les diverses observations que nous avons faites plus haut
conduisent à penser qu'il y aurait d'abord lieu de reprendre l'exposé

de ses résultats en y introduisant les compléments qu'ils
réclament.

Il est regrettable que le souhait de Borel n'ait pas encore été

exaucé, malgré l'importance de la notion de raréfaction, des

définitions si originales de Borel et de leurs applications possibles.

(La notion de raréfaction est utile, entre autres, dans l'étude
des fonctions de variable complexe et dans le calcul des

probabilités).

Fonctions réelles (de variables réelles)

Borel a démontré [87, p. 37] que si rn (x) est le reste de rang n
d'une série de fonctions de #, mesurables, qui converge sur un
segment (a, è), la mesure de l'ensemble des points x où ] rn (x) j >e

tend vers zéro avec — pour toute valeur positive de s. Borel
n

a aussi démontré [133, 5, p. 158] que: étant donnée une fonction
F (#), bornée, définissable analytiquement sur un segment (a, b)

et deux nombres positifs, s, oc, on peut trouver un polynome P (x)
tel que la mesure B de l'ensemble des points x où | F (x) — P(x) |

> e soit inférieure à oc

En faisant tendre £ et a vers zéro, Borel en déduit qu'il y a

une suite de polynômes P1 (x), Pn (x), qui converge vers
F (x) presque partout (c'est-à-dire sauf, peut-être, sur un ensemble
de mesure nulle).

Borel conclut: «Les singularités des fonctions f (x) occupent
très peu de place; il est, par suite, possible, dans bien des

circonstances, d'opérer comme si elles n'existaient pas. »

C'est un de ses arguments pour écarter l'étude des fonctions
définies abstraitement et pour se restreindre à celle des fonctions
« calculables ».
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Intégration.

Borel déduit des résultats précédents une définition de l'intégrale,

totalement différente de celle de Lebesgue, quoiqu'elle lui
soit équivalente dans le cas où la fonction intégrée est bornée.

Par définition, si / (x) est bornée et définissable analytique-
ment sur un segment (a, b) et par suite s'il existe une suite de

polynômes Pn (x) qui converge presque partout vers / (x) sur
(a, è), l'intégrale de / (x) sur a, b sera la limite de la suite des

intégrales Pn (x) dx.
Cette définition semble plus simple que celle de Lebesgue.

Mais elle se prête moins à l'extension d'une définition de l'intégrale

au cas où la variable et la fonction sont deux éléments
de deux espaces de Banach, extension nécessaire dans le calcul
des probabilités et ailleurs.

Une polémique s'est élevée ensuite entre Borel et Lebesgue
sur la définition de l'intégrale, dans quatre articles ou notes des

Annales de l'Ecole Normale Supérieure, de 1918 à 1920. Dans la
première, Borel avait présenté sa définition, qu'il considérait
comme constructive, contrairement à celle de Lebesgue.

Lebesgue a réagi violemment. Dans sa réclamation, à côté
de remarques justes, on s'aperçoit qu'il interprète, à tort,
certaines remarques de Borel de la façon qui lui est la plus
défavorable (à lui, Lebesgue), et c'est ce qui lui permet, en partant
de là, d'en établir le mal-fondé. Cette attaque excessive a été
très pénible à Borel, qui rappelle en quels termes admiratifs
il a célébré les travaux de Lebesgue.

En résumé, la priorité de Lebesgue dans la définition de

l'intégrale est incontestable. Mais, d'une part, elle utilise de façon
essentielle la notion de mesure introduite par Borel, et, d'autre
part, elle n'enlève rien à l'intérêt de la définition, entièrement
différente, de Borel. Au reste, plus tard, F. Riesz et Haar,
en donnant chacun une définition différente.des précédentes,
témoignent eux-mêmes que leurs définitions, qui sont construc-
tives, ont suivi la voie tracée par Borel.

Séries dérivées.

Borel a prouvé qu'étant donnés des nombres réels arbitraires

a0, %, on peut toujours former une fonction de variable
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réelle, / (x), telle que pour x 0, par exemple, / (x) ait des

dérivées de tous les ordres et que pour x 0, / (x) et ses dérivées

successives aient respectivement les valeurs a0, âq, On peut
choisir en particulier a0, öq, de sorte que le développement
de / (x) en série de Taylor diverge plus rapidement qu'une série

entière donnée d'avance.
D'autre part, Borel a montré que toute fonction de variable

réelle cp (x), admettant des dérivées de tout ordre dans un intervalle

I donné, peut être mise sous la forme de la somme d'une
série de Taylor et d'une série de Fourier, ces séries et les dérivées
successives terme à terme de ces séries convergeant uniformément

dans I. Et leurs sommes respectives convergent vers les

dérivées correspondantes de cp (x).
Ces théorèmes importants ont été obtenus par Borel en faisant

usage d'une méthode ingénieuse et nouvelle pour la résolution
d'un système d'une infinité d'équations linéaires à une infinité
d'inconnues.

Avant lui, on avait cherché à résoudre un tel système en

utilisant l'analogie avec les systèmes finis comportant le même
nombre d'inconnues que d'équations. Borel, au contraire, observe

que, du moment qu'il y a une infinité d'inconnues, on peut
déterminer pour chaque équation autant d'inconnues que l'on
veut: on aura toujours un nombre suffisant d'indéterminées
dans les équations suivantes. De plus, Borel indique comment
procéder pour ces choix successifs de valeurs des inconnues.

Interpolation.

La formule d'interpolation de Lagrange permet de déterminer

le polynome Pq (x) de degré q qui est égal à une fonction
donnée f (x) pour </+1 valeurs données de x. D'autre part, on
sait, d'après Weierstrass, qu'on peut déterminer un polynome
aussi approché que l'on veut d'une fonction continue donnée.
Il est alors naturel de se demander si le polynome Pq (x) ne
pourrait fournir un tel polynome en l'égalant à / {x) pour un
grand nombre q de valeurs de x.

Sans savoir que Méray, puis Runge avaient déjà répondu
par la négative, Borel a d'abord formé [86] « un exemple d'une
fonction pour laquelle la formule de Lagrange, loin de donner
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une approximation indéfinie, diverge lorsque q augmente
indéfiniment ».

Ayant obtenu ce résultat négatif, Borel a cherché s'il ne
serait pas possible de préciser le théorème de Weierstrass d'une
autre façon. Il y a réussi au moyen de la formule remarquable

/(x) lim £ A(*)/(-)
q-+cc p \qj

P
où l'on suppose o < x < 1, où — est une valeur rationnelle de x

q

et où Mp q (x) est un polynôme déterminé de degré q qui est

indépendant de / (x). On peut d'ailleurs choisir parmi les expressions

possibles de Mpq (x). Serge Bernstein a montré qu'on
pouvait prendre l'expression particulièrement simple suivante:

Mm(x) Cq xp(l —x)q~p.

Fonctions complexes de variables complexes

Séries de Taylor

Borel a établi ce résultat inattendu qu'il pouvait y avoir une
influence de la nature arithmétique des coefficients d'une série
de Taylor sur la nature analytique de sa somme. En effet, en
utilisant une propriété des déterminants obtenue par M. Hada-
mard, Borel a pu prouver qu'une série de Taylor à coefficients
entiers ne peut représenter une fonction méromorphe que si

celle-ci est une fraction rationnelle1).
Borel a pu aussi compléter et étendre le théorème célèbre

de M. Hadamard, d'après lequel : si 9 (z) 2 an zn, ¥ (z) =1 bn zn,

f (z) I an bn zn et si a, ß sont deux points singuliers respectifs
de cp (z) et de ¥ (z), a ß est un point singulier de / (z). Par exemple,
d'après Borel: si cp (z) et ¥ {z) sont des fonctions uniformes à

singularités ponctuelles, il en est de même de / (z); en particulier,
si / (z) et W (z) sont méromorphes, il en est de même de / (z).

0 Dans sa Notice (146), Borel a oublié de mentionner ce cas d'exception, qu'il avait
pourtant signalé dans son mémoire original [11].
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Dans une autre direction, Borel a démontré qu'en général
le cercle de convergence d'une série de Taylor est une coupure
de la fonction représentée par cette série. Ici, en général, peut
signifier: si les coefficients de la série sont des nombres aléatoires

indépendants.

Fonctions entières

Une fonction entière étant une fonction analytique sans

point singulier, Weierstrass avait démontré qu'elle peut se

mettre sous la forme:
00 / z

e°(2) n a
n- 1

où oq, a2 sont les zéros de la fonction F (z) considérée, où

U i/2 1/fc

T + y + + + —

Pt(u)=(l-u)e
dans lequel k est le plus petit nombre entier tel que la série

Z !t+l avecI«1 I < l«2 I < •••
n I I

soit convergente et où G (z) est une fonction entière.
Dans le cas où il n'existe pas de nombre k et dans celui où,

k existant, G (z) n'est pas un polynome, Laguerre dit que la
fonction F (z) est de genre infini. Dans le cas contraire, Laguerre
appelle genre de F (z), le plus grand des deux nombres k et g,

g étant le degré de G (z). C'est le grand mérite de Laguerre
d'avoir vu que les propriétés de F (z) dépendent de son genre
plus que de /c ou de g séparément.

Les résultats de Laguerre ont été rendus plus précis par
Borel au moyen de son introduction de « l'ordre » réel de F (z).
Il appelle ainsi le nombre p tel que, si l'on pose rn | an |, la
série :

G
n ' n

soit convergente pour a > p et divergente pour a < p (elle peut
être convergente ou divergente pour a p). On voit qu'alors:

L'Enseignement mathém., t. XI, fasc. 1. 5



Le renseignement donné par p étant plus précis que celui
donné par k (qui pour p non entier n'en est que sa partie entière),
on conçoit que la connaissance de p ait permis à Borel d'obtenir
des propriétés plus précises que pour ses prédécesseurs.

C'est un nouvel exemple d'une notion introduite par Borel
qui lui permet d'obtenir des résultats nouveaux et d'ouvrir une
nouvelle voie à ses émules et à ses successeurs.

Ainsi H. Poixcare avait prouvé que si la fonction entière
F (z) est de genre /?, on a

| F(z)\<e«rP+1
où r ] z | quel que soit le nombre positif a, pour r assez

grand. Borel démontre que si F (z) est d'ordre réel p, on a:

\F(z)\ <erP+E

quel que soit s > 0, pour ] z | assez grand.

La série I — peut être convergente ou divergente ; quand elle
yP' n

est convergente, Borel montre qu'on a même

If 001 <^p

quel que soit a > 0, pour r assez grand.
H. Poincaré avait aussi limité supérieurement les modules

des coefficients Am de la même série de Taylor qui représente
une fonction entière. Borel a exprimé ce résultat sous la forme
suivante :

Si F (z) I Aq zq est une fonction entière de genre p,
—j-j i

Aa (q !)p+ fend vers zéro avec —
a

Soient M (r) le module maximum de F {z) pour \z \ r
et m (r) le module maximum des ter'mes Aq zq de la série de

Taylor de F (z) pour \z\ r. Borel démontre que :
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log M (r)

log m(r)

tend vers 1 lorsque r croît indéfiniment en restant en dehors

d'une suite d'intervalles tels que la longueur totale de ceux qui
sont compris entre R et k R soit infiniment petite par rapport
à R. (Plus tard G. Valiron a démontré que si F (z) est d'ordre

fini, le rapport (1) tend vers 1 quand r -> oo de façon
quelconque).

M. Hadamard avait prouvé les réciproques des deux résultats
de H. Poincaré; Borel a ensuite précisé aussi ces réciproques
au moyen de son introduction de l'ordre.

Emile Picard avait démontré que si, pour une fonction
entière F (z), il existe deux valeurs exceptionnelles: a # £, qui
ne sont jamais prises par F (z), F (z) est une constante. La
démonstration faisait usage des « fonctions modulaires ». Pendant

plus de quinze ans, les mathématiciens avaient cherché

en vain à simplifier la démonstration de Picard. Borel a réussi
à démontrer cette importante propriété sans faire usage de ces

fonctions modulaires.
Emile Picard avait même démontré un théorème plus général:

s'il existe deux nombres distincts, a, è, tels que la fonction
entière F (z) ne soit égale à chacun d'eux que pour un nombre
fini de valeurs distinctes de z, F (z) est un polynôme. Borel a
démontré un théorème un peu plus général encore : Soient P (z)
et Q (z) deux polynômes différents. Si F (z) est une fonction
entière de genre fini et si les équations F (z) — P (z), F (z) Q (z)
n'ont chacune qu'un nombre limité de racines, F (z) est un
polynôme. Le même mode de démonstration lui permet de
nombreuses généralisations. Par exemple, si F (z), G (z) sont des
fonctions entières de genre fini, alors quels que soient les
polynômes P (z), Q (z), R (z), l'équation P (z) F (z)+Q (z) G (z) — R (z)
a nécessairement un nombre infini de racines, sauf le cas excep-

E(z)tionnel évident où R (z) étant identiquement nul, serait
G(z)

une fraction rationnelle. D'après le second théorème de Picard
cité ci-dessus, toute fonction entière, F (z) non polynomiale,
prend une infinité de fois n'importe quelle valeur, sauf, peut-
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être, une valeur exceptionnelle. Soit (pb (r) le nombre des racines
de l'équation

F (z)=b,
dont les modules sont inférieurs à r. D'après un théorème de

Picard, cpb (r) tend vers l'infini avec r. Borel a aussi précisé ce
résultat [175, pp. 95-104].

La méthode employée par Borel pour donner une démonstration

élémentaire du premier des théorèmes de Picard cités ci-
dessus a été utilisée par Borel et par de nombreux auteurs

pour prolonger ces résultats dans des directions variées. C'est
en utilisant la démonstration de Borel mais en y précisant les
valeurs de certaines constantes que Landau a démontré un
résultat important et inattendu. A savoir que la connaissance
des deux premiers coefficients du développement en série de

Taylor d'une fonction entière, suffit pour déterminer le rayon
d'un cercle à l'intérieur duquel la fonction prend certainement
les valeurs 0 et 1.

Borel attache beaucoup d'importance à ce qu'il appelle la
croissance régulière.

Soit F (z) une fonction entière d'ordre fini et différent de zéro

et M (r) le maximum de | F (z) | pour \ z \ — r. Borel a d'abord
démontré que le quotient:

log log M (r)
7— (2)
log r

reste compris entre deux nombres fixes quand r varie. Borel dit
alors que M (r) et F {z) sont à croissance régulière si ce quotient
tend vers une limite quand r - co

Si au a2, sont les zéros de F (2), Borel dit que rn | an |

a un ordre d'infinitude déterminé, quand:

log n
(3)

log rn

tend vers une limite déterminée.
En combinant un théorème de Poincaré et un théorème de

M. Hadamard, Borel en déduit d'abord que si les deux quotients
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(2) et (3) ont chacun une limite, ces deux limites sont égales.

Il démontre ensuite que, si l'un de ces quotients a une limite,
l'autre a aussi une limite (alors égale à la première limite). Il
observe qu'ainsi, quand la fonction entière F (z) est à croissance

régulière, on peut obtenir l'expression asymptotique précise du

module de ses zéros en fonction de n. Ce résultat est d'autant
plus important que, d'après Borel, «toutes les fonctions entières

rencontrées jusqu'ici en Analyse sont des fonctions à croissance

régulière ». Cette affirmation s'est trouvée s'appliquer plus tard

aux fonctions entières nouvelles découvertes par Painlevé.
Ceci n'a pas empêché Borel d'indiquer des procédés variés

pour obtenir des fonctions entières à croissance irrégulière. Mais

il fait observer que le caractère artificiel de ces procédés ne fait
que confirmer l'assertion ci-dessus.

Fonctions monogènes

Nous arrivons maintenant à l'une des découvertes les plus
sensationnelles de Borel. Sa définition des fonctions monogènes
et les propriétés qu'elle entraîne conduisent à un élargissement
considérable de la théorie des fonctions analytiques telle qu'elle
existait avant Borel.

Il explique lui-même [146, p. 39] comment il a été conduit
à cet élargissement.

Digression. — Et c'est là l'occasion, pour nous, de signaler
un trait commun aux cheminements de pensée qui ont conduit
Borel à des généralisations très importantes dans des domaines
variés. C'est une façon de penser très différente de celles qui ont
conduit d'autres auteurs à d'autres généralisations.

Ces auteurs sont frappés de voir que certaines théories
développées dans des domaines différents, dans des langages
différents, offrent cependant de grandes similitudes. Ils cherchent,
et certains arrivent, à dépouiller ces théories semblables de ce

qu'elles ont de distinct et à les faire apparaître comme des formes
particulières d'une théorie générale. C'est ainsi, par exemple,
qu'ont été créées l'Analyse vectorielle, la Théorie des ensembles,
celle des éléments aléatoires abstraits, etc...

Borel, lui, ne s'intéressait pas particulièrement aux
généralisations. Il semble même, parfois, qu'il s'en défiait. C'est l'étude
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attentive de problèmes particuliers, où il rencontre des sortes
de paradoxes, qui le contraint, pour ainsi dire, à modifier les
définitions qui conduisent à ces paradoxes, afin d'éviter ces
derniers. Et il découvre alors, presque malgré lui, que les définitions
auxquelles il arrive ont une portée plus générale.

Par exemple, dans la théorie de la mesure, il constatait que
l'ensemble des nombres entre 0 et 1, et celui des nombres rationnels

compris entre 0 et 1, quoique ayant des puissances
différentes, avaient même mesure (même « étendue ») au sens de

Jordan. Ce résultat, qui lui paraissait paradoxal, le conduisait
à considérer ce second ensemble comme étant de mesure nulle. Et,
ce premier pas franchi, il arrivait à sa notion générale de mesure.

Il trouvait le même genre de paradoxe, en constatant que
dans l'égalité

1
1 +z + + zn +

1 —z

le premier membre gardait un sens quand z # 1, tandis que le

second n'en avait que pour | z | < 1. Il cherchait à éviter cc

paradoxe en attribuant une convergence généralisée et une
somme généralisée au second membre, pour z ^ 1. Et il arrivait
ainsi à sa sommation exponentielle des séries divergentes,
création d'une portée s'étendant infiniment au-delà de ce cas

particulier.
On pourrait citer d'autres exemples. Signalons au moins

celui de la théorie des fonctions monogènes.
Retour aux fonctions monogènes. — Borel dit lui-même:

« Mes recherches sur les fonctions monogènes ont eu pour origine
l'étude approfondie d'une série signalée dans un mémoire... »

de Poincaré:
apßqvr-III (4)

p q r pa + qb + rc
z

p+q +r

les entiers p, <7, r prenant toutes les valeurs positives. Cette série

converge évidemment en dehors du triangle ABC dont les

sommets ont pour affixes a, è, c, et la somme y représente une
fonction analytique uniforme. Goursat et Poincaré avaient
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montré que F (z) ne pouvait être prolongée, au sens de Weier-
strass, à l'intérieur du triangle quand p, g, r peuvent aussi

avoir des valeurs nulles (avec pFq+r ^ 0).

Selon Borel, on n'aperçoit d'abord aucune raison pour que,
si l'on exclut les valeurs nulles de p, q et r et si la fonction
F {z) peut être prolongée à l'intérieur du triangle 1), ses valeurs

y aient un rapport quelconque avec la série qui définit F (z)

hors du triangle.
Il y avait évidemment une infinité de pôles de F (z) aussi

voisins que l'on veut de tout point à l'intérieur du triangle.
On en avait conclu, un peu hâtivement, à la divergence de la
série en tout point intérieur au triangle.

Borel montre, au contraire, que F (z) non seulement converge
en certains points du triangle ABC, mais même qu'il y a une
infinité de courbes traversant ABC sur lesquelles la série F {z)

converge uniformément ainsi que toutes les séries dérivées de

la série F [z). Ainsi la somme de la série F (z) représente sur ces

courbes une fonction continue admettant des dérivées continues
de tous les ordres. De plus, soit y un petit cercle intérieur à

ABC, Borel montre qu'il existe au moins un point M intérieur
à y tel qu'il existe au moins une droite de convergence de la
série F {z) dans tout angle de sommet M. Puisque la dérivée de

F (z) sur chacune de ces droites est égale à la somme de la série
dérivée de F (z), cette dérivée de la fonction F (z) est indépendante

de la droite de convergence considérée. La fonction sera
donc dite monogène au sens de Cauchy. L'intégrale de cette
fonction sur un contour intérieur à ABC, sur lequel la série
F (z) converge uniformément, sera égale, selon Borel, au produit

par 2 ni de la somme des résidus des pôles intérieurs à ce

contour. On obtient ainsi une généralisation d'un des théorèmes
les plus importants de Cauchy, pour cette fonction F (z).

Ayant obtenu ces résultats sur la fonction de Poincaré (4),
Borel retient des définitions qui leur ont donné naissance, tout
ce qui peut s'exprimer pour une fonction / (z), qu'elle soit
représentable ou non sous la forme particulière (4). Il arrive ainsi
à sa conception générale de fonction monogène.

0 C'est-à-dire si la série n'a aucun pôle formel sur les côtés du triangle ABC.
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Il considère certaines suites d'ensembles parfaits CC2,
chacun intérieur au suivant et leur réunion C. Il considère une
certaine classe (C) de tels ensembles C (ainsi nommés en l'honneur

de Cauchy). Une fonction / (z) sera dite monogène sur C si:

1. Elle est continue (et donc uniformément continue) sur
chacun des ensembles parfaits Cp\

2. Elle admet en tout point z0 de C une dérivée unique au
sens suivant. z0 appartient à une infinité des Cp; soit z' un point

j f(z I
de l'un de ces Cp. On suppose que — a une limite quand z*

z ~ zo
tend vers z sur un de ces Cp. Si cette limite existe pour tous les Cp

auxquels appartient z0, elle sera indépendante de p puisque Cp

appartient à Cp+q. C'est cette limite qu'on appellera la dérivée
de f (z) sur C.

La nouveauté apportée par Borel, c'est que la famille de ses

ensembles C est plus vaste que la famille des ensembles W sur
chacun desquels on peut prolonger une fonction analytique et
elle contient la famille des W. Ceci étant, toute fonction analytique

au sens de Weierstrass est aussi une fonction monogène
sur le même ensemble, mais l'inverse n'a pas lieu.

(Pour arriver plus vite aux conséquences, nous reporterons
plus loin la définition des ensembles C et Cp qui est assez
compliquée.)

Borel montre qu'en généralisant la notion de fonction analytique,

les fonctions monogènes conservent d'importantes
propriétés des fonctions analytiques, soit littéralement, soit sous

une forme un peu plus compliquée.
Par exemple, l'existence de la dérivée première (définie

comme plus haut) entraîne, pour une fonction monogène,
l'existence des dérivées de tous les ordres; par exemple, encore:
deux fonctions monogènes qui sont égales sur un arc de courbe

appartenant à leur domaine commun d'existence, soit A, sont
égales sur tout A [S., p. 42]. Il en est de même si, en un point
de C, les deux fonctions et toutes leurs dérivées sont respectivement

égales, c'est-à-dire correspondent à la même série de Taylor.
Revenons, pour mieux les caractériser, aux ensembles C.

Les ensembles W, sur lesquels Weierstrass définissait une
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fonction analytique, étaient des domaines ouverts (c'est-à-dire
des ensembles d'un seul tenant et formés de points tous
intérieurs à l'ensemble W considéré). Nous avons déjà dit que Borel
définit ses fonctions monogènes sur certains ensembles C plus
généraux que les W. Précisons que les Cp (dont la réunion
constitue C) peuvent être non denses quel que soit p et que
l'ensemble complémentaire de Cp est formé de régions disjointes,
en nombre fini ou non, mais dont les frontières, yp, ont une
longueur totale finie Lp.

Soit Fp l'ensemble des points x de C où l'intégrale:

est finie pour tout a > O.Soit / (z), une fonction bornée sur
chaque Cp et qui possède une dérivée finie et continue relativement

à Tp.
Borel montre que / (x) sera donnée dans Tp, par

et obtient ainsi une généralisation de la formule célèbre de Cauchy.
Après que Borel eut créé et étudié la théorie des fonctions

monogènes, d'éminents mathématiciens comme Carleman,
Denjoy, Mandelbrojt, ont approfondi et prolongé sa théorie.

Prolongements. — Borel avait démontré [57] qu'on peut

développer- en série de polynômes:

convergeant absolument en dehors de la demi-droite où z est
réel et > 1. C était un premier exemple de série de polynômes
permettant de sortir du cercle de convergence d'une série de
Taylor (ici lzn).

Borel généralise le résultat précédent. Il montre qu'il est
possible de substituer à une série de Taylor ayant un rayon de
convergence fini, une série de polynômes ayant pour coefficients

| dz |

1 Z <*n (Z)
1 — Z
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des combinaisons linéaires des coefficients de la série de Taylor
et qui peut converger non seulement à l'intérieur du cercle de

convergence de la série de Taylor mais même au-delà.
Borel a aussi découvert un autre moyen de sortir du cercle

de convergence d'une série de Taylor. C'est en vue de ce moyen,
qu'il avait créé la « sommation exponentielle absolue », définie
plus haut (p. 51). Celle-ci lui permet d'assigner une somme
généralisée à la série de Taylor, qui coïncide avec la somme
ordinaire à l'intérieur du cercle de convergence mais qui existe
encore jusqu'à une certaine distance de ce cercle sur tout rayon
prolongée au-delà d'un point non singulier sur la circonférence
du cercle. Plus précisément, la somme généralisée existe à l'intérieur

du «polygone de sommabilité» de la série. Ce polygone
s'obtient en menant une tangente au cercle en tout point singulier.

(Ce polygone peut s'étendre dans certaines directions jusqu'à
l'infini. Par exemple, pour la série 2zn, le polygone de sommabilité
sera évidemment le demi-plan contenant le cercle | z | < 1

et limité par la tangente au cercle au point z — 1).
Ce résultat important dépasse ceux de Weierstrass. Car

Borel a formé des fonctions pour lesquelles il existe des régions
où le prolongement a son sens, de la série de Taylor correspondante,

est possible alors qu'il ne l'est pas par la méthode de

Weierstrass du prolongement analytique.

Equations différentielles et aux dérivées partielles

Borel a étudié les relations entre une équation différentielle
linéaire :

S£[y\ L(x)y(n)+P(x)y(n~1) + + T(x)y,+ U (x) y 0

et son équation adjointe:

M\y\ s (Lz)(M)-(Pz)(n)~1+ ...+(- l)n Uz 0.

On savait déjà, depuis Lagrange, que, par une suite
d'intégration par parties, on arrive à la relation:

j z [y] dx — JyJ{ [z] dx — A (x, y, y', y"-1, z, z', z(n~1})

où A dépend linéairement de y, y', y(n-1) et de z, z', z(n_1).
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D'où il résultait que, si l'on connaît une solution z de l'équation

adjointe, l'intégration de l'équation donnée est ramenée à

celle d'une équation différentielle linéaire en y d'ordre n— 1.

Borel exprime géométriquement [S., p. 213] les relations entre

une équation et son adjointe. On peut faire correspondre à

& \y] 0 une courbe de l'espace à n—l dimensions en regardant

n intégrales distinctes de l'équation comme les coordonnées

homogènes d'un point de la courbe dépendant du paramètre x.
On pourra, de même, faire correspondre à l'équation adjointe,
une autre courbe. Il résulte des relations établies par Darboux
entre les solutions d'une équation et de son adjointe que les

courbes qui leur sont attachées se correspondent dualistiquement.
Borel observe qu'on pourrait prendre cette propriété géométrique
comme définition de l'équation adjointe et que cette définition
mettrait en évidence le fait que la relation entre les deux équations

est réciproque. Mais il ajoute qu'il serait nécessaire de

préciser un peu cette définition; d'abord les points correspondants

des deux courbes devraient correspondre à la même valeur
de x. Il faudrait ensuite multiplier les premiers membres des

équations qui correspondent aux courbes pour que ces équations
deviennent adjointes l'une de l'autre.

Borel cherche ensuite à quelle condition une équation est
équivalente à son adjointe (cas où le recours aux solutions de

l'adjointe pour intégrer l'équation donnée devient inopérant).
Cette question a été d'abord étudiée par Darboux, qui a montré
qu'entre n intégrales distinctes y1 (x), (z), il doit exister,
alors, une relation quadratique:

^[y] £ aik»äWo
i,k

Darboux avait montré que cette relation subsiste quand on y
remplace les yt (x) par leurs dérivées jusqu'à un certain ordre:

&[y] 0, <*?[/] 0

Les considérations géométriques par lesquelles Borel retrouve
ce résultat, lui permettent, en outre, d'en démontrer la réciproque
et surtout de la généraliser. Il observe d'abord que si +3 fonctions

et leurs dérivées jusqu'à l'ordre inclusivement, vérifient
une même relation quadratique homogène à coefficients cons-
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tants, ce sont les solutions d'une équation d'ordre 2^+3
équivalente à son adjointe. Puis il généralise ce résultat, toujours
par ses méthodes géométriques.

Revenant ensuite au problème posé, Borel montre que, dans
le cas où ^ n'est pas identiquement nulle (et où par suite les

équations cherchées doivent être d'ordre impair), la recherche
des équations identiques à leur adjointe se ramène à celle des

lignes asymptotiques de la surface du second degré:

Z atk xi o •

ik

Il montre alors géométriquement comment les solutions de

l'équation ££ [y] 0 s'expriment complètement sans signe de

quadrature. Il passe alors au cas des équations ££ [y] 0 d'ordre
pair et montre qu'on peut suivre une méthode géométrique
analogue à celle suivie pour le cas de l'ordre impair en faisant jouer
à un complexe «linéaire »le rôle que jouait la quadrique (y) 0

Cependant on n'arrive pas à la détermination sans intégration
des courbes cherchées. La méthode permet cependant d'obtenir
tout au moins pour le sixième ordre, des expressions renfermant
un seul signe de quadrature et relativement assez simples.

Borel a porté aussi son attention sur le mode de croissance
des solutions des équations différentielles. Il a obtenu, par
exemple, ce résultat d'une précision inattendue dans des

circonstances si générales: Soit une équation différentielle dont on

suppose seulement qu'elle est du premier ordre, qu'elle est

algébrique en x, y, y' et que l'intégrale considérée, y, ne devient
infinie pour aucune valeur finie de x: on peut dès lors affirmer

que y croît moins vite que éx.

L'invention de la sommabilité a permis à Borel d'obtenir
un théorème remarquable qui a été depuis souvent utilisé par
divers auteurs pour déterminer exactement certaines solutions
irrégulières de certaines équations différentielles. C'est le théorème

suivant : si une série absolument sommable vérifie formellement

une équation différentielle, la somme généralisée de la
série est une intégrale de l'équation.

Cauchy a montré que l'intégrale générale d'un système
d'équations aux dérivées partielles dépend de certaines fonc-
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tions arbitraires dépendant de certaines variables. Borel a précisé

énormément ce résultat, dans le cas d'une seule équation,
en montrant que l'intégrale générale peut s'exprimer comme une
fonction déterminée d'une seule fonction arbitraire dépendant
d'une seule variable.

On savait depuis longtemps que la nature analytique d'une
fonction dépendant d'un paramètre peut dépendre considérablement

de la nature arithmétique de ce paramètre. Tel est le cas
de la fonction de z, zfl, dont la nature change selon que le
paramètre, a, est entier, fractionnaire ou irrationnel. Mais la fonction

za reste analytique.
Borel a étendu considérablement la portée de cette observation.

Il a donné un exemple d'ùne équation aux dérivées
partielles très simples:

d2 V .d2ce
"x 2 ~a T~T tfay)dxz ôyz

où une intégrale périodique, généralement analytique, cesse de
l'être pour certaines valeurs du paramètre a. On a ainsi un
exemple d'une fonction continue de deux variables réelles dont
toutes les dérivées sont continues, mais qui n'est analytique en
aucun point (x, y). Cet exemple est d'autant plus frappant qu'il
ne s'agit pas ici d'un cas pathologique mais d'un problème fort
simple où toutes les données sont supposées analytiques.

Géométrie

Rappelons d'abord que la définition et l'étude des propriétés
de la mesure et de la raréfaction par Borel, si elles sont d'une
importance extrême en analyse, relèvent cependant de la
géométrie.

De même, Borel a étudié l'équation adjointe dont il a été
question plus haut (p. 75) par des méthodes géométriques. Il y a
en particulier obtenu d'importantes propositions concernant les
« plans générateurs » des quadriques dans les espaces à n dimensions

(qui jouent le même rôle que les génératrices des quadriques
classiques).
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Mais le travail le pins important réalisé par Borel en géométrie

est celui qui a fait l'objet d'une question mise au concours

par l'Académie des Sciences et dont Borel a obtenu le prix
correspondant.

Il s'agit de l'étude des déplacements à trajectoires spbériques.
Avant Borel, des solutions particulières avaient été données.
Sans avoir obtenu la solution la plus générale, Borel a pu établir
une classification qui lui a permis, non seulement de retrouver
les solutions connues, mais d'obtenir de nombreuses solutions
nouvelles et de préparer des recherches complémentaires. Pour
arriver à cette classification, Borel observe que la condition
imposée aux déplacements envisagés se traduit par une équation
de la forme:

E E, T, 0
i 1

où chacun des 17 termes Et est une « fonction de l'espace » et
chacun des 17 termes Tt est une fonction du temps. Pour en
obtenir la solution, on est ramené à un problème d'algèbre
classique, qu'on résout en établissant k relations linéaires entre
les Eh d'où résultent 17 — k relations linéaires entre les Tt.
La discussion montre qu'on arrive à une classification où les

solutions correspondent aux différents modes d'intersection d'un
certain nombre de quadriques.

Parmi les conséquences les plus frappantes, citons ces

deux-ci:

I. Il existe un mouvement où tous les points d'une cubique
plane rigide décrivent des courbes sphériques, huit points situés
hors du plan de la cubique décrivant aussi des courbes
sphériques.

II. Etant donnés deux triangles rigides non semblables situés
dans deux plans parallèles, on peut relier leurs sommets par
des barres rigides et déplacer l'un des triangles de sorte que son

plan reste parallèle au plan de l'autre triangle. Dans ce mouvement

un quatrième point fixe dans le premier plan, reste à

une distance invariable d'un quatrième point fixe dans l'autre
plan.
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Les travaux de Mathématiques appliquées

Nous avons expliqué plus haut, p. 17, que, si c'est après la
première guerre mondiale que Borel s'est particulièrement
occupé des mathématiques appliquées, il s'y était intéressé déjà

auparavant en raison de leur connexion avec certains de ses

travaux de mathématiques pures.
Parmi les mathématiques appliquées, Borel a consacré surtout

son attention et ses recherches au calcul des probabilités et à la
physique mathématique.

/. Calcul des probabilités

Là encore, Borel a été un initiateur en introduisant implicitement

la conception de convergence presque certaine, liée à une
généralisation remarquable du théorème de Bernoulli et en
créant la théorie des jeux psychologiques.
Remarques. — L'idée a été émise que les idées les plus originales
de Borel ont été publiées avant la première guerre et concernent
toutes l'Analyse. Nous croyons que les deux sujets que nous
venons de mentionner sont d'une originalité aussi grande et ont
chacun donné lieu aussi à d'innombrables publications
postérieures, par ses contemporains et successeurs.

En sortant du calcul des probabilités, les quatre définitions
(non équivalentes) mentionnées plus haut, p. 58, de la raréfaction
d'un ensemble de mesure nulle, étaient tout à fait inattendues et
n'ont pourtant été développées par Borel qu'après la seconde

guerre mondiale.

Probabilités dénombrables.

I. Avant Borel, on avait étudié, comme lui, le cas d'une
infinité dénombrable d'épreuves. Mais on s'était limité aux
propriétés asymptotiques d'une probabilité dépendant d'un nombre
fini croissant d'épreuves. Avec Borel s'ouvre un domaine tout
nouveau dans le calcul des probabilités: celui des probabilités
« dénombrables ». Et Borel réussit à trouver les valeurs exactes
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des probabilités d'événements dont la réalisation dépend d'une
infinité d'épreuves.

Il commence par démontrer un théorème fondamental et
assez inattendu [S., p. 163].

Soient E1? E2, E„ une suite d'événements indépendants
et Pn p2, Pm leurs probabilités respectives. La probabilité
pour qu'une infinité de ces événements se réalisent est égale à 0

si la série Zpn est convergente et 1 si elle est divergente.
En appelant Ak la probabilité pour que k des événements Et

se produisent, Borel a complété son théorème en montrant que
si Zpk est convergente, les Ak ne sont pas nulles (au contraire
de ^4oo); si Zpk est divergente, les Ak sont nulles (alors que
Ao0 l).

Enfin, dans un mémoire ultérieur, [S. p. 302], Borel a étendu
son théorème au cas où les Et ne sont pas indépendants, moyennant

certaines restrictions sur le sens à attribuer aux cas de

convergence et de divergence.
Dans le même mémoire, Borel réalise un progrès encore plus

grand. Mais, suivant une caractéristique de son esprit que nous
avons signalée plus haut, ce progrès est réalisé dans des cas

particuliers et il laisse au lecteur ou à ses successeurs le soin d'en
comprendre et d'en formuler la portée générale. Il s'agit, d'une

part, d'un théorème apportant une précision nouvelle et très

importante au théorème de Bernoulli et, d'autre part, de la
conception d'une nouvelle sorte de convergence: la convergence
presque certaine (dite aussi presque sûre).

Borel ne considère explicitement que le cas où l'on étudie la
fréquence cpn

1} d'un chiffre déterminé dans les ^ premiers chiffres
d'un nombre N pris au hasard (en supposant que la probabilité
de l'apparition d'un chiffre déterminé est indépendante de ce

1
chiffre et par suite, égale à —). Quand n croît, la convergence de

1

cpn vers — est un événement fortuit, Borel démontre que la

probabilité de cet événement est égale à l'unité. Mais le raisonne-

i) La fréquence d'un événement dans n épreuves est le rapport — où rn est le

nombre de répétitions de l'événement dans les n épreuves.
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ment de Borel est général et permet d'énoncer explicitement le

résultat suivant:
Soient fn la fréquence de n épreuves indépendantes d'un

événement E de probabilité constante p. Alors la probabilité

que fn tende vers p est égale à l'unité.
On voit immédiatement qu'on a là un énoncé à la fois plus

frappant et plus précis que celui du théorème de Bernoulli.

D'après ce dernier, il est très probable que | fn — p | soit petit
quand n est grand, mais il n'en résulte pas que /„ tende vers p.
Au contraire, si l'on admet le théorème de Borel, le théorème
de Bernoulli en résulte, c'est-à-dire que si s est un nombre positif
arbitraire, la probabilité pour que | fn— p | < s tend vers l'unité
quand noo. Le théorème de Bernoulli est donc une simple
conséquence d'un théorème plus général, celui de Borel et une
conséquence moins simple à saisir — et pour cette raison, souvent
mal interprétée — du théorème de Borel.

On n'a malheureusement pas encore pris l'habitude de

considérer le théorème de Borel sous cet aspect. Avant Borel,
le théorème de Bernoulli était un théorème fondamental.
Après Borel, c'est le théorème de Borel qui doit lui être
substitué.

La démonstration de Borel est analytique, mais il avait
indiqué qu'on pourrait donner aussi une démonstration géométrique

de son théorème. Cette démonstration géométrique a été

explicitement obtenue, plus tard, par F. Hausdorff.
La démonstration analytique de Borel est assez compliquée.

Une démonstration à la fois plus simple et d'une portée plus
générale a été donnée plus tard par Cantelli. Mais on doit noter
que la démonstration de Borel a l'avantage de se prêter mieux
à une étude plus précise du comportement de la fréquence.

Nous avons aussi signalé plus haut une autre caractéristique
du théorème de Borel: c'est qu'il introduit (encore une fois
implicitement) une espèce nouvelle de convergence: «la
convergence presque certaine ».

Généralisant la circonstance qui se présente dans le théorème
de Borel, on est partout convenu maintenant de dire qu'un
nombre aléatoire Xn converge presque certainement vers un
nombre aléatoire A quand la convergence de X±, X2, Xn

L'Enseignement mathém., t. XI, fasc. 1.
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vers X est un événement presque certain, c'est-à-dire dont la
probabilité est égale à l'unité.

On peut dire que par la précision donnée au théorème de

Bernoulli et par l'introduction de la convergence presque certaine,
Borel s'est placé au premier rang des successeurs de Laplace
et de Poincaré.

II. Poursuivant son étude des «probabilités dénombrables »,

Borel considère [S., p. 131] les lois de probabilité des quotients
incomplets, An, de la fraction continue

1

X

représentant un nombre incommensurable X compris entre 0

et 1 et dont la loi de probabilité est uniforme.
En appelant <p (n) une fonction positive croissante de ji,

Borel trouve que:
1

I si la série 1 est convergente, la probabilité pour que
cp (n)

l'on ait
An <cp (h)

à partir d'un certain rang est égale à un;
II si cette série est divergente, il y a une probabilité égale à

un pour que l'on ait
An > (p (n)

à partir d'un certain rang.
En d'autres termes, il est infiniment probable que la croissance

asymptotique de An est comprise entre celle de toute fonction
1

cp (n) telle que la série I soit convergente et celle de toute
(p (n)

fonction (p (n) telle que cette série soit divergente.
Dans le même mémoire, Borel exprime une opinion qu'il a

souvent répétée, à savoir qu'une « probabilité nulle ou extrêmement

petite doit être considérée comme équivalent à l'impossibilité

». C'est une opinion qui avait déjà été formulée, longtemps
auparavant, par Bufîon, puis par Cournot. Bufïon et Borel ont
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même chiffré, chacun de leur côté, ce qu'ils appellent «extrêmement

petite ». Borel en a donné une image concrète très

frappante, le « miracle des singes dactylographes ». Peut-on concevoir

que si un million de singes travaillaient dix heures par jour sur

un million de machines à écrire et si leur production était
successivement reliée en volumes, l'ensemble des volumes
obtenus au bout d'un an se trouverait renfermer la copie exacte
des livres de toute nature et de toutes les langues conservés dans

les plus riches bibliothèques du monde? Il n'est douteux pour
personne qu'un tel événement doit être considéré comme
impossible, bien que sa probabilité si elle est extraordinairement
petite, ne soit pas rigoureusement nulle.

Théorie des jeux stratégiques.

Sortant de la théorie pure pour aller vers les applications
(du calcul des probabilités), Borel s'est encore ici montré un
novateur dont les idées et les résultats ont donné lieu à un
nombre énorme de travaux.

Jusqu'à lui — sauf dans des problèmes très particuliers dont
aucune généralisation n'était entreprise — l'étude des jeux de

hasard en calcul des probabilités s'était bornée aux cas où
chacun des événements considérés avait une probabilité
déterminée: jeu de pile ou face, jeu de dés, etc. L'intelligence, le
caractère des joueurs n'y avaient aucune part. Il n'en est pourtant

rien dans la plupart des jeux en usage: jeu de dames, jeu
d'échecs, jeu de bridge, etc. On doit alors admirer avant tout
que Borel ait eu l'audace de vouloir établir une théorie générale
des jeux psychologiques et de concevoir la possibilité d'y
parvenir en appliquant le calcul des probabilités à des hypothèses
convenablement choisies. Il a choisi, à cet effet, des hypothèses
plausibles, et a pu déterminer dans des cas particuliers les
conséquences de ces hypothèses. Ce n'est pas tout; il a aperçu, dès
sa première publication sur ce sujet, que le problème posé par
lui avait des applications dans des domaines variés: économie,
politique, stratégie, psychologie, etc.

Pour éclairer ce qui précède, il nous faut, maintenant,
préciser les hypothèses de Borel. Contrairement à certains esprits,
nous ne pensons pas que ces hypothèses soient inéluctables eh
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d'ailleurs elles ont été discutées. Mais ce sont des hypothèses qui,
d'une part, sont plausibles et qui, d'autre part, se prêtent à un
traitement mathématique du problème, deux qualités qui sont
très loin d'être toujours conciliables. L'un des principaux
mérites de Borel est d'avoir montré qu'un tel choix d'hypothèses
est possible, même si l'on n'admet pas qu'il soit nécessairement
le seul ni le meilleur possible.

Les hypothèses de Borel.

A chaque coup à jouer, un joueur se trouve dans une circonstance

déterminée dont certains éléments lui sont connus; par
exemple, au jeu de cartes, l'ensemble des cartes qu'il a dans la
main et la suite des coups précédents. Sur la base de ces données
et sur l'hypothèse qu'il fait sur la psychologie des autres joueurs,
il décide son coup. Borel élimine cette hypothèse 1 et considère
l'ensemble des données et du choix du joueur. Il y a, dans la
plupart des jeux, un nombre fini, quoique très grand, de tels
ensembles. Au cours d'un jeu, un joueur adopte successivement

un nombre fini de tels ensembles et caractérise ainsi sa « méthode
de jeu». Il y a un nombre fini de méthodes de jeu possibles:
<?!, C2, Cn et chaque joueur adopte nécessairement l'une
d'elles à chaque coup. Mais il y a au début du jeu (par exemple,
quand on distribue les cartes) ou au cours du jeu, une intervention
du hasard. Si donc, en considérant le cas de deux joueurs, A et
B, le joueur A adopte la méthode de jeu Ct et le joueur B la
méthode Cfc, c'est le calcul des probabilités qui permettra de

calculer la probabilité nik pour que A gagne finalement. On a
alors à chercher d'abord s'il existe une méthode de jeu Ct pour A,
telle que nik soit positif quel que soit k (c'est-à-dire quelle que
soit la méthode Ck adoptée par B). Alors A aurait intérêt à

adopter la méthode Ct (ou l'une des méthodes Ct pour lesquelles

7iik est positif quel que soit k).
Borel se place dans le cas où une telle méthode de jeu n'existe

pas et il se demande s'il n'est pas possible de jouer d'une manière

avantageuse en variant son jeu. « Si l'on veut formuler une règle
précise pour varier le jeu, cette règle ne faisant intervenir que

i) Voir page suivante, la citation 011 Borel énonce cette élimination, qui évidemment,

éloigne un peu la théorie de la réalité.
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les faits observés et non pas des remarques psychologiques sur

le joueur auquel on est opposé, cette règle équivaut forcément

à un énoncé tel que le suivant: la probabilité pour que, en un
moment donné du jeu, A adopte, pour fixer sa conduite à ce

moment, le code Ct est \ la probabilité analogue pour B pourra
être désignée par qk et, en désignant par n le nombre de codes

qui subsistent, on a

X Pi 1, Eft« 1" (1)
i=l k=l

La probabilité de gain de A est donc

n n

p£ E Pi Qk-
i=l k l

Borel se place alors, pour simplifier, dans ce qu'il appelle le cas

symétrique, caractérisé par l'égalité nH i, c'est-à-dire que
si les deux joueurs adoptent la même méthode de jeu, leurs
chances de gagner sont égales. Il observe que dans la plupart
des jeux de cartes où l'un des joueurs joue le premier, ces deux
chances ne sont pas égales, mais qu'elles le deviennent si le jeu
consiste en deux parties où l'un des joueurs commencera le jeu
dans la première et l'autre dans la seconde. Comme on a évidemment

^ik "h TT/ci 1

OU

1 1

nik — - + ccik nki - + ccki

avec ocik + aki 0, on aura

n i-l
avec a £ £ *jk(Pt<lk-Pk<h)

i l k l

Tout ce qui précède figure dans la première Note de Borel.
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Dans cette même Note, Borel prouve que, dans le cas où

n 3, «il est facile de trouver des nombres positifs pl5 p2, p3
vérifiant (1) et tels que a soit nul et donc P \ quels que soient
les nombres gx, g2, q3. Il est donc possible d'adopter une manière
de jouer permettant de lutter avec des chances égales contre
tout joueur ».

Dans sa dernière Note sur les jeux, Borel procède autrement
mais ramène au même problème mathématique. Au lieu de partir
de la probabilité pour le joueur A de gagner, il part du gain

moyen de A, soit gik quand A adopte le code Ct et B le code Ck.

La symétrie du jeu entraîne

9ik + Qu 0 •

Quand les codes Ct et Ck ne sont adoptés par A et B qu'avec les

probabilités pt et qk1 le gain moyen de A sera

G Z 9tk Pi 9k

Par une méthode différente de la précédente, Borel montre alors

que, pour n 3 et n 5, on peut trouver des probabilités qk

telles que G soit nul quels que soient les pt.
Le problème de démontrer qu'il n'en est pas ainsi avait été

d'abord prouvé insoluble pour n — 3 par Borel. Dans ses

Notes successives, il lui avait paru d'abord soluble pour n 5;
puis ayant pu prouver qu'il était insoluble pour n 5, il avait
à ce moment pensé qu'il était soluble pour n 7. Enfin, il
termine sa dernière Note en écrivant que ce même problème
« insoluble pour n 3 et n 5 me paraît également insoluble

pour n 7. Il serait intéressant, soit de démontrer qu'il est

insoluble en général, soit d'en donner une solution particulière ».

Il est clair que l'évolution de sa pensée le conduit à croire

que, quel que soit le nombre n des manières de jouer, on peut
choisir les probabilités qk pour B de choisir les codes Ck de sorte

que, quelles que soient les probabilités pt pour A de choisir les

codes Ch la moyenne du gain total de A et celle du gain total
de B soient toutes deux nulles.

Toutefois, on doit constater que Borel n'a pas démontré

qu'il en était ainsi quel que soit n et qu'il n'a même pas,
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contrairement à son habitude, exposé en détail dans un mémoire,

les Notes qui résumaient ses résultats dans les C.R.

On peut trouver l'explication de ces faits dans l'évolution de

ses activités. Borel, pendant une certaine période, a, en effet,

été pris de plus en plus par son activité politique (voir p. 12).

D'abord maire de sa ville natale, puis conseiller général de son

département, il a été élu député en 1924 et l'est resté jusqu'en
1936. Dans l'intervalle, il a même été quelques mois, ministre
de la Marine et nous avons même eu l'honneur de le remplacer
comme professeur et de le dispenser ainsi de faire ses cours à la
Faculté des Sciences. De sorte qu'après avoir posé le problème
et l'avoir résolu dans les cas les plus simples, Borel n'a plus eu le

temps d'étudier en détail le problème mathématique qui restait
à résoudre.

C'est après la dernière Note (de 1927) de Borel que von
Neumann en 1928, adoptant exactement les mêmes hypothèses,
a réussi à démontrer un théorème (dit du minimum — maxi-
morum) équivalent au théorème de Borel, dans le cas général
de n quelconque. Puis, associé avec l'économiste Morgenstern,
il en a tiré une théorie économique générale.

La théorie de von Neumann-Morgenstern a eu un retentissement

considérable, tandis que les Notes de Borel restaient
ignorées. C'est pourquoi nous avons décidé de rappeler l'antériorité

de Borel et nous avons publié dans « Econometrica » en

1953, une excellente traduction en anglais, réalisée par M. Savage
des trois Notes les plus importantes de Borel, avec un commentaire.

Nous avions auparavant communiqué ce commentaire à

von Neumann dont la réponse a été publiée dans le même
numéro d'Econometrica. Tout naturellement von Neumann a

réagi vigoureusement, alléguant que rien ne pouvait être retenu
de la théorie de Bore], avant sa propre démonstration du théorème

général. D'après lui « en 1921 et ultérieurement Borel
suppose que le théorème est ou risque d'être faux ». Mais si cette
assertion est rigoureusement exacte, elle doit être complétée par
la citation de Borel faite plus haut, montrant que Borel a fini
par pencher vers l'exactitude générale du théorème.

Von Neumann ajoutait «j'avais moi-même élaboré mes idées
sur le sujet avant d'avoir lu ses Notes (les Notes de Borel) ».
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Mais en tout cas, il en avait lu une avant de publier son premier
Mémoire (de 1928) où il cite lui-même cette Note de Borel.

Si notre publication dans Econometrica avait révélé à beaucoup

l'antériorité de Borel, elle n'avait pas atteint tous les
intéressés. C'est pourquoi, d'accord avec M. Guitton, rédacteur
de la Revue d'Economie politique, nous avons publié, dans
cette revue en 1959, à nouveau, mais cette fois en français, dans
le texte original, les trois Notes de Borel et notre commentaire
ainsi que la traduction du commentaire en anglais de von
Neumann.

Dans les innombrables publications sur les jeux psychologiques

et sur leurs applications à l'Econométrie, il ne sera plus
admissible d'ignorer l'antériorité de Borel.

Malheureusement, tel n'est pas encore le cas. En 1959, dans

une Notice, d'ailleurs très intéressante sur le grand mathématicien
que fut von Neumann, l'auteur commence ainsi:

« Theory of games.

The essential ingredients of von Neumann's theory of games are
already to be found in his 1928 paper

The first application of game theory to an economic problem
was given in a 1937 paper ».

Et sur ces deux sujets, le nom de Borel n'est même pas
mentionné. Or:

1° le premier mémoire de von Neumann sur la théorie des

jeux a été publié après la dernière Note de Borel sur le même

sujet, et en connaissance de la théorie de Borel, qu'il cite. Les

hypothèses à la base de la théorie de von Neumann sont en outre
identiques à celles de Borel.

2° Borel, et non von Neumann, a été le premier à signaler

que la théorie des jeux est applicable, non seulement à l'Economie

politique, mais aussi à l'art militaire, à la psychologie, etc.

Ceci dit, il faut reconnaître que von Neumann et Morgenstern
ont très bien développé l'application de la théorie des jeux à

l'Economie politique.



II. Physique mathématique

Sans aucun doute, les activités exercées par Borel pendant
la première guerre, — activités qui Font amené à étudier des

problèmes concrets — ont conduit Borel à s'intéresser de plus en

plus à la Physique. Mais cet intérêt s'était déjà manifesté auparavant

et pour des raisons toutes différentes.
Dès 1906, Borel s'occupe de la théorie cinétique des gaz et de

la loi de Maxwell correspondante, après avoir constaté combien
sont insuffisantes les diverses démonstrations de cette loi. Pour

y apporter la rigueur [96], il prépare le lecteur en étudiant d'abord
la répartition des petites planètes et montrant la nécessité de

donner un sens aux positions antérieures du problème. Dans le

cas des gaz, la discussion est un peu plus compliquée, mais elle

l'amène encore à rejeter les formes du problème antérieurement
admises et à leur substituer un problème qui, après une réduc
tion que nous allons expliquer, prend la forme G énoncée

plus loin.
On part d'hypothèses précises sur les molécules du gaz, qui

conduisent à ramener l'étude du gaz à celui du mouvement de

n sphères égales se mouvant dans un certain domaine où elles

peuvent se réfléchir à la suite d'un choc, soit sur les parois, soit
entre deux d'entre elles. Borel ramène le mouvement des n
centres des n sphères dans l'espace usuel à 3 dimensions au cas
du mouvement d'un point P dans un domaine D de l'espace
à 3 n dimensions, où les lois de la réflexion sur les parois sont
analogues aux lois classiques. En vertu de la conservation de

l'énergie, la vitesse de P est constante. Soit OV le vecteur
d'origine fixe 0, équipollent à cette vitesse. V se déplace sur
une sphère S. Borel énonce alors ainsi la forme finale, G, qu'il
donne au problème.

Il admet que la position de la paroi et les données initiales
sont des éléments aléatoires dont les lois de probabilité sont
connues. Le problème est de déterminer la probabilité que le
point V soit dans un domaine élémentaire dco de la surface de S
à une époque t comprise entre des limites connues, que l'on fera
ensuite croître indéfiniment.
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Borel démontre alors que la probabilité limite cherchée est

proportionnelle à dœ, c'est-à-dire que toutes les directions de

OV sont également probables (pour un temps suffisamment long).
En précisant le calcul, Borel retrouve enfin la loi de Maxwell.

D'après lui, ce calcul fournit la plus simple des démonstrations
rigoureuses de cette loi.

Dans sa conférence au Rice Institute [S., p. 317], Borel étudie
plusieurs aspects du passage du fini à l'infini en mathématique
et observe le parallélisme avec le problème de savoir si la Nature
est discontinue ou continue, ce qui entraîne la question de la

légitimité en Physique des théories moléculaires.
Borel note d'abord que c'est souvent «une simplification en

Mathématiques que de remplacer par l'infini un nombre fini très
grand ». Il en cite plusieurs exemples. Limitons-nous au premier
qui conduit à constater « que le calcul des intégrales définies est

souvent plus simple que celui des formules sommatoires». Mais il
étudie aussi le passage inverse de l'infini au fini, qui correspond
en physique à l'introduction des théories moléculaires. Il observe
alors que « les considérations basées sur l'existence des molécules

n'y jouent qu'un rôle auxiliaire ».

« La théorie moléculaire a donc été un guide précieux pour
l'analyste en lui suggérant la marche à suivre pour étudier les

équations du problème, mais elle est éliminée de la solution
définitive ».

On pourrait encore préciser ces réflexions. Il est exact que,
pendant longtemps, les mathématiciens ont abordé les problèmes
où figuraient des variables continues en remplaçant celles-ci

par des variables discontinues et passant à la limite. Comme
le dit Borel, cette façon de procéder permettait de pressentir
la forme de la solution. Mais pour établir celle-ci, il fallait établir
l'existence et la forme d'une limite et c'était là souvent un
problème très difficile. Depuis lors, la tendance s'est faite jour,
de plus en plus, d'éviter cette difficulté en cherchant à préciser
dans la discussion du cas discontinu tout ce qui gardait un sens,

que le nombre des valeurs des variables soit fini ou non. On arrive
ainsi à une solution s'appliquant directement au problème posé
dans le cas continu. C'est ainsi que l'étude des équations intégrales
symétriques faite par Hilbert en résolvant le problème difficile
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d'un passage à la limite s'est révélée à la fois plus simple et plus
élégante dans l'étude directe de E. Schmidt. Un exemple
analogue est fourni par la démonstration de Fredholm de l'existence
d'une solution de son équation intégrale. Sa marche est analogue
à celle de la solution d'un système de n équations linéaires à n
inconnues; mais si elle s'est trouvée ainsi guidée par l'étude de

ce problème, à aucun moment sa démonstration ne fait intervenir

le passage à la limite du cas d'un nombre fini de variables
à un nombre infini.

Borel revient au cas discontinu en observant qu'il « peut être
intéressant de se proposer, au point de vue purement mathématique,

l'étude directe de fonctions ou d'équations dépendant
d'un nombre fini de variables, mais très grand ». Il se trouve
alors ramené à une question qui lui tient à cœur et qu'il a souvent
agitée sous différentes formes:

« La première difficulté qui se présente lorsqu'on veut étudier
des fonctions d'un très grand nombre de variables, est la définition

précise d'une telle fonction, j'entends par là une définition
individuelle, permettant de distinguer la fonction définie de

l'infinité des fonctions analogues ». Borel se demande « si l'on
peut considérer comme donné » un ensemble de nombres dont
« la vie d'un homme ne suffirait à en énumérer une faible partie ».

Pour lui, un tel ensemble peut être considéré comme déterminé
« par la connaissance d'une formule assez simple pour être
effectivement écarté, tandis qu'il n'est pas possible d'écrire
effectivement autant de nombres distincts ». Il peut être
aussi déterminé en considérant l'ensemble comme l'ensemble des
valeurs que peut prendre un nombre aléatoire dont la loi de

probabilité est donnée.
Ces considérations sont tout à fait justifiées quand il s'agit de

définitions et d'applications « constructives ». S'il s'agit de
définitions et d'applications « descriptives », la situation est
différente. La démonstration, par exemple, que le terme général d'une
série convergente tend vers zéro quand son rang croît indéfiniment,

nous paraît correcte sans que ce terme général soit représenté

par une formule simple ou qu'il relève du calcul des
probabilités et même si la vie d'un homme ne suffisait pas à
énumérer une faible partie de la suite des termes de la série.



— 92 —

Cette observation n'enlève rien à l'intérêt de la distinction
que fait Borel des ellipsoïdes «très irréguliers» parmi les
ellipsoïdes dans un espace à un très grand nombre de dimensions.
Borel appelle ainsi ceux pour lesquels la moyenne des inverses
des quatrièmes puissances des longueurs des axes n'est pas du
même ordre de grandeur que le carré de la moyenne des inverses
des carrés des longueurs des axes. D'après Borel, il convient, pour
obtenir des résultats utiles sur les ellipsoïdes, d'exclure ces

ellipsoïdes très irréguliers. «Lorsqu'un ellipsoïde n'est pas très
irrégulier, plusieurs de ses propriétés nermettent de l'assimiler à

une sphère ».

« Une figure qui dépend d'un nombre extrêmement grand de

paramètres ne peut être considérée comme numériquement
déterminée que si ses paramètres sont définis au moyen de données

numériques assez peu nombreuses pour nous être accessibles ».

Plus loin, Borel développe les raisons pour lesquelles il
convient souvent de remplacer une variable ayant un nombre de

valeurs fini mais très grand par une variable ayant une suite
infinie mais énumérable de valeurs. Et ceci, plutôt que par une
variable continue comme on faisait en physique mathématique
classique où l'on supposait la matière continue.

Une autre des suggestions mathématiques qu'offrent les

théories moléculaires concerne les fonctions d'une variable
complexe. Pour le montrer, Borel considère le potentiel d'un système
formé d'une suite infinie de points isolés, la masse concentrée en
chacun de ces points étant finie ainsi que la masse totale. Pour
simplifier, limitons-nous au cas d'un système plan et, par suite,
d'un potentiel dit logarithmique. Supposons, de plus, que les

masses sont réparties en un ensemble de points qui, dans une
certaine région, est partout dense. Mais « l'hypothèse que les

masses attirantes sont de simples points matériels sans dimension

est difficile à accepter au point de vue physique. On est
ainsi conduit à disperser cette masse dans un petit cercle ayant
le point pour centre sans changer le potentiel à l'extérieur de

ce cercle qu'on nommera le cercle d'action de son centre. On

répartit les masses et les densités de telle manière que la densité
s'annule ainsi que ses dérivées sur le périmètre du cercle; elle est
ainsi non seulement finie mais continue ».



— 93 —

Borel démontre que, par une répartition convenable de la

densité, on arrive à un résultat qui peut étonner. On aurait pu
craindre qu'il n'y eût pas de place libre entre des points matériels
tellement serrés par hypothèse. En fait, Borel démontre « qu'il
y a des points en lesquels se croisent une infinité de droites sur
lesquelles la densité est nulle; en ces points, la fonction potentielle

logarithmique satisfait à l'équation de Laplace ».

Borel passe alors à la situation correspondante dans la
théorie des fonctions d'une variable complexe. Soit une fonction
à pôles denses dans une région; on peut définir dans cette région
« une infinité de droites, se croisant dans tous les sens, la fonction
admettant des dérivées continues sur ces droites et la dérivée

ayant la même valeur dans toutes les directions en chacun des

points de croisement de ces droites. Nous retombons ainsi sur
la théorie des fonctions monogènes résumée plus haut (p. 69),
mais reliée ici à une théorie physique moléculaire. C'est une
extension magnifique de la théorie des fonctions analytiques
grâce à laquelle Borel a pu dépasser l'extension précédente due
à Weierstrass.

A la fin du même mémoire, Borel survolant son sujet,
s'exprime ainsi: «C'est toujours au contact de la Nature que
l'Analyse mathématique s'est renouvelée, ce n'est que grâce à ce

contact permanent qu'elle a pu échapper au danger de devenir
un pur symbolisme, tournant en rond sur lui-même ». On
ne saurait mieux dire, pourvu qu'on complète cette assertion.
Les mathématiciens sont, en effet, nécessairement amenés à

réaliser un travail interne, consistant en une refonte continuelle
de l'armature des mathématiques, pour les simplifier et les
harmoniser. Il y a une tendance vers l'abstraction qui semble
éloigner les mathématiques de la Nature, mais qui, en réalité,
n'a pour but que de dégager l'essentiel et le commun dans les

problèmes, généralement particuliers, posés par la Nature et
ainsi de rendre leurs solutions applicables à de nouveaux
problèmes posés par la Nature.

V irréversibilité.

Depuis Loschmidt en 1876, on fait souvent la remarque
suivante: les équations de la dynamique ne sont pas modifiées
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quand on change les signes des vitesses, ce qui revient à changer
le signe du temps. Ces équations ne permettent donc pas de

prévoir dans l'avenir une évolution différente de ce que serait
l'évolution en remontant vers le passé. Dès lors, il semble en
résulter que les phénomènes irréversibles sont impossibles.
Borel a donné [S., p. 341] une explication de ce paradoxe.

Il admet que cette objection serait valable, si toutes les

conditions initiales étaient données avec une exactitude absolue.
Mais cette hypothèse lui parait irréalisable. Cette exactitude
absolue devra laisser place à un certain flottement. Il en résulte

que l'avenir n'est pas entièrement déterminé, alors qu'on ne

peut parler d'une indétermination du passé. Il n'y a donc plus
une réversibilité absolue. Dans certains cas, on aura des phénomènes

presque réversibles, dans d'autres ils seront irréversibles.
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