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SOCIÉTÉ MATHÉMATIQUE SUISSE

Frühjahrssitzung in Bern, 30. 5. 65

Herr Prof. Dr. R. Brauer (Harvard University) hält einen Vortrag
über „Einige neuere Entwicklungen in der Theorie der endlichen
Gruppen (Bericht)".

JahresVersammlung in Genf, 25. 9. 65

An der Jahresversammlung werden neun wissenschaftliche
Mitteilungen vorgelegt, die untenstehend entweder durch Titel oder
durch Auszug angeführt sind:

Sophie Piccard (Neuchâtel): Les groupes libres et quasi-libres
modulo n. Des théorèmes d'existence.

Jules Chuard (Lausanne): Réseaux cubiques tracés sur une sphère.

André Ammann (Yverdon): Fibrations cycliques d'un espace fibré
circulaire cycliquement partitionné.

Cécile Tanner (Londres): L'algèbre de Thomas Harriot (1560-1621 )^

M. A. Knus (Zürich): Algèbres graduées et algèbres filtrées.

Urs Stammbach (Zürich): Homologische Methoden in der Gruppentheorie.

François Sigrist (Zürich): Obstruction et transgression.
Georges Leresche (Neuchâtel): Algèbres d'opérateurs non bornés

sur l'espace d'Hilbert.
Jean-Claude Holy (Genève): Sur l'ensemble des valeurs stationnaires

d'une application difïérentiable.

Herr Prof. H. Debrunner (Bern) hielt einen Hauptvortrag über
„Aspekte der Knotentheorie".
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Sophie PiccARD (Neuchâtel): Les groupes libres modulo n. Les groupes
quasi libres modulo n. Théorèmes d* existence.

Le présent travail se place dans le cadre de l'étude générale
suivante :

1. Rechercher les caractères qui peuvent être communs à toutes les
relations reliant un ensemble de générateurs d'un groupe
multiplicatif.

2. Etant donné un ensemble de propriétés qui peuvent être com¬
munes à toutes les relations reliant les éléments d'un ensemble de

générateurs d'un groupe multiplicatif, étudier la classe de groupes
dont chacun possède au moins un ensemble de générateurs, tel
que toute relation qui les lie possède les propriétés données.
Six classes de groupes ont été découvertes et étudiées par cette
voie: ce sont les groupes libres, quasi libres, pseudo-libres et les

groupes libres, quasi libres et pseudo-libres modulo n, où n est
un entier > 2 donné.

Un groupe multiplicatif G est appelé libre modulo n s'il possède
au moins un ensemble A de générateurs — dits libres modulo n —
qui ne sont liés que par des relations triviales modulo w, c'est-à-dire
par des relations de la forme / (al7 au) 1 où 1 est l'élément
neutre de G et / est une composition finie des éléments du sous-
ensemble A* {al7 au} de A, totalement réductible modulo n
(rappelons que la réduction modulo n d'un produit de puissances
entières d'éléments de A* consiste à effectuer alternativement et aussi

longtemps que possible l'une ou l'autre des deux opérations élémentaires

suivantes: 1. Réduction, par le seul jeu des axiomes de groupe
multiplicatif, du produit considéré à la forme 1) a°u\ a£{, où aUs e A*,
5 1, I, ^ aUs+1, 5 1, l — 1, et où vs est un entier non
nul quel que soit s 1,...,/. 2. Réduction, dans un produit de la
forme 1), de tous les exposants modulo n. Après un nombre fini
d'opérations de ce genre, on tombe soit sur un reste qui est 1,

auquel cas le produit considéré est dit totalement réductible modulo n,
soit sur un reste de la forme 1) où l A 1 et où cq, e* sont des entiers
compris entre 1 et n—1. Les groupes libres modulo n ont été découverts
en 1964. Ils constituent une vaste classe de groupes, dont les groupes
libres ne sont qu'un cas très particulier.

Un groupe multiplicatif G est dit quasi libre modulo n s'il possède
au moins un ensemble de générateurs quasi libres modulo n qui ne
sont liés que par des relations quasi triviales modulo n, c'est-à-dire
par des relations de la forme f (av t au) 1, où / est une composition

finie d'éléments de A, de degré 0 (mod n) par rapport à

chacun d'eux.
Soit G un groupe quasi libre modulo n et soit A un ensemble

donné de générateurs quasi libres modulo n de G, Tout élément de A
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est soit d'ordre infini, soit d'ordre fini multiple de n. Tout élément
de G possède un degré fixe modulo n par rapport à tout élément de

A et on peut répartir les éléments de G en classes d'équivalence M^n\
en prenant dans une classe TU") deux éléments de G dans le cas et ce

cas seulement où ils sont du même degré modulo n par rapport à

tout élément de A.
On peut munir l'ensemble des classes M<») d'une structure de

groupe abélien en appelant produit de deux telles classes QtU") et
2TU") l'ensemble des éléments ab de U, tels que a e -Qf/D) et be STU").
Avec cette loi de composition, l'ensemble T(n) des classes Mest
un groupe abélien associé à G. Quel que soit le sous-groupe y de

r<»>, la réunion des classes Mqui constitue les éléments de y est un
sous-groupe invariant de G. Les classes TU") ont un caractère intrinsèque,

indépendant de l'ensemble de générateurs A à partir duquel
elles ont été définies. Tout groupe quasi libre modulo n est
fondamental et tout ensemble A de générateurs quasi libres modulo n de

G est un ensemble irréductible de générateurs de G.

Un groupe libre modulo n non cyclique n'est pas abélien.
Tout groupe libre modulo n est quasi libre modulo n et par suite

il jouit de toutes les propriétés d'un groupe quasi libre modulo n. Mais
tout groupe quasi libre n'est pas libre modulo n.

Soit maintenant G un groupe libre modulo n et soit A un ensemble
de générateurs libres modulo n de ce groupe.

Tout élément de G possède un reste fixe r modulo n et on peut
répartir les éléments de G en classes Cr en prenant dans une même
classe C deux éléments de G dans le cas et dans ce cas seulement où
ils ont le même reste r modulo n. Les classes Cr munies de la même loi
de composition que les classes TU") forment un groupe Gc qui n'est,
en général, pas abélien, mais qui jouit de cette propriété que quel
que soit le sous-groupe gc de Gc, la réunion des classes Cr qui forment
le groupe gc est un sous-groupe de G. L'élément neutre du groupe Gc

est la classe formée de tous les éléments de G qui sont représentés
par des compositions finies d'éléments de A totalement réductibles
modulo n. C1 est un sous-groupe invariant de G. Le groupe Gc est
indépendant de A. Deux éléments a et b de G sont dits symétriques
modulo n, si leur produit ab — c e Cv Un sous-groupe g de G est dit
invariant modulo n si agb g quel que soit le couple a, b d'éléments
de G symétriques modulo n. C1 et G lui-même sont des sous-groupes
invariants modulo n de G. Il en est de même de la réunion des classes C
qui forment un sous-groupe de n. Mais { 1 } ne l'est en général pas.
L'ensemble des sous-groupes invariants modulo n d'un groupe libre
modulo n forme un treillis avec les deux lois de treillis : intersection et
union. On appelle automorphisme modulo n du groupe G toute application

sé^ de G sur lui-même qui détermine un isomorphisme du groupe
GfC:j. Dans tout automorphisme modulo /?,, la classe Cx est appliquée
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sur elle-même de façon binumivoque et au produit de deux éléments
de G correspond toujours le produit de leurs images multiplié par un
élément de Cv Quel que soit le couple a, b d'éléments, symétriques
modulo n de £, l'application qui fait passer de tout élément d de G
à adb est un automorphisme modulo n dit automorphisme intérieur
modulo n. L'ensemble de tous les automorphismes modulo n d'un
groupe libre modulo n est un groupe dont l'ensemble de tous les

automorphismes intérieurs modulo n est un sous-groupe. Tout
automorphisme de G est aussi un automorphisme modulo n et tout
automorphisme intérieur est aussi un automorphisme intérieur modulo n.

On appelle endomorphisme modulo n de G une application <f(w)

de G dans G qui détermine un endomorphisme du groupe G/Cv Dans
tout endomorphisme mod n la classe C1 est appliquée sur elle-même.

Un sous-groupe g de G est dit caractéristique modulo n s'il est
transformé en lui-même par tous les automorphismes modulo n de G.
En particulier, C1 et G sont de tels sous-groupes de G. Un automorphisme

modulo n ne transforme pas nécessairement un ensemble de

générateurs libres modulo n en un ensemble du même type: l'ensemble
des images peut même ne pas engendrer G. Un groupe G libre modulo n
est dit élémentaire s'il possède au moins un ensemble A^jB de
générateurs liés par les seules relations caractéristiques bn 1, quel que
soit b G B. Si B 0, G est libre et tout groupe libre est un groupe
libre modulo n élémentaire. Un groupe libre modulo n élémentaire
est le produit libre des groupes cycliques engendrés par les éléments de
l'ensemble A^B. Il est indépendant de la nature de ses éléments et
tout groupe libre modulo n est entièrement caractérisé par un couple
ordonné m n qui sont les cardinaux des ensembles A et B. Pour tout
couple ordonné m, n de nombres cardinaux, il existe un groupe libre
modulo n élémentaire dont ils sont les caractéristiques. Si n est

premier, tout sous-groupe d'un groupe libre mod. n élémentaire est
aussi libre mod. n et élémentaire. Mais il existe une infinité de groupes
libres modulo n non élémentaires et qui ne sont pas les produits
libres des groupes cycliques engendrés par les éléments d'un ensemble
quelconque A de générateurs libres modulo n. Tel est, par exemple,
le groupe G (a, b) libre modulo 2 de transformations des entiers qui
est engendré par les deux cycles infinis a —3, —2, —1, 0, 1,

2, 3, et b 3, 4, 1, 2, —1, —2, —3, —4, qui sont deux
générateurs libres modulo 2 de g (a, b) liés par une infinité de relations
non triviales, parmi lesquelles (a2hb2h)h+1 1, quel que soit l'entier

h. Ce dernier groupe possède des sous-groupes non fondamentaux,
donc non libres modulo ft, par exemple le sous-groupe y de toutes les

substitutions d'un nombre fini quelconque d'entiers quelconques. Il
existe un groupe libre modulo n engendré par deux générateurs
a et &, libres modulo 2 et qui sont liés par la seule relation caractéristique

a2 b2 1. Pour tout nombre cardinal m, il existe un groupe G
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libre modulo n, engendré par un ensemble A de générateurs libres
modulo n, de puissance m. Il existe également, pour tout nombre
cardinal m, un groupe G quasi libre modulo n engendré par un
ensemble A de puissance m de générateurs quasi libres modulo n, quel

que soit l'entier de n ^ 2.

D'un ensemble donné A de générateurs libres modulo n d'un
groupe G libre modulo n on peut déduire de nouveaux ensembles de

générateurs libres modulo n par application répétée des deux opérations

suivantes:

1. Remplacement d'un élément a de l'ensemble considéré par am,
où m est un entier, de la suite 1, 2, In— 1, premier avec In
si a est d'ordre fini In (l entier ^ 1), ou bien m — 1, si a est,
d'ordre infini.

2. Remplacement d'un élément quelconque a de l'ensemble de géné¬
rateurs considéré par son produit, à droite, à gauche ou des deux
côtés à la fois, par une composition finie totalement réductible
modulo n d'éléments autres que a de l'ensemble considéré de

générateurs.

Soient a et b deux éléments quelconques d'un groupe G libre modulo
n, soit a* un élément de G symétrique de a modulo n et soit b* un
élément symétrique de b modulo n. Le produit aba*b* est appelé un
commutateur de a et b modulo n. Il existe en général plusieurs commutateurs

modulo n de deux éléments a et b de G. Le sous-groupe de G

engendré par l'ensemble des commutateurs modulo n de couples
d'éléments de G est un sous-groupe invariant modulo n de G, appelé
le sous-groupe commutateur modulo n de G.

Une succession finie de groupes G0, Gu »... 5 Gu, telle que G0
G, Gu C±, G0 D G1 DD Gu et où Gs est un sous-groupe maximum
invariant modulo ndeGg-^s 1,... w, est appelée série de composition
modulo n de G. Un groupe libre modulo n ne possède pas toujours une
telle série de composition.

Tout groupe libre modulo n élémentaire non cyclique possède
une infinité de sous-groupes libres. Le centre d'un groupe libre
modulo n élémentaire non cyclique se réduit à 1, mais un groupe
libre anodulo n non élémentaire peut posséder des éléments
centraux 1.

Tout groupe G libre modulo n est un produit libre des groupes
cycliques engendrés par les éléments de n'importe quel ensemble de
générateurs libres modulo n de G.
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J. Chuard (Lausanne): Réseaux cubiques tracés sur une sphère.
Le greffage.

Un réseau tracé sur une sphère transforme la surface de celle-ci
en un polyèdre. Les arêtes des polyèdres que nous examinons forment
un réseau cubique. Il s'en suit qu'à chaque sommet aboutissent
3 arêtes. Les faces du polyèdre sont simplement connexes. Le polyèdre
a oc0 sommets, arêtes et oc2 faces. Nous introduisons un nombre fx

qui fixe la classe du polyèdre. Le théorème d'Euler permet d'écrire
les égalités

Le réseau cubique considéré est réductible, en vertu du théorème
de Petersen, cela de diverses manières, en un réseau quadratique
(réseau R) et un réseau linéaire (réseau L). Le réseau R est formé
de a0 arêtes tandis que le réseau L n'en compte que y2 oc0. Les réseaux R
ainsi obtenus peuvent être répartis en 3 types: type I, le réseau ne
comporte qu'un seul contour fermé; type II, il y en a 2 ou plusieurs
qui comptent tous un nombre pair d'arêtes; type III, certains de ces
contours fermés ont un nombre impair d'arêtes (ils sont d'ailleurs en
nombres pairs).

Le polyèdre de la Planche 1 appartient à la classe fx 4. Il
renferme 4 réseaux R (par suite 4 réseaux L). Il va nous permettre
d'exposer en quoi consiste la méthode du greffage.

© e © o
Planche 1

Sur une des arêtes du polyèdre, n'importe laquelle, on marque
2 points que l'on considère comme 2 nouveaux sommets. On réunit
ces sommets par une nouvelle arête. On forme ainsi un nouveau
polyèdre, de classe jx 5, dont on recherche les réseaux R. On
constate que si l'arête sur laquelle s'est opéré le greffage est sur un
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réseau R de la classe p 4, on obtient 2 réseaux R sur le polyèdre
de la classe p 5, sinon on n'en obtient qu'un seul. C'est ce que fait
voir la Planche 2. Ce dernier polyèdre renferme donc 6 réseaux R'

Planche 2

Un second greffage conduit à un polyèdre de la classe y 6.
Les caractères relevés ci-dessus, dans le passage du polyèdre de la
classe p 4 à celui du polyèdre de la classe p — 5, se retrouvent
ici intégralement. Il convient de noter que la Planche 1 présente
4 réseaux R dont 3 sont du type I et 1 du type III. La Planche 2 en
présente 6 dont 4 sont du type I, 1 du type II et 1 du type III. La
Planche 3 en présente 9 dont 4 sont du type I, 4 du type II et 1 du
type III.

Planche 3

Lorsque l'on passe à la troisième opération de greffage, une
remarque s'impose. Jusqu'ici nous avons utilisé des arêtes qui
faisaient partie du même réseau R: Planche 1. Si la troisième arête
appartient encore à ce réseau'i?, il n'y a aucune raison de ne pas
rencontrer encore des réseaux R du type I. Le nouveau polyèdre est
de la classe p 7. Celui de la Fig. 1: Planche 4 compte 8 réseaux R
du type I, 6 du type II et 1 du type III.
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Si, par contre, l'arête utilisée appartient au réseau L correspondant,
les réseaux R du type I ont tous disparu, les 4 figures de gauche

de la Planche 3 en donnent la raison. C'est ainsi qu'en Fig. 2 : Planche 4

on dénombre 12 réseaux R du type II et 1 du type III, tandis que la
Fig. 3 conduit à 12 réseaux R du type II et 2 du type III.

En utilisant la deuxième figure de la Planche 1, on constate que
la Fig. 4: Planche 4 renferme des réseaux R du type I, tandis que la
Fig. 5 n'en a pas.

1 2 3 4 5

Planche 4

Le greffage ainsi effectué n'est pas un but, mais un moyen qui
permet de justifier l'inexistence de réseaux R du type I dans un
réseau cubique donné. Ce qui est important ce n'est pas la présence
de faces limitées par 2 arêtes seulement, mais plutôt celle de faces

ayant en commun 2 arêtes distinctes. C'est ce que l'on évite en se

plaçant dans le « cas difficile » de Errera.
Voici quelques exemples de réseaux cubiques dans lesquels le

troisième greffage a été effectué sur une arête d'un réseau L.

Planche 5
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